1
|
Rodríguez-Urretavizcaya B, Vilaplana L, Marco MP. Strategies for quorum sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int J Antimicrob Agents 2024; 64:107323. [PMID: 39242051 DOI: 10.1016/j.ijantimicag.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance is one of the most important concerns in global health today. A growing number of infections are becoming harder to treat with conventional drugs and fewer new antibiotics are being developed. In this context, strategies based on blocking or attenuating virulence pathways that do not focus on eradication of bacteria are potential therapeutic approaches that should reduce the selective pressure exerted on the pathogen. This virulence depletion can be achieved by inhibiting the conserved quorum sensing (QS) system, a mechanism that enables bacteria to communicate with one another in a density-dependent manner. QS regulates gene expression, leading to the activation of important processes such as virulence and biofilm formation. This review highlights the approaches reported so far for disrupting different steps of the QS system of the multiresistant pathogen Pseudomonas aeruginosa. The authors describe different types of molecules (including enzymes, natural and synthetic small molecules, and antibodies) already identified as P. aeruginosa quorum quenchers (QQs) or QS inhibitors (QSIs), grouped according to the QS circuit that they block (Las, Rhl, Pqs and some examples from the controversial pathway Iqs). The discovery of new QQs and QSIs is expected to help reduce antibiotic doses, or at least to provide options that act as adjuvants to enhance the effect of antibiotic treatment. Moreover, this article outlines the advantages and possible drawbacks of each strategy and provides perspectives on the potential developments in this field in the future.
Collapse
Affiliation(s)
- Bárbara Rodríguez-Urretavizcaya
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lluïsa Vilaplana
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
2
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
5
|
Kauser A, Parisini E, Suarato G, Castagna R. Light-Based Anti-Biofilm and Antibacterial Strategies. Pharmaceutics 2023; 15:2106. [PMID: 37631320 PMCID: PMC10457815 DOI: 10.3390/pharmaceutics15082106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.
Collapse
Affiliation(s)
- Ambreen Kauser
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Suarato
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, CNR-IEIIT, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
6
|
Naga NG, El-Badan DE, Ghanem KM, Shaaban MI. It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Cell Commun Signal 2023; 21:133. [PMID: 37316831 DOI: 10.1186/s12964-023-01154-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
Multiple drug resistance poses a significant threat to public health worldwide, with a substantial increase in morbidity and mortality rates. Consequently, searching for novel strategies to control microbial pathogenicity is necessary. With the aid of auto-inducers (AIs), quorum sensing (QS) regulates bacterial virulence factors through cell-to-cell signaling networks. AIs are small signaling molecules produced during the stationary phase. When bacterial cultures reach a certain level of growth, these molecules regulate the expression of the bound genes by acting as mirrors that reflect the inoculum density.Gram-positive bacteria use the peptide derivatives of these signaling molecules, whereas Gram-negative bacteria use the fatty acid derivatives, and the majority of bacteria can use both types to modulate the expression of the target gene. Numerous natural and synthetic QS inhibitors (QSIs) have been developed to reduce microbial pathogenesis. Applications of QSI are vital to human health, as well as fisheries and aquaculture, agriculture, and water treatment. Video Abstract.
