1
|
Kanaujiya VK, Tiwari V, Pattanaik K, Sabiah S, Kandasamy J. Synthesis of Glycouronamides by the Transamidation Approach at Room Temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Varsha Tiwari
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | | | | | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
2
|
Lee Y, Hou X, Lee JH, Nayak A, Alexander V, Sharma PK, Chang H, Phan K, Gao ZG, Jacobson KA, Choi S, Jeong LS. Subtle Chemical Changes Cross the Boundary between Agonist and Antagonist: New A 3 Adenosine Receptor Homology Models and Structural Network Analysis Can Predict This Boundary. J Med Chem 2021; 64:12525-12536. [PMID: 34435786 DOI: 10.1021/acs.jmedchem.1c00239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Distinguishing compounds' agonistic or antagonistic behavior would be of great utility for the rational discovery of selective modulators. We synthesized truncated nucleoside derivatives and discovered 6c (Ki = 2.40 nM) as a potent human A3 adenosine receptor (hA3AR) agonist, and subtle chemical modification induced a shift from antagonist to agonist. We elucidated this shift by developing new hA3AR homology models that consider the pharmacological profiles of the ligands. Taken together with molecular dynamics (MD) simulation and three-dimensional (3D) structural network analysis of the receptor-ligand complex, the results indicated that the hydrogen bonding with Thr943.36 and His2727.43 could make a stable interaction between the 3'-amino group with TM3 and TM7, and the corresponding induced-fit effects may play important roles in rendering the agonistic effect. Our results provide a more precise understanding of the compounds' actions at the atomic level and a rationale for the design of new drugs with specific pharmacological profiles.
Collapse
Affiliation(s)
- Yoonji Lee
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.,College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Xiyan Hou
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,College of Life Science, Dalian Minzu University, Dalian 116600, People's Republic of China
| | - Jin Hee Lee
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Akshata Nayak
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Varughese Alexander
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Pankaz K Sharma
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyerim Chang
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland 20892, United States
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Lak Shin Jeong
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Choi H, Jacobson KA, Yu J, Jeong LS. Design and Synthesis of 2,6-Disubstituted-4'-Selenoadenosine-5'- N, N-Dimethyluronamide Derivatives as Human A 3 Adenosine Receptor Antagonists. Pharmaceuticals (Basel) 2021; 14:ph14040363. [PMID: 33920062 PMCID: PMC8071163 DOI: 10.3390/ph14040363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
A new series of 4′-selenoadenosine-5′-N,N-dimethyluronamide derivatives as highly potent and selective human A3 adenosine receptor (hA3AR) antagonists, is described. The highly selective A3AR agonists, 4′-selenoadenosine-5′-N-methyluronamides were successfully converted into selective antagonists by adding a second N-methyl group to the 5′-uronamide position. All the synthesized compounds showed medium to high binding affinity at the hA3AR. Among the synthesized compounds, 2-H-N6-3-iodobenzylamine derivative 9f exhibited the highest binding affinity at hA3AR. (Ki = 22.7 nM). The 2-H analogues generally showed better binding affinity than the 2-Cl analogues. The cAMP functional assay with 2-Cl-N6-3-iodobenzylamine derivative 9l demonstrated hA3AR antagonist activity. A molecular modelling study suggests an important role of the hydrogen of 5′-uronamide as an essential hydrogen bonding donor for hA3AR activation.
Collapse
Affiliation(s)
- Hongseok Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Correspondence: (J.Y.); (L.S.J.); Tel.: +82-2-880-7850 (L.S.J.)
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
- Correspondence: (J.Y.); (L.S.J.); Tel.: +82-2-880-7850 (L.S.J.)
| |
Collapse
|
4
|
Spinozzi E, Baldassarri C, Acquaticci L, Del Bello F, Grifantini M, Cappellacci L, Riccardo P. Adenosine receptors as promising targets for the management of ocular diseases. Med Chem Res 2021; 30:353-370. [PMID: 33519168 PMCID: PMC7829661 DOI: 10.1007/s00044-021-02704-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
The ocular drug discovery arena has undergone a significant improvement in the last few years culminating in the FDA approvals of 8 new drugs. However, despite a large number of drugs, generics, and combination products available, it remains an urgent need to find breakthrough strategies and therapies for tackling ocular diseases. Targeting the adenosinergic system may represent an innovative strategy for discovering new ocular therapeutics. This review focused on the recent advance in the field and described the numerous nucleoside and non-nucleoside modulators of the four adenosine receptors (ARs) used as potential tools or clinical drug candidates.
