1
|
Shiryaev VA, Klimochkin YN. Main Chemotypes of SARS-CoV-2 Reproduction Inhibitors. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [PMCID: PMC8188765 DOI: 10.1134/s107042802105002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic has forced scientists all over the world to focus their effort on searching for targeted drugs for coronavirus chemotherapy. The present review is an attempt to systematize low-molecular-weight compounds, including well-known pharmaceuticals and natural substances that have exhibited high anti-coronavirus activity, not in terms of action on their targets, but in terms of their structural type.
Collapse
Affiliation(s)
- V. A. Shiryaev
- Samara State Technical University, 443100 Samara, Russia
| | | |
Collapse
|
2
|
Lin X, Liang C, Zou L, Yin Y, Wang J, Chen D, Lan W. Advance of structural modification of nucleosides scaffold. Eur J Med Chem 2021; 214:113233. [PMID: 33550179 PMCID: PMC7995807 DOI: 10.1016/j.ejmech.2021.113233] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022]
Abstract
With Remdesivir being approved by FDA as a drug for the treatment of Corona Virus Disease 2019 (COVID-19), nucleoside drugs have once again received widespread attention in the medical community. Herein, we summarized modification of traditional nucleoside framework (sugar + base), traizole nucleosides, nucleoside analogues assembled by other drugs, macromolecule-modified nucleosides, and their bioactivity rules. 2'-"Ara"-substituted by -F or -CN group, and 3'-"ara" substituted by acetylenyl group can greatly influence their anti-tumor activities. Dideoxy dehydrogenation of 2',3'-sites can enhance antiviral efficiencies. Acyclic nucleosides and L-type nucleosides mainly represented antiviral capabilities. 5-F Substituted uracil analogues exihibit anti-tumor effects, and the substrates substituted by -I, -CF3, bromovinyl group usually show antiviral activities. The sugar coupled with 1-N of triazolid usually displays anti-tumor efficiencies, while the sugar coupled with 2-N of triazolid mainly represents antiviral activities. The nucleoside analogues assembled by cholesterol, polyethylene glycol, fatty acid and phospholipid would improve their bioavailabilities and bioactivities, or reduce their toxicities.
Collapse
Affiliation(s)
- Xia Lin
- Medical College, Guangxi University, Nanning, 530004, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Guangxi Medical College, Nanning, 530023, China
| | | | - Lianjia Zou
- Guangxi Medical College, Nanning, 530023, China
| | - Yanchun Yin
- Guangxi Medical College, Nanning, 530023, China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning, 530004, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Dandan Chen
- Guangxi Medical College, Nanning, 530023, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
3
|
Konwar M, Sarma D. Advances in developing small molecule SARS 3CL pro inhibitors as potential remedy for corona virus infection. Tetrahedron 2021; 77:131761. [PMID: 33230349 PMCID: PMC7674993 DOI: 10.1016/j.tet.2020.131761] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
Originated in China, coronavirus disease 2019 (COVID-19)- the highly contagious and fatal respiratory disease caused by SARS-CoV-2 has already infected more than 29 million people worldwide with a mortality rate of 3.15% (according to World Health Organization's (WHO's) report, September 2020) and the number is exponentially increasing with no remedy whatsoever discovered till date. But it is not the first time this infectious viral disease has appeared, in 2002 SARS-CoV infected more than 8000 individuals of which 9.6% patients died and in 2012 approximately 35% of MERS-CoV infected patients have died. Literature reports indicate that a chymotripsin-like cystein protease (3CLpro) is responsible for the replication of the virus inside the host cell. Therefore, design and synthesis of 3CLpro inhibitor molecules play a great impact in drug development against this COVID-19 pandemic. In this review, we are discussing the anti-SARS effect of some small molecule 3CLpro inhibitors with their various binding modes of interactions to the target protein.