Collapse
Affiliation(s)
- Nourhan G Naga
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Dalia E El-Badan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Khaled M Ghanem
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona I Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
8
|
Kapadia C, Kachhdia R, Singh S, Gandhi K, Poczai P, Alfarraj S, Ansari MJ, Gafur A, Sayyed RZ. Pseudomonas aeruginosa inhibits quorum-sensing mechanisms of soft rot pathogen Lelliottia amnigena RCE to regulate its virulence factors and biofilm formation. Front Microbiol 2022; 13:977669. [PMID: 36090086 PMCID: PMC9450810 DOI: 10.3389/fmicb.2022.977669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
The quorum-sensing (QS) cascade is responsible for the colonization and phenotypic behavior of the pathogenic organism and the regulation of diverse signal molecules. The disruption of the quorum-sensing system is an effective strategy to overcome the possibility of antibiotic resistance development in the pathogen. The quorum quenching does not kill the microbes. Instead, it hinders the expression of pathogenic traits. In the present experiment, Pseudomonas aeruginosa RKC1 was used to extract the metabolites responsible for quorum-sensing inhibition in soft rot pathogen Lelliottia amnigena RCE. During the initial screening, P. aeruginosa RKC1 was found to be most promising and inhibits violacein of Chromobacterium violaceum MTCC2656 pyocyanin, swarming-swimming motility of P. aeruginosa MTCC2297. The characterization of metabolites produced by the microbes which are responsible for quorum-sensing inhibition through GC-MS is very scarce in scientific literature. The ethyl acetate extract of P. aeruginosa RKC1 inhibits biofilm formation of L. amnigena RCE while inhibiting growth at higher concentrations. The GC-MS analysis suggested that Cyclic dipeptides (CDPs) such as Cyclo (L-prolyl-L-valine), Cyclo (Pro-Leu), and Cyclo(D-phenylalanyl-L-prolyl) were predominantly found in the ethyl acetate extract of the P. aeruginosa RKC1 (93.72%). This diketopiperazine (DKPs) exhibited quorum-sensing inhibition against the pathogen in liquid media during the active growth phase and regulated diverse metabolites of the pathogen. Moreover, the metabolites data from the clear zone around wells showed a higher concentration of DKSs (9.66%) compared to other metabolites. So far, very few reports indicate the role of DKPs or CDPs in inhibiting the quorum-sensing system in plant pathogenic bacteria. This is one such report that exploits metabolites of P. aeruginosa RKC1. The present investigation provided evidence to use quorum-sensing inhibitor metabolites, to suppress microbes' pathogenesis and thus develop an innovative strategy to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
- *Correspondence: Chintan Kapadia
| | - Rinkal Kachhdia
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Susheel Singh
- Food Quality Testing Laboratory, N. M. College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Kelvin Gandhi
- Food Quality Testing Laboratory, N. M. College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Peter Poczai
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandals, S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
- R. Z. Sayyed
| |
Collapse
|
9
|
Chadha J, Harjai K, Chhibber S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol 2021; 15:1695-1718. [PMID: 34843159 PMCID: PMC9151347 DOI: 10.1111/1751-7915.13981] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Unregulated consumption and overexploitation of antibiotics have paved the way for emergence of antibiotic‐resistant strains and ‘superbugs’. Pseudomonas aeruginosa is among the opportunistic nosocomial pathogens causing devastating infections in clinical set‐ups globally. Its artillery equipped with diversified virulence elements, extensive antibiotic resistance and biofilms has made it a ‘hard‐to‐treat’ pathogen. The pathogenicity of P. aeruginosa is modulated by an intricate cell density‐dependent mechanism called quorum sensing (QS). The virulence artillery of P. aeruginosa is firmly controlled by QS genes, and their expression drives the aggressiveness of the infection. Attempts to identify and develop novel antimicrobials have seen a sharp rise in the past decade. Among different proposed mechanisms, a novel anti‐virulence approach to target pseudomonal infections by virtue of anti‐QS and anti‐biofilm drugs appears to occupy the centre stage. In this respect, bioactive phytochemicals have gained prominence among the scientific community owing to their significant quorum quenching (QQ) properties. Recent studies have shed light on the QQ activities of various phytochemicals and other drugs in perturbing the QS‐dependent virulence in P. aeruginosa. This review highlights the recent evidences that reinforce the application of plant bioactives for combating pseudomonal infections, their advantages and shortcomings in anti‐virulence therapy.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
10
|
Zhang Q, Li S, Hachicha M, Boukraa M, Soulère L, Efrit ML, Queneau Y. Heterocyclic Chemistry Applied to the Design of N-Acyl Homoserine Lactone Analogues as Bacterial Quorum Sensing Signals Mimics. Molecules 2021; 26:molecules26175135. [PMID: 34500565 PMCID: PMC8433848 DOI: 10.3390/molecules26175135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/02/2022] Open
Abstract
N-acyl homoserine lactones (AHLs) are small signaling molecules used by many Gram-negative bacteria for coordinating their behavior as a function of their population density. This process, based on the biosynthesis and the sensing of such molecular signals, and referred to as Quorum Sensing (QS), regulates various gene expressions, including growth, virulence, biofilms formation, and toxin production. Considering the role of QS in bacterial pathogenicity, its modulation appears as a possible complementary approach in antibacterial strategies. Analogues and mimics of AHLs are therefore biologically relevant targets, including several families in which heterocyclic chemistry provides a strategic contribution in the molecular design and the synthetic approach. AHLs consist of three main sections, the homoserine lactone ring, the central amide group, and the side chain, which can vary in length and level of oxygenation. The purpose of this review is to summarize the contribution of heterocyclic chemistry in the design of AHLs analogues, insisting on the way heterocyclic building blocks can serve as replacements of the lactone moiety, as a bioisostere for the amide group, or as an additional pattern appended to the side chain. A few non-AHL-related heterocyclic compounds with AHL-like QS activity are also mentioned.