Collapse
Affiliation(s)
- Eleonora Spinozzi
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Cecilia Baldassarri
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Laura Acquaticci
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Mario Grifantini
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Petrelli Riccardo
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
5
|
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Tabrizi MA, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S. A 3 Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Med Res Rev 2018; 38:1031-1072. [PMID: 28682469 PMCID: PMC5756520 DOI: 10.1002/med.21456] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023]
Abstract
The A3 adenosine receptor (A3 AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A3 AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A3 AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A3 AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A3 AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A3 AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A3 AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A3 AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Romeo Romagnoli
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Determination and validation of LJ-2698, a potent human A 3 adenosine receptor antagonist, in rat plasma by liquid chromatography-tandem mass spectrometry and its application in pharmacokinetic study. Arch Pharm Res 2017; 40:952-961. [PMID: 28756559 DOI: 10.1007/s12272-017-0935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
LJ-2698, a highly potent human A3 adenosine receptor antagonist with nucleoside structure, was designed to have a minimal species dependence. For further pre-clinical studies, analytical method for the detection of LJ-2698 in rat plasma was developed by liquid chromatography-tandem mass. Plasma samples were processed by protein precipitation method with acetonitrile, using losartan as the internal standard (IS). Chromatographic separation was carried out using a Kinetex C18 column (100 × 4.6 mm; 100 Å; 2.6 μ) with acetonitrile/water with 0.2% (v/v) formic acid (65:35, v/v) in the isocratic mode at a flow rate of 0.4 mL/min. Mass spectrometric detection in multiple reaction monitoring mode was performed with positive electrospray ionization. The mass transitions of LJ-2698 and IS were m/z 412.3 → 294.1 and m/z 423.1 → 207.2, respectively. The calibration curves were linear in the range 5.00-5000 ng/mL (r 2 ≥ 0.998). The lower limit of quantification was established as 5.00 ng/mL. Within- and between-run precisions were <7.01%, as relative standard deviation; and accuracies were in the range 3.37-3.64%, as relative error. The validated method was successfully applied to its pharmacokinetic evaluation after intravenous and oral administration in rats, and the dose-dependent pharmacokinetic behavior of LJ-2698 was elucidated for the first time.
Collapse
|
7
|
Petrelli R, Torquati I, Kachler S, Luongo L, Maione S, Franchetti P, Grifantini M, Novellino E, Lavecchia A, Klotz KN, Cappellacci L. 5'-C-Ethyl-tetrazolyl-N(6)-substituted adenosine and 2-chloro-adenosine derivatives as highly potent dual acting A1 adenosine receptor agonists and A3 adenosine receptor antagonists. J Med Chem 2015; 58:2560-6. [PMID: 25699637 DOI: 10.1021/acs.jmedchem.5b00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of N(6)-substituted-5'-C-(2-ethyl-2H-tetrazol-5-yl)-adenosine and 2-chloro-adenosine derivatives was synthesized as novel, highly potent dual acting hA1AR agonists and hA3AR antagonists, potentially useful in the treatment of glaucoma and other diseases. The best affinity and selectivity profiles were achieved by N(6)-substitution with a 2-fluoro-4-chloro-phenyl- or a methyl- group. Through an in silico receptor-driven approach, the molecular bases of the hA1- and hA3AR recognition and activation of this series of 5'-C-ethyl-tetrazolyl derivatives were explained.
Collapse
Affiliation(s)
- Riccardo Petrelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Baraldi PG, Preti D, Borea PA, Varani K. Medicinal Chemistry of A3 Adenosine Receptor Modulators: Pharmacological Activities and Therapeutic Implications. J Med Chem 2012; 55:5676-703. [DOI: 10.1021/jm300087j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pier Giovanni Baraldi
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Delia Preti
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Cheong SL, Federico S, Venkatesan G, Mandel AL, Shao YM, Moro S, Spalluto G, Pastorin G. The A3 adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev 2011; 33:235-335. [PMID: 22095687 DOI: 10.1002/med.20254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.