Collapse
Affiliation(s)
- Manashjyoti Konwar
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
- Department of Chemistry, Dibru College, Dibrugarh, 786003, Assam, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
4
|
Structural and functional insights into non-structural proteins of coronaviruses. Microb Pathog 2020; 150:104641. [PMID: 33242646 PMCID: PMC7682334 DOI: 10.1016/j.micpath.2020.104641] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Coronaviruses (CoVs) are causing a number of human and animal diseases because of their zoonotic nature such as Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19). These viruses can infect respiratory, gastrointestinal, hepatic and central nervous systems of human, livestock, birds, bat, mouse, and many wild animals. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerging respiratory virus and is causing CoVID-19 with high morbidity and considerable mortality. All CoVs belong to the order Nidovirales, family Coronaviridae, are enveloped positive-sense RNA viruses, characterised by club-like spikes on their surfaces and large RNA genome with a distinctive replication strategy. Coronavirus have the largest RNA genomes (~26–32 kilobases) and their expansion was likely enabled by acquiring enzyme functions that counter the commonly high error frequency of viral RNA polymerases. Non-structural proteins (nsp) 7–16 are cleaved from two large replicase polyproteins and guide the replication and processing of coronavirus RNA. Coronavirus replicase has more or less universal activities, such as RNA polymerase (nsp 12) and helicase (nsp 13), as well as a variety of unusual or even special mRNA capping (nsp 14, nsp 16) and fidelity regulation (nsp 14) domains. Besides that, several smaller subunits (nsp 7– nsp 10) serve as essential cofactors for these enzymes and contribute to the emerging “nsp interactome.” In spite of the significant progress in studying coronaviruses structural and functional properties, there is an urgent need to understand the coronaviruses evolutionary success that will be helpful to develop enhanced control strategies. Therefore, it is crucial to understand the structure, function, and interactions of coronaviruses RNA synthesizing machinery and their replication strategies.
Collapse
|
5
|
Negi M, Chawla PA, Faruk A, Chawla V. Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic. Bioorg Chem 2020; 104:104315. [PMID: 33007742 PMCID: PMC7513919 DOI: 10.1016/j.bioorg.2020.104315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/20/2020] [Indexed: 01/07/2023]
Abstract
Coronaviruses have led to severe emergencies in the world since the outbreak of SARS CoV in 2002, followed by MERS CoV in 2012. SARS CoV-2, the novel pandemic caused by coronaviruses that began in December 2019 in China has led to a total of 24,066,076 confirmed cases and a death toll of 823,572 as reported by World Health Organisation on 26 August 2020, spreading to 213 countries and territories. However, there are still no vaccines or medications available till date against SARS coronaviruses which is an urgent requirement to control the current pandemic like situations. Since many decades, heterocyclic scaffolds have been explored exhaustively for their anticancer, antimalarial, anti-inflammatory, antitubercular, antimicrobial, antidiabetic, antiviral and many more treatment capabilities. Therefore, through this review, we have tried to emphasize on the anticipated role of heterocyclic scaffolds in the design and discovery of the much-awaited anti-SARS CoV-2 therapy, by exploring the research articles depicting different heterocyclic moieties as targeting SARS, MERS and SARS CoV-2 coronaviruses. The heterocyclic motifs mentioned in the review can serve as crucial resources for the development of SARS coronaviruses treatment strategies.
Collapse
Affiliation(s)
- Meenakshi Negi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India,Corresponding author at: Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| |
Collapse
|
6
|
Hosseini-Zare MS, Thilagavathi R, Selvam C. Targeting severe acute respiratory syndrome-coronavirus (SARS-CoV-1) with structurally diverse inhibitors: a comprehensive review. RSC Adv 2020; 10:28287-28299. [PMID: 35519094 PMCID: PMC9055768 DOI: 10.1039/d0ra04395h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses, which were discovered in 1968, can lead to some human viral disorders, like severe acute respiratory syndrome (SARS), Middle East respiratory syndrome-related (MERS), and, recently, coronavirus disease 2019 (COVID-19). The coronavirus that leads to COVID-19 is rapidly spreading all over the world and is the reason for the deaths of thousands of people. Recent research has revealed that there is about 80% sequence homology between the coronaviruses that cause SARS and COVID-19. Considering this fact, we decided to collect the maximum available information on targets, structures, and inhibitors reported so far for SARS-CoV-1 that could be useful for researchers who work on closely related COVID-19. There are vital proteases, like papain-like protease 2 (PL2pro) and 3C-like protease (3CLpro), or main protease (Mpro), that are involved in and are essential for the replication of SARS coronavirus and so are valuable targets for the treatment of patients affected by this type of virus. SARS-CoV-1 NTPase/helicase plays an important role in the release of several non-structural proteins (nsps), so it is another essential target relating to the viral life cycle. In this paper, we provide extensive information about diverse molecules with anti-SARS activity. In addition to traditional medicinal chemistry outcomes, HTS, virtual screening efforts, and structural insights for better understanding inhibitors and SARS-CoV-1 target complexes are also discussed. This study covers a wide range of anti-SARS agents, particularly SARS-CoV-1 inhibitors, and provides new insights into drug design for the deadly SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Maryam S Hosseini-Zare
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University Houston TX-77004 USA +1-713-313-7552
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education Coimbatore India
| | - Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University Houston TX-77004 USA +1-713-313-7552
| |
Collapse
|
7
|
Teruya K, Hattori Y, Shimamoto Y, Kobayashi K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K. Structural basis for the development of SARS 3CL protease inhibitors from a peptide