Collapse
Affiliation(s)
- Qiang Zhang
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
| | - Sizhe Li
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
| | - Maha Hachicha
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique, Faculté des Sciences de Tunis, Université de Tunis El Manar, El Manar, Tunis 2092, Tunisia
| | - Mohamed Boukraa
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique, Faculté des Sciences de Tunis, Université de Tunis El Manar, El Manar, Tunis 2092, Tunisia
| | - Laurent Soulère
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
- Correspondence: (L.S.); (M.L.E.); (Y.Q.)
| | - Mohamed L. Efrit
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique, Faculté des Sciences de Tunis, Université de Tunis El Manar, El Manar, Tunis 2092, Tunisia
- Correspondence: (L.S.); (M.L.E.); (Y.Q.)
| | - Yves Queneau
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
- Correspondence: (L.S.); (M.L.E.); (Y.Q.)
| |
Collapse
|
11
|
Functionalized Chitosan Nanomaterials: A Jammer for Quorum Sensing. Polymers (Basel) 2021; 13:polym13152533. [PMID: 34372136 PMCID: PMC8348235 DOI: 10.3390/polym13152533] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/02/2022] Open
Abstract
The biggest challenge in the present-day healthcare scenario is the rapid emergence and spread of antimicrobial resistance due to the rampant use of antibiotics in daily therapeutics. Such drug resistance is associated with the enhancement of microbial virulence and the acquisition of the ability to evade the host’s immune response under the shelter of a biofilm. Quorum sensing (QS) is the mechanism by which the microbial colonies in a biofilm modulate and intercept communication without direct interaction. Hence, the eradication of biofilms through hindering this communication will lead to the successful management of drug resistance and may be a novel target for antimicrobial chemotherapy. Chitosan shows microbicidal activities by acting electrostatically with its positively charged amino groups, which interact with anionic moieties on microbial species, causing enhanced membrane permeability and eventual cell death. Therefore, nanoparticles (NPs) prepared with chitosan possess a positive surface charge and mucoadhesive properties that can adhere to microbial mucus membranes and release their drug load in a constant release manner. As the success in therapeutics depends on the targeted delivery of drugs, chitosan nanomaterial, which displays low toxicity, can be safely used for eradicating a biofilm through attenuating the quorum sensing (QS). Since the anti-biofilm potential of chitosan and its nano-derivatives are reported for various microorganisms, these can be used as attractive tools for combating chronic infections and for the preparation of functionalized nanomaterials for different medical devices, such as orthodontic appliances. This mini-review focuses on the mechanism of the downregulation of quorum sensing using functionalized chitosan nanomaterials and the future prospects of its applications.
Collapse
|
12
|
Lu L, Li M, Yi G, Liao L, Cheng Q, Zhu J, Zhang B, Wang Y, Chen Y, Zeng M. Screening strategies for quorum sensing inhibitors in combating bacterial infections. J Pharm Anal 2021; 12:1-14. [PMID: 35573879 PMCID: PMC9073242 DOI: 10.1016/j.jpha.2021.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 01/20/2023] Open
Abstract
Interference with quorum sensing (QS) represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance. Over the past two decades, a novel series of studies have reported that quorum quenching approaches and the discovery of quorum sensing inhibitors (QSIs) have a strong impact on the discovery of anti-infective drugs against various types of bacteria. The discovery of QSI was demonstrated to be an appropriate strategy to expand the anti-infective therapeutic approaches to complement classical antibiotics and antimicrobial agents. For the discovery of QSIs, diverse approaches exist and develop in-step with the scale of screening as well as specific QS systems. This review highlights the latest findings in strategies and methodologies for QSI screening, involving activity-based screening with bioassays, chemical methods to seek bacterial QS pathways for QSI discovery, virtual screening for QSI screening, and other potential tools for interpreting QS signaling, which are innovative routes for future efforts to discover additional QSIs to combat bacterial infections. Interference with QSrepresents a promising antivirulence strategy for the treatment of bacterial infections. The discovery ofQSIs was demonstrated as an appropriate strategy to expand the anti-infective therapeutic arsenal to complement classical antibiotics and antimicrobial agents. For the discovery of QSIs, diverse approaches exist and develop in-step with the scale of screening and targeted QS systems. Few previous reviews have summarized the strategies and approaches of QSI screening, whereas this review highlights the recent findings in QSI screening strategies and methodologies.