Collapse
Affiliation(s)
- Siew Lee Cheong
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Baraldi PG, Preti D, Zaid AN, Saponaro G, Tabrizi MA, Baraldi S, Romagnoli R, Moorman AR, Varani K, Cosconati S, Di Maro S, Marinelli L, Novellino E, Borea PA. New 2-heterocyclyl-imidazo[2,1-i]purin-5-one derivatives as potent and selective human A3 adenosine receptor antagonists. J Med Chem 2011; 54:5205-20. [PMID: 21675777 DOI: 10.1021/jm2004738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of 4-allyl/benzyl-7,8-dihydro-8-methyl/ethyl-2-[(substituted)isoxazol/pyrazol-3/5-yl]-1H-imidazo[2,1-i]purin-5(4H)-ones has been synthesized and evaluated in radioligand binding assays to determine their affinities at the human A(1), A(2A), and A(3) adenosine receptors. Efficacy at the hA(2B) AR and antagonism of selected ligands at the hA(3) AR were also assessed through cAMP experiments. All of the synthesized molecules exhibited high affinity at the hA(3) AR (K(i) values ranging from 1.46 to 44.8 nM), as well as remarkable selectivity versus A(1), A(2A), and A(2B) AR subtypes. Compound (R)-4-allyl-8-ethyl-7,8-dihydro-2-(3-methoxy-1-methyl-1H-pyrazol-5-yl)-1H-imidazo[2,1-i]purin-5(4H)-one (R-33) was found to be the most potent and selective ligand of the series (K(i) hA(3) = 1.46 nM, K(i) hA(2A)/K(i) hA(3) > 3425; IC(50) hA(2B)/K(i) hA(3) > 3425; K(i) hA(1)/K(i) hA(3) = 1729). Molecular modeling studies were helpful in rationalizing the available structure-activity relationships along with the selectivity profiles of the new series of ligands.
Collapse
Affiliation(s)
- Pier Giovanni Baraldi
- Dipartimento di Scienze Farmaceutiche, Università di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee HW, Choi WJ, Jacobson KA, Jeong LS. Synthesis and Binding Affinity of Homologated Adenosine Analogues as A 3Adenosine Receptor Ligands. B KOREAN CHEM SOC 2011; 32:1620-1624. [DOI: 10.5012/bkcs.2011.32.5.1620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Pran Kishore D, Balakumar C, Raghuram Rao A, Roy PP, Roy K. QSAR of adenosine receptor antagonists: Exploring physicochemical requirements for binding of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives with human adenosine A3 receptor subtype. Bioorg Med Chem Lett 2011; 21:818-23. [DOI: 10.1016/j.bmcl.2010.11.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/13/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
13
|
Choi WJ, Lee HW, Hou X, Kim HOK, Jacobson KA, Jeong LS. Synthesis of 2-chloro-N6-substituted-4'-thioadenosine-5'-N, N-dialkyluronamides as potent and selective A3 adenosine receptor antagonists. ACTA ACUST UNITED AC 2010:645-6. [PMID: 18776545 DOI: 10.1093/nass/nrn326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The highly selective A(3) receptor agonist, 4'-thio-Cl-IB-MECA was successfully converted into selective A(3) receptor antagonists by appending a second N-alkyl group on the 5'-uronamide position. This result indicates that the hydrogen bonding ability of the 5'-uronamide is essential for the conformational change required for the receptor activation. Among compounds tested, a N(6)-(3-bromobenzyl) derivative with 5'-dimethyluronamide exhibited the highest binding affinity (K(i) = 9.32 nM) at the human A(3) AR with very low binding affinities to other AR subtypes.
Collapse
Affiliation(s)
- Won Jun Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | |
Collapse
|
14
|
In silico classification of adenosine receptor antagonists using Laplacian-modified naïve Bayesian, support vector machine, and recursive partitioning. J Mol Graph Model 2010; 28:883-90. [DOI: 10.1016/j.jmgm.2010.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 03/18/2010] [Accepted: 03/21/2010] [Indexed: 10/19/2022]
|
15
|
Wang Z, Do CW, Avila MY, Peterson-Yantorno K, Stone RA, Gao ZG, Joshi B, Besada P, Jeong LS, Jacobson KA, Civan MM. Nucleoside-derived antagonists to A3 adenosine receptors lower mouse intraocular pressure and act across species. Exp Eye Res 2010; 90:146-54. [PMID: 19878673 PMCID: PMC2789191 DOI: 10.1016/j.exer.2009.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/02/2009] [Accepted: 10/07/2009] [Indexed: 11/21/2022]
Abstract
The purpose of the study was to determine whether novel, selective antagonists of human A3 adenosine receptors (ARs) derived from the A3-selective agonist Cl-IB-MECA lower intraocular pressure (IOP) and act across species. IOP was measured invasively with a micropipette by the Servo-Null Micropipette System (SNMS) and by non-invasive pneumotonometry during topical drug application. Antagonist efficacy was also assayed by measuring inhibition of adenosine-triggered shrinkage of native bovine nonpigmented ciliary epithelial (NPE) cells. Five agonist-based A3AR antagonists lowered mouse IOP measured with SNMS tonometry by 3-5 mm Hg within minutes of topical application. Of the five agonist derivatives, LJ 1251 was the only antagonist to lower IOP measured by pneumotonometry. No effect was detected pneumotonometrically over 30 min following application of the other four compounds, consonant with slower, smaller responses previously measured non-invasively following topical application of A3AR agonists and the dihydropyridine A3AR antagonist MRS 1191. Latanoprost similarly lowered SNMS-measured IOP, but not IOP measured non-invasively over 30 min. Like MRS 1191, agonist-based A3AR antagonists applied to native bovine NPE cells inhibited adenosine-triggered shrinkage. In summary, the results indicate that antagonists of human A3ARs derived from the potent, selective A3 agonist Cl-IB-MECA display efficacy in mouse and bovine cells, as well. When intraocular delivery was enhanced by measuring mouse IOP invasively, five derivatives of the A3AR agonist Cl-IB-MECA lowered IOP but only one rapidly reduced IOP measured non-invasively after topical application. We conclude that derivatives of the highly-selective A3AR agonist Cl-IB-MECA can reduce IOP upon reaching their intraocular target, and that nucleoside-based derivatives are promising A3 antagonists for study in multiple animal models.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tosh DK, Chinn M, Ivanov AA, Klutz AM, Gao ZG, Jacobson KA. Functionalized congeners of A3 adenosine receptor-selective nucleosides containing a bicyclo[3.1.0]hexane ring system. J Med Chem 2009; 52:7580-92. [PMID: 19499950 PMCID: PMC3109436 DOI: 10.1021/jm900426g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(N)-Methanocarba nucleosides containing bicyclo[3.1.0]hexane replacement of the ribose ring previously demonstrated selectivity as A(3) adenosine receptor (AR) agonists (5'-uronamides) or antagonists (5'-truncated). Here, these two series were modified in parallel at the adenine C2 position. N(6)-3-Chlorobenzyl-5'-N-methyluronamides derivatives with functionalized 2-alkynyl chains of varying length terminating in a reactive carboxylate, ester, or amine group were full, potent human A(3)AR agonists. Flexibility of chain substitution allowed the conjugation with a fluorescent cyanine dye (Cy5) and biotin, resulting in binding K(i) values of 17 and 36 nM, respectively. The distal end of the chain was predicted by homology modeling to bind at the A(3)AR extracellular regions. Corresponding l-nucleosides were nearly inactive in AR binding. In the 5'-truncated nucleoside series, 2-Cl analogues were more potent at A(3)AR than 2-H and 2-F, functional efficacy in adenylate cyclase inhibition varied, and introduction of a 2-alkynyl chain greatly reduced affinity. SAR parallels between the two series lost stringency at distal positions. The most potent and selective novel compounds were amine congener 15 (K(i) = 2.1 nM) and truncated partial agonist 22 (K(i) = 4.9 nM).