Collapse
Affiliation(s)
- Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
- Corresponding author.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guojuan Yi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Qiang Cheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jie Zhu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Bin Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yingying Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yong Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Ming Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
13
|
Hemmati F, Salehi R, Ghotaslou R, Samadi Kafil H, Hasani A, Gholizadeh P, Nouri R, Ahangarzadeh Rezaee M. Quorum Quenching: A Potential Target for Antipseudomonal Therapy. Infect Drug Resist 2020; 13:2989-3005. [PMID: 32922047 PMCID: PMC7457774 DOI: 10.2147/idr.s263196] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
There has been excessive rate of use of antibiotics to fight Pseudomonas aeruginosa (P. aeruginosa) infections worldwide, which has consequently caused the increased resistance to multiple antibiotics in this pathogen. Due to the widespread resistance and the current poor effect of antibiotics consumed to treat P. aeruginosa infections, finding some novel alternative therapeutic methods are necessary for the treatment of infections. The P. aeruginosa biofilms can cause severe infections leading to the increased antibiotic resistance and mortality rate among the patients. In this regard, there are no approaches that can efficiently manage these infections; therefore, novel and effective antimicrobial and antibiofilm agents are needed to control and treat these bacterial infections. Quorum sensing inhibitors (QSIs) or quorum quenchings (QQs) are now considered as potential therapeutic alternatives and/or adjuvants to the current failing antibiotics, which can control the virulence traits of the pathogens, so as a result, the host immune system can quickly eliminate bacteria. Thus, the aims of this review article were presenting a brief explanation of the research reports on the natural and synthetic QSIs of P. aeruginosa, and the assessment of the current understanding on the QS mechanisms and various QQ strategies in P. aeruginosa.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Schmucker DJ, Dunbar SR, Shepherd TD, Bertucci MA. n → π* Interactions in N-Acyl Homoserine Lactone Derivatives and Their Effects on Hydrolysis Rates. J Phys Chem A 2019; 123:2537-2543. [DOI: 10.1021/acs.jpca.8b12266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel J. Schmucker
- Department of Chemistry, Moravian College, 1200 Main Street, Bethlehem, Pennsylvania 18018, United States
| | - Sydney R. Dunbar
- Department of Chemistry, Hartwick College, 1 Hartwick Drive, Oneonta, New York 13820, United States
| | - Tricia D. Shepherd
- Department of Chemistry, Moravian College, 1200 Main Street, Bethlehem, Pennsylvania 18018, United States
| | - Michael A. Bertucci
- Department of Chemistry, Moravian College, 1200 Main Street, Bethlehem, Pennsylvania 18018, United States
| |
Collapse
|
15
|
Fa S, Zhao Y. Synthetic nanoparticles for selective hydrolysis of bacterial autoinducers in quorum sensing. Bioorg Med Chem Lett 2019; 29:978-981. [PMID: 30795855 DOI: 10.1016/j.bmcl.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
N-acyl homoserine lactones (AHLs) are signal molecules used by a large number of gram-negative bacteria in quorum sensing and their hydrolysis is known to inhibit biofilm formation. Micellar imprinting of AHL-like templates with catalytic functional monomers yielded water-soluble nanoparticles with AHL-shaped active site and nearby catalytic groups. Either Lewis acidic zinc ions or nucleophilic pyridyl ligands could be introduced through this strategy, yielding artificial enzymes for the hydrolysis of AHLs in a substrate-selective fashion.
Collapse
Affiliation(s)
- Shixin Fa
- Department of Chemistry, Iowa State University, Ames, IA 50011-3111, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA 50011-3111, USA.
| |
Collapse
|
16
|
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 2018; 37:68-90. [PMID: 30471318 DOI: 10.1016/j.biotechadv.2018.11.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/19/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
17
|
Ravensdale JT, Coorey R, Dykes GA. Integration of Emerging Biomedical Technologies in Meat Processing to Improve Meat Safety and Quality. Compr Rev Food Sci Food Saf 2018; 17:615-632. [PMID: 33350135 DOI: 10.1111/1541-4337.12339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/16/2023]
Abstract
Modern-day processing of meat products involves a series of complex procedures designed to ensure the quality and safety of the meat for consumers. As the size of abattoirs increases, the logistical problems associated with large-capacity animal processing can affect the sanitation of the facility and the meat products, potentially increasing transmission of infectious diseases. Additionally, spoilage of food from improper processing and storage increases the global economic and ecological burden of meat production. Advances in biomedical and materials science have allowed for the development of innovative new antibacterial technologies that have broad applications in the medical industry. Additionally, new approaches in tissue engineering and nondestructive cooling of biological specimens could significantly improve organ transplantation and tissue grafting. These same strategies may be even more effective in the preservation and protection of meat as animal carcasses are easier to manipulate and do not have the same stringent requirements of care as living patients. This review presents potential applications of emerging biomedical technologies in the food industry to improve meat safety and quality. Future research directions investigating these new technologies and their usefulness in the meat processing chain along with regulatory, logistical, and consumer perception issues will also be discussed.