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Moshe Chinn
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrei A. Ivanov
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Rollins Research Center, Atlanta, Georgia 30322
| | - Athena M. Klutz
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
17
|
Jacobson KA, Klutz AM, Tosh DK, Ivanov AA, Preti D, Baraldi PG. Medicinal chemistry of the A3 adenosine receptor: agonists, antagonists, and receptor engineering. Handb Exp Pharmacol 2009:123-59. [PMID: 19639281 PMCID: PMC3413728 DOI: 10.1007/978-3-540-89615-9_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A(3) adenosine receptor (A(3)AR) ligands have been modified to optimize their interaction with the A(3)AR. Most of these modifications have been made to the N(6) and C2 positions of adenine as well as the ribose moiety, and using a combination of these substitutions leads to the most efficacious, selective, and potent ligands. A(3)AR agonists such as IB-MECA and Cl-IB-MECA are now advancing into Phase II clinical trials for treatments targeting diseases such as cancer, arthritis, and psoriasis. Also, a wide number of compounds exerting high potency and selectivity in antagonizing the human (h)A(3)AR have been discovered. These molecules are generally characterized by a notable structural diversity, taking into account that aromatic nitrogen-containing monocyclic (thiazoles and thiadiazoles), bicyclic (isoquinoline, quinozalines, (aza)adenines), tricyclic systems (pyrazoloquinolines, triazoloquinoxalines, pyrazolotriazolopyrimidines, triazolopurines, tricyclic xanthines) and nucleoside derivatives have been identified as potent and selective A(3)AR antagonists. Probably due to the "enigmatic" physiological role of A(3)AR, whose activation may produce opposite effects (for example, concerning tissue protection in inflammatory and cancer cells) and may produce effects that are species dependent, only a few molecules have reached preclinical investigation. Indeed, the most advanced A(3)AR antagonists remain in preclinical testing. Among the antagonists described above, compound OT-7999 is expected to enter clinical trials for the treatment of glaucoma, while several thiazole derivatives are in development as antiallergic, antiasthmatic and/or antiinflammatory drugs.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Jeong LS, Pal S, Choe SA, Choi WJ, Jacobson KA, Gao ZG, Klutz AM, Hou X, Kim HO, Lee HW, Lee SK, Tosh DK, Moon HR. Structure-activity relationships of truncated D- and l-4'-thioadenosine derivatives as species-independent A3 adenosine receptor antagonists. J Med Chem 2008; 51:6609-13. [PMID: 18811138 DOI: 10.1021/jm8008647] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel D- and l-4'-thioadenosine derivatives lacking the 4'-hydroxymethyl moiety were synthesized, starting from d-mannose and d-gulonic gamma-lactone, respectively, as potent and selective species-independent A 3 adenosine receptor (AR) antagonists. Among the novel 4'-truncated 2-H nucleosides tested, a N(6)-(3-chlorobenzyl) derivative 7c was the most potent at the human A 3 AR (K i = 1.5 nM), but a N(6)-(3-bromobenzyl) derivative 7d showed the optimal species-independent binding affinity.
Collapse
Affiliation(s)
- Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Melman A, Wang B, Joshi BV, Gao ZG, de Castro S, Heller CL, Kim SK, Jeong LS, Jacobson KA. Selective A(3) adenosine receptor antagonists derived from nucleosides containing a bicyclo[3.1.0]hexane ring system. Bioorg Med Chem 2008; 16:8546-56. [PMID: 18752961 PMCID: PMC2593936 DOI: 10.1016/j.bmc.2008.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
We have prepared 50-modified derivatives of adenosine and a corresponding (N)-methanocarba nucleoside series containing a bicyclo[3.1.0]hexane ring system in place of the ribose moiety. The compounds were examined in binding assays at three subtypes of adenosine receptors (ARs) and in functional assays at the A3 AR. The H-bonding ability of a group of 9-riboside derivatives containing a 50-uronamide moiety was reduced by modification of the NH; however these derivatives did not display the desired activity as selective A3 AR antagonists, as occurs with 50-N,N-dimethyluronamides. However, truncated (N)-methanocarba analogues lacking a 40-hydroxymethyl group were highly potent and selective antagonists of the human A3 AR. The compounds were synthesized from D-ribose using a reductive free radical decarboxylation of a 50-carboxy intermediate. A less efficient synthetic approach began with L-ribose, which was similar to the published synthesis of (N)-methanocarba A3AR agonists. Compounds 33b-39b (N6-3-halobenzyl and related arylalkyl derivatives) were potent A3AR antagonists with binding Ki values of 0.7-1.4 nM. In a functional assay of [35S]GTPcS binding, 33b (3-iodobenzyl) completely inhibited stimulation by NECA with a KB of 8.9 nM. Thus, a highly potent and selective series of A3AR antagonists has been described.