Collapse
Affiliation(s)
- Joshua T Ravensdale
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| | - Ranil Coorey
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| | - Gary A Dykes
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| |
Collapse
|
18
|
Abstract
Increasing extent of pathogenic resistance to drugs has encouraged the seeking for new anti-virulence drugs. Many pharmacological and pharmacognostical researches are performed to identify new drugs or discover new structures for the development of novel therapeutic agents in the antibiotic treatments. Although many phytochemicals show prominent antimicrobial activity, their power lies in their anti-virulence properties. Quorum sensing (QS) is a bacterial intercellular communication mechanism, which depends on bacterial cell population density and controls the pathogenesis of many organisms by regulating gene expression, including virulence determinants. QS has become an attractive target for the development of novel anti-infective agents that do not rely on the use of antibiotics. Anti-QS compounds are known to have the ability to prohibit bacterial pathogenicity. Medicinal plants offer an attractive repertoire of phytochemicals with novel microbial disease-controlling potential, due to the spectrum of secondary metabolites present in extracts, which include phenolics, quinones, flavonoids, alkaloids, terpenoids, and polyacetylenes. They have recently received considerable attention as a new source of safe and effective QS inhibitory substances. The objective of this review is to give a brief account of the research reports on the plants and natural compounds with anti-QS potential.
Collapse
Affiliation(s)
- Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Quorum sensing inhibitors: can endophytes be prospective sources? Arch Microbiol 2017; 200:355-369. [PMID: 29026943 DOI: 10.1007/s00203-017-1437-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/02/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023]
Abstract
Endophytes are microbes which reside inside the plant tissues asymptomatically or causing pathogenicity to the host plant for a brief period. Owing to their presence in a specialized niche, endophytes are capable of synthesizing diverse types of bioactive molecules. Continuous development of resistance mechanism by pathogens to the currently available health treatments and pharmaceuticals has led researchers to explore new therapeutic agents. Quorum sensing has a role in the development of microbial pathogenic traits including biofilm formation. Utilization of quorum sensing (QS) inhibitors in antivirulence approach against pathogenesis is one of the innovative strategies. Endophytic microbes provide a plethora of such required bioactive molecules. This review summarizes the bioprospecting of endophytic microbes for production of novel QS inhibitors. At the outset, an overview is presented about the QS and QS inhibition followed by a summary on the endophytes as a treasure trove of bioactive metabolites, particularly the QS inhibitors. Next, we have outlined screening, purification, production, and application of QS inhibitors starting from the isolation of endophytic microbes. There is huge prospect for endophytes in the domain of human healthcare and food industry, provided that we develop a comprehensive understanding of the biology of endophyte and its ecosystem.
Collapse
|
20
|
|
21
|
Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 2015; 40:86-116. [PMID: 26432822 DOI: 10.1093/femsre/fuv038] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Quorum sensing (QS) refers to the capacity of bacteria to monitor their population density and regulate gene expression accordingly: the QS-regulated processes deal with multicellular behaviors (e.g. growth and development of biofilm), horizontal gene transfer and host-microbe (symbiosis and pathogenesis) and microbe-microbe interactions. QS signaling requires the synthesis, exchange and perception of bacterial compounds, called autoinducers or QS signals (e.g. N-acylhomoserine lactones). The disruption of QS signaling, also termed quorum quenching (QQ), encompasses very diverse phenomena and mechanisms which are presented and discussed in this review. First, we surveyed the QS-signal diversity and QS-associated responses for a better understanding of the targets of the QQ phenomena that organisms have naturally evolved and are currently actively investigated in applied perspectives. Next the mechanisms, targets and molecular actors associated with QS interference are presented, with a special emphasis on the description of natural QQ enzymes and chemicals acting as QS inhibitors. Selected QQ paradigms are detailed to exemplify the mechanisms and biological roles of QS inhibition in microbe-microbe and host-microbe interactions. Finally, some QQ strategies are presented as promising tools in different fields such as medicine, aquaculture, crop production and anti-biofouling area.
Collapse
Affiliation(s)
- Catherine Grandclément
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Mélanie Tannières
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Solange Moréra
- Institut for Integrative Biology of the Cell, Department of Structural Biology, CNRS CEA Paris-Sud University, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Yves Dessaux
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Denis Faure
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
22
|
Singh RP. Attenuation of quorum sensing-mediated virulence in Gram-negative pathogenic bacteria: implications for the post-antibiotic era. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00363b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quorum quenching compounds blocked quorum sensing system of bacteria by several mechanisms (a, b, c and d).
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Kyushu University
- Fukuoka-shi
- Japan
| |
Collapse
|
23
|
Bertucci MA, Lee SJ, Gagné MR. Selective transamidation of 3-oxo-N-acyl homoserine lactones by hydrazine derivatives. Org Biomol Chem 2014; 12:7197-200. [DOI: 10.1039/c4ob01156b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrazine derivatives are employed for selective amide cleavage of 3-oxo-N-acyl homoserine lactones under physiologically relevant conditions.
Collapse
Affiliation(s)
- Michael A. Bertucci
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill, USA
| | | | - Michel R. Gagné
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill, USA
| |
Collapse
|
24
|
Nagai A, Okabe Y. Charge transfer (CT) mechanochromism: dramatic CT absorption change of crystalline π-conjugated oligomers containing TCNQ upon mechanical grinding. Chem Commun (Camb) 2014; 50:10052-4. [DOI: 10.1039/c4cc03879g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New π-conjugated oligomers with high crystallinity were prepared from the simple solvothermal reaction of squaric acid and diaminopyrenes.
Collapse
Affiliation(s)
- Atsushi Nagai
- Department of Materials Molecular Science
- Institute for Molecular Science
- National Institutes of Natural Sciences
- Okazaki 444-8787, Japan
| | - Yuki Okabe
- Department of Structural Molecular Science
- School of Physical Sciences
- Graduate University for Advanced Studies
- Okazaki 444-8787, Japan
| |
Collapse
|
25
|
Abstract
Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals.
Collapse
|
26
|
Bertucci MA, Lee SJ, Gagné MR. Thiourea-catalyzed aminolysis of N-acyl homoserine lactones. Chem Commun (Camb) 2013; 49:2055-7. [PMID: 23376901 DOI: 10.1039/c3cc00268c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thiourea catalysts accelerate aminolysis of N-acyl homoserine lactones (AHLs), molecules integral to bacterial quorum sensing. The catalysts afford rate enhancement of up to 10 times the control in CD(3)CN. Mild catalysis in other polar aprotic solvents is still observed, while the activity is attenuated in polar protic solvents.
Collapse
Affiliation(s)
- Michael A Bertucci
- Department of Chemistry, University of North Carolina at Chapel Hill, Campus Box 3290, Caudill and Kenan Laboratories, Chapel Hill, NC 27599-3290, USA
| | | | | |
Collapse
|
27
|
Tay SB, Yew WS. Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Int J Mol Sci 2013; 14:16570-99. [PMID: 23939429 PMCID: PMC3759926 DOI: 10.3390/ijms140816570] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 02/02/2023] Open
Abstract
Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.
Collapse
Affiliation(s)
- Song Buck Tay
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | | |
Collapse
|
28
|
Quorum sensing inhibitors: An overview. Biotechnol Adv 2013; 31:224-45. [DOI: 10.1016/j.biotechadv.2012.10.004] [Citation(s) in RCA: 474] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/24/2012] [Accepted: 10/30/2012] [Indexed: 12/28/2022]
|
29
|
López C, Vega M, Sanna E, Rotger C, Costa A. Efficient microwave-assisted preparation of squaric acid monoamides in water. RSC Adv 2013. [DOI: 10.1039/c3ra41369a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
30
|
Praneenararat T, Palmer AG, Blackwell HE. Chemical methods to interrogate bacterial quorum sensing pathways. Org Biomol Chem 2012; 10:8189-99. [PMID: 22948815 PMCID: PMC3480174 DOI: 10.1039/c2ob26353j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteria frequently manifest distinct phenotypes as a function of cell density in a phenomenon known as quorum sensing (QS). This intercellular signalling process is mediated by "chemical languages" comprised of low-molecular weight signals, known as autoinducers, and their cognate receptor proteins. As many of the phenotypes regulated by QS can have a significant impact on the success of pathogenic or mutualistic prokaryotic-eukaryotic interactions, there is considerable interest in methods to probe and modulate QS pathways with temporal and spatial control. Such methods would be valuable for both basic research in bacterial ecology and in practical medicinal, agricultural, and industrial applications. Toward this goal, considerable recent research has been focused on the development of chemical approaches to study bacterial QS pathways. In this Perspective, we provide an overview of the use of chemical probes and techniques in QS research. Specifically, we focus on: (1) combinatorial approaches for the discovery of small molecule QS modulators, (2) affinity chromatography for the isolation of QS receptors, (3) reactive and fluorescent probes for QS receptors, (4) antibodies as quorum "quenchers," (5) abiotic polymeric "sinks" and "pools" for QS signals, and (6) the electrochemical sensing of QS signals. The application of such chemical methods can offer unique advantages for both elucidating and manipulating QS pathways in culture and under native conditions.