Collapse
Affiliation(s)
- Artem Melman
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ben Wang
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bhalchandra V. Joshi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sonia de Castro
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Cara L. Heller
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Soo-Kyung Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- Beckman Institute, Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
| | - Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120−750, Korea
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
20
|
Liang CW, Choi WJ, Jeong LS. Synthesis of 2-alkynyl substituted 4'-thioadenosine derivatives and their binding affinities at the adenosine receptors. Arch Pharm Res 2008; 31:973-7. [PMID: 18787783 DOI: 10.1007/s12272-001-1254-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/20/2008] [Accepted: 07/01/2008] [Indexed: 11/29/2022]
Abstract
On the basis of high binding affinity of 2-hexynyl-N(6)-methyladenosine and N(6)-substituted-4'-thioadenosine derivatives at the A3 adenosine receptor (AR), novel 2-alkynyl-substituted-N(6)-methyl-4'-thioadenosine derivatives, combining the characteristics of two classes of nucleosides were designed and synthesized from D-gulonic gamma-lactone via palladium-catalyzed cross coupling reaction as a key step. Among compounds tested, only compound 3b showed moderate binding affinity at the human A3 adenosine receptor without binding affinities at other subtypes.
Collapse
Affiliation(s)
- Cheng-Wu Liang
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | | | | |
Collapse
|
21
|
Jeong LS, Lee HW, Kim HO, Jung JY, Gunaga P, Lee SK, Lee EJ, Chun MW, Gao ZG, Jacobson KA, Moon HR. Design, synthesis, and anti-tumor activity of 4'-thionucleosides as potent and selective agonists at the human A3 adenosine receptor. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:1565-8. [PMID: 18066827 DOI: 10.1080/15257770701547107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
On the basis of potent and selective binding affinity of Cl-IB-MECA to the human A(3) adenosine receptor, its 4'-thioadenosine derivatives were efficiently synthesized starting from D-gulonic gamma-lactone. Among compounds tested, 2-chloro-N(6)-(3-iodobenzyl)- and 2-chloro-N(6)-methyl-4' -thioadenosine-5' -methyluronamides (7a and 7b) exhibited nanomolar range of binding affinity (K(i) = 0.38 nM and 0.28 nM, respectively) at the human A(3)AR. These compounds showed anti-growth effects on HL-60 leukemia cell, which resulted from the inhibition of Wnt signaling pathway.
Collapse
Affiliation(s)
- Lak Shin Jeong
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Translocation of arrestin induced by human A(3) adenosine receptor ligands in an engineered cell line: comparison with G protein-dependent pathways. Pharmacol Res 2008; 57:303-11. [PMID: 18424164 DOI: 10.1016/j.phrs.2008.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/29/2008] [Accepted: 02/29/2008] [Indexed: 11/23/2022]
Abstract
Structurally diverse ligands were studied in A(3) adenosine receptor (AR)-mediated beta-arrestin translocation in engineered CHO cells. The agonist potency and efficacy were similar, although not identical, to their G protein signaling. However, differences have also been found. MRS542, MRS1760, and other adenosine derivatives, A(3)AR antagonists in cyclic AMP assays, were partial agonists in beta-arrestin translocation, indicating possible biased agonism. The xanthine 7-riboside DBXRM, a full agonist, was only partially efficacious in beta-arrestin translocation. DBXRM was shown to induce a lesser extent of desensitization compared with IB-MECA. In kinetic studies, MRS3558, a potent and selective A(3)AR agonist, induced beta-arrestin translocation significantly faster than IB-MECA and Cl-IB-MECA. Non-nucleoside antagonists showed similar inhibitory potencies as previously reported. PTX pretreatment completely abolished ERK1/2 activation, but not arrestin translocation. Thus, lead candidates for biased agonists at the A(3)AR have been identified with this arrestin-translocation assay, which promises to be an effective tool for ligand screening.
Collapse
|
23
|
Jeong LS, Gunaga P, Kim HO, Tosh DK, Lee HW, Choe SA, Moon HR, Gao ZG, Jacobson KA, Chun MW. Stereoselective synthesis of 1'-functionalized-4'-thionucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:1011-4. [PMID: 18058527 DOI: 10.1080/15257770701508588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Stereoselective functionalization of the 1'-position of 4'-thionucleosides was achieved using a stereoselective S(N)2 reaction controlled by 5-membered ring coordination.