Collapse
Affiliation(s)
| | | | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA. Fax: +1 (608) 265-4534; Tel: +1 (608) 262-1503
| |
Collapse
|
31
|
Zakhari JS, Kinoyama I, Struss AK, Pullanikat P, Lowery CA, Lardy M, Janda KD. Synthesis and molecular modeling provide insight into a Pseudomonas aeruginosa quorum sensing conundrum. J Am Chem Soc 2011; 133:3840-2. [PMID: 21348514 PMCID: PMC3060279 DOI: 10.1021/ja111138y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The triphenyl amide/ester 12 was originally reported to be a potent mimic of the natural 3-oxo-dodecanoyl homoserine lactone quorum sensing molecule in Pseudomonas aeruginosa. However, explicit synthesis/chemical characterization was lacking, and a later report providing protein crystallographic data inferred 12 to be incorrect, with 9 now being the surmised structure. Because of these inconsistencies and our interest in quorum sensing molecules utilized by gram-negative bacteria, we found it necessary to synthesize 9 and 12 to test for agonistic activity in a P. aeruginosa reporter assay. Despite distinct regiochemical differences, both 9 and 12 were found to have comparable EC(50) values. To reconcile these unanticipated findings, modeling studies were conducted, and both compounds were revealed to have comparable properties for binding to the LasR receptor.
Collapse
Affiliation(s)
- Joseph S. Zakhari
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology and the Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Isao Kinoyama
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology and the Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Anjali K. Struss
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology and the Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Prasanna Pullanikat
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology and the Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Colin A. Lowery
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology and the Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Matthew Lardy
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology and the Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Kim D. Janda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology and the Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
32
|
Thomas PW, Fast W. Heterologous overexpression, purification, and in vitro characterization of AHL lactonases. Methods Mol Biol 2011; 692:275-290. [PMID: 21031319 DOI: 10.1007/978-1-60761-971-0_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Quorum-quenching enzymes are useful as biochemical tools and possible therapeutic proteins. One of the best-characterized families of these catalysts is the N-acyl-L-homoserine lactone (AHL) lactonases, which rely on a dinuclear metal ion active site to hydrolytically cleave the autoinducer's lactone bond and inactivate signaling. A detailed understanding of how this enzyme works can help in the design of more selective and efficient reagents. To facilitate these studies, we describe a methodology to heterologously express, purify, and conduct in vitro characterization of several metalloforms of the AHL lactonase from Bacillus thuringiensis (AiiA). These procedures should be applicable to similar enzymes and will facilitate the production of more useful quorum-quenching reagents for biochemical studies and possible therapeutic applications.
Collapse
Affiliation(s)
- Pei W Thomas
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX, USA
| | | |
Collapse
|
33
|
Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR. Quorum Sensing in Gram-Negative Bacteria: Small-Molecule Modulation of AHL and AI-2 Quorum Sensing Pathways. Chem Rev 2010; 111:28-67. [DOI: 10.1021/cr100109t] [Citation(s) in RCA: 454] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Warren R. J. D. Galloway
- Department of Chemistry and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1EW U.K
| | - James T. Hodgkinson
- Department of Chemistry and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1EW U.K
| | - Steven D. Bowden
- Department of Chemistry and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1EW U.K
| | - Martin Welch
- Department of Chemistry and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1EW U.K
| | - David R. Spring
- Department of Chemistry and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1EW U.K
| |
Collapse
|
34
|
Stevens AM, Queneau Y, Soulère L, Bodman SV, Doutheau A. Mechanisms and Synthetic Modulators of AHL-Dependent Gene Regulation. Chem Rev 2010; 111:4-27. [DOI: 10.1021/cr100064s] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Yves Queneau
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Laurent Soulère
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Susanne von Bodman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Alain Doutheau
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| |
Collapse
|
35
|
Synthesis of 'clickable' acylhomoserine lactone quorum sensing probes: unanticipated effects on mammalian cell activation. Bioorg Med Chem Lett 2010; 21:2702-5. [PMID: 21190852 DOI: 10.1016/j.bmcl.2010.11.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/29/2010] [Indexed: 01/31/2023]
Abstract
Alkynyl- and azido-tagged 3-oxo-C(12)-acylhomoserine lactone probes have been synthesized to examine their potential utility as probes for discovering the mammalian protein target of the Pseudomonas aeruginosa autoinducer, 3-oxo-C(12)-acylhomoserine lactone. Although such substitutions are commonly believed to be quite conservative, from these studies, we have uncovered a drastic difference in activity between the alkynyl- and azido-modified compounds, and provide an example where such structural modification has proved to be much less than conservative.
Collapse
|
36
|
Amara N, Krom BP, Kaufmann GF, Meijler MM. Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem Rev 2010; 111:195-208. [PMID: 21087050 DOI: 10.1021/cr100101c] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Neri Amara
- Department of Chemistry and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | | | | |
Collapse
|
37
|
Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med Chem 2010; 2:1005-35. [DOI: 10.4155/fmc.10.185] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Small molecules that can attenuate bacterial toxin production or biofilm formation have the potential to solve the bacteria resistance problem. Although several molecules, which inhibit bacterial cell-to-cell communication (quorum sensing), biofilm formation and toxin production, have been discovered, there is a paucity of US FDA-approved drugs that target these processes. Here, we review the current understanding of quorum sensing in important pathogens such as Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus and provide examples of experimental molecules that can inhibit both known and unknown targets in bacterial virulence factor production and biofilm formation. Structural data for protein targets that are involved in both quorum sensing and cyclic diguanylic acid signaling are needed to aid the development of molecules with drug-like properties in order to target bacterial virulence factors production and biofilm formation.
Collapse
|
38
|
Pseudomonas aeruginosa pvdQ gene prevents Caco-2 cells from obstruction of quorum-sensing signal. Curr Microbiol 2010; 62:32-7. [PMID: 20490497 DOI: 10.1007/s00284-010-9668-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Quorum sensing (QS) system plays an important role in bacterial pathopoiesis of incurable Pseudomonas aeruginosa infection, which strongly warrants new strategies for absence of curative treatment to date. Latest investigations show that pvdQ gene of P. aeruginosa can attenuate the pathopoiesis of the bacteria by encoding acylase enzyme and hydrolyze N-(3-oxododecanoyl)-Homoserine Lactone (3O-oxo-C(12)-HSL), the key signal molecule of QS system. This study tries to resist the pathogenicity of P. aeruginosa by transfecting human intestinal epithelial Caco-2 cells with pvdQ gene. We found that 3O-oxo-C(12)-HSL was decreased in the supernatant of cells transfected with pvdQ gene. Moreover, the result of flow cytometry showed that the 3O-oxo-C(12)-HSL evoked apoptosis rate of Caco-2 cells was inhibited when the cells were transfected with pvdQ gene. In contrast, the control result displayed increased Caco-2 cells' apoptosis rate after stimulation of 3O-oxo-C(12)-HSL without protection of pvdQ gene. In conclusion, we successfully protect mammalian cells Caco-2 from injure of QS signal molecule 3O-oxo-C(12)-HSL through imputing pvdQ gene, which may suggest a new therapeutic strategy for P. aeruginosa infection.
Collapse
|
39
|
Ni N, Li M, Wang J, Wang B. Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 2009; 29:65-124. [DOI: 10.1002/med.20145] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Kapadnis PB, Hall E, Ramstedt M, Galloway WRJD, Welch M, Spring DR. Towards quorum-quenching catalytic antibodies. Chem Commun (Camb) 2008:538-40. [PMID: 19283283 DOI: 10.1039/b819819e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a novel method to attenuate bacterial virulence is reported, which is based upon the use of designed transition-state analogues to select human catalytic antibodies capable of degrading bacterial quorum-sensing molecules.
Collapse
Affiliation(s)
- Prashant B Kapadnis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UKCB2 1EW.
| | | | | | | | | | | |
Collapse
|