Collapse
Affiliation(s)
- Lak Shin Jeong
- College of Pharmacy, Ewha Womans University, Seoul, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jeong LS, Lee HW, Kim HO, Tosh DK, Pal S, Choi WJ, Gao ZG, Patel AR, Williams W, Jacobson KA, Kim HD. Structure-activity relationships of 2-chloro-N6-substituted-4'-thioadenosine-5'-N,N-dialkyluronamides as human A3 adenosine receptor antagonists. Bioorg Med Chem Lett 2008; 18:1612-6. [PMID: 18255292 DOI: 10.1016/j.bmcl.2008.01.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/14/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
On the basis of potent and selective A(3) adenosine receptor (AR) antagonist, 2-chloro-N(6)-(3-iodobenzyl)-4'-thioadenosine-5'-N,N-dimethyluronamide, structure-activity relationships were studied for a series of 5'-N,N-dialkyluronamide derivatives, synthesized from D-gulonic gamma-lactone. From this study, it was revealed that removal of the hydrogen bond-donating ability of the 5'-uronamide was essential for the pure A(3)AR antagonism. 5'-N,N-Dimethyluronamide derivatives exhibited higher binding affinity than larger 5'-N,N-dialkyl or 5'-N,N-cycloalkylamide derivatives, indicating that steric factors are crucial in binding to the human A(3)AR. A N(6)-(3-bromobenzyl) derivative 6c (K(i)=9.32 nM) exhibited the highest binding affinity at the human A(3)AR with very low binding affinities to other AR subtypes.
Collapse
Affiliation(s)
- Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hou X, Pal S, Choi WJ, Kim HO, Tipnis A, Jacobson KA, Jeong LS. Design and synthesis of truncated 4'-thioadenosine derivatives as potent and selective A3 adenosine receptor antagonists. NUCLEIC ACIDS SYMPOSIUM SERIES (2004) 2008; 52:641-2. [PMID: 18776543 PMCID: PMC3097420 DOI: 10.1093/nass/nrn324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have established structure-activity relationships of novel truncated D-4'-thioadenosine derivatives from D-mannose as potent and selective A(3) adenosine receptor (AR) antagonists. At the human A(3) AR, most of N(6)-substituted analogues showed high potency and selectivity and acted as pure antagonists in a cyclic AMP functional assay. Among compounds tested, 2-chloro-N(6)-3-chlorobenzyl and N(6)-3-chlorobenzyl analogues displayed very high binding affinities (K(i) = 1.66 nM and 1.5 nM, respectively) at the human A(3) AR. Truncated 4'-thioadenosine derivatives studied here are regarded as an excellent template for the design of novel A(3) AR antagonists to act at both human and murine species.
Collapse
Affiliation(s)
- Xiyan Hou
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Shantanu Pal
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Won Jun Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Hea Ok Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Amol Tipnis
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, MD 20892, USA
| | - Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
26
|
Gunaga P, Kim HO, Lee HW, Tosh DK, Ryu JS, Choi S, Jeong LS. Stereoselective functionalization of the 1'-position of 4'-thionucleosides. Org Lett 2007; 8:4267-70. [PMID: 16956203 DOI: 10.1021/ol061548z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stereoselective synthesis of novel 1'-alpha-substituted-4'-thionucleosides was achieved starting from D-gulonic acid gamma-lactone via stereoselective nucleophilic substitution.
Collapse
Affiliation(s)
- Prashantha Gunaga
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Ravn J, Qvortrup K, Rosenbohm C, Koch T. Design, synthesis, and biological evaluation of LNA nucleosides as adenosine A3 receptor ligands. Bioorg Med Chem 2007; 15:5440-7. [PMID: 17560111 DOI: 10.1016/j.bmc.2007.05.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 05/21/2007] [Accepted: 05/23/2007] [Indexed: 11/16/2022]
Abstract
We have prepared a series of adenosine analogs based on the bicyclo[2.2.1]heptane scaffold of locked nucleic acid (LNA) and tested them for both agonist and antagonist activity at the adenosine A(3) receptor. The design of these derivatives was based on the known A(3) agonist IB-MECA and related compounds. Modifications thus include the 5'-uronamides and N(6)-(3-iodobenzyl) derivatives. In this way we have prepared analogs of known A(3) agonists with the sugar ring restricted in an N-conformation. For comparison we have also prepared 2'-O-methyl derivatives of IB-MECA. The LNA nucleosides showed no agonist activity but some of them are potent antagonists. The 2'-O-methyl derivative of IB-MECA is an agonist with similar potency as the parent compound.
Collapse
Affiliation(s)
- Jacob Ravn
- Santaris Pharma A/S, Bøge Alle 3, DK-2970 Hørsholm, Denmark.
| | | | | | | |
Collapse
|
28
|
Kim SK, Gao ZG, Jeong LS, Jacobson KA. Docking studies of agonists and antagonists suggest an activation pathway of the A3 adenosine receptor. J Mol Graph Model 2006; 25:562-77. [PMID: 16793299 PMCID: PMC6262875 DOI: 10.1016/j.jmgm.2006.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
Structural determinants of ligand efficacy in the human A(3) adenosine receptor (AR) were studied using pharmacophore and docking analyses of various categories of A(3) selective ligands: inverse agonist, neutral antagonist (nonnucleoside and nucleoside), and agonist (partial and full). The homology modeling of GPCRs was adapted to provide two templates: the rhodopsin-based resting state for antagonist binding and a putative Meta I state, conformationally altered at a key residue (W6.48), for agonist binding. The preferential binding domains and/or local conformational changes associated with docking of three high affinity A(3)AR ligands were compared: inverse agonist PSB-11 1 ((R)-8-ethyl-4-methyl-2-phenyl-imidazo[2,1-i]purin-5-one); neutral antagonist MRE-3008F20 7 (5-[[(4-methoxyphenyl)amino]carbonyl]amino-8-methyl-2-(2-furyl)pyra-zolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine), and full agonist Cl-IB-MECA 21 (2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine) to define a distinct recognition mode for each. Ribose-containing agonists were more hydrophilic than nonnucleoside antagonists, and H-bonding ability at the ribose 3'- and 5'-positions was required for agonism. From the receptor perspective, common requirements for activation included the destabilization of H-bond networks at W6.48 and H7.43, the specific interactions of the ribose moiety in its putative hydrophilic pocket at T3.36, S7.42, and H7.43, the stabilization of the complex by inward movement of F5.43, and the characteristic rotation of W6.48. By analogy, outward rotation of the W6.48 side-chain upon activation of an internally-crosslinking mutant M(3) muscarinic receptor was indicated by constrained molecular dynamics (MD). Our results are consistent with an anti-clockwise rotation (from the extracellular view) of transmembrane domains 3, 5, 6, and 7, as proposed for other Family A GPCRs. Thus, the putative conformational changes associated with A(3)AR activation indicate a shared mechanism of GPCR activation similar to rhodopsin.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
30
|
Besada P, Mamedova LK, Palaniappan KK, Gao ZG, Joshi BV, Jeong LS, Civan MM, Jacobson KA. NUCLEOSIDE PRODRUGS OF A 3 ADENOSINE RECEPTOR AGONISTS AND ANTAGONISTS. COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS 2006; 71:912-928. [PMID: 34815583 PMCID: PMC8608517 DOI: 10.1135/cccc20060912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
9-(β-D-Ribosfuranosyluronamide)adenine derivatives that are selective agonists and antagonists of the A3 adenosine receptor (AR) have been derivatized as prodrugs for in vivo delivery. The free hydroxy groups at the 2' and 3' positions of the agonists 2-chloro-N 6-(3-iodobenzyl)-9-(N-methyl-(β-D-ribosfuranosyluronamide)adenine 2b, the corresponding 4'-thio nucleoside 2c, and antagonists 4a and 4b (5'-N,N-dimethylamides related to 2b and 2c, respectively) were derivatized through simple acylation reactions. The prodrug derivatives were tested in radioligand binding assays at ARs and in a functional assay of adenylate cyclase at the A3AR and found to be considerably less active than the parent drugs. The hydrolysis of nucleoside 2',3'-diesters to regenerate the parent compound in the presence of human blood was demonstrated. 2',3'-Dipropionate esters of 2b and 4a were readily cleaved in a two-step reaction to regenerate the parent drug, on a time scale of two hours. The cleavage of a 2',3'-dihexanoate ester occurred at a slower rate. This indicates that the prodrugs are suitable as masked forms of the biologically active A3AR agonists and antagonists for future evaluation in vivo.
Collapse
Affiliation(s)
- Pedro Besada
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, U.S.A
| | - Liaman K. Mamedova
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, U.S.A
| | - Krishnan K. Palaniappan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, U.S.A
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, U.S.A
| | - Bhalchandra V. Joshi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, U.S.A
| | - Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Mortimer M. Civan
- Departments of Physiology and Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, U.S.A
| |
Collapse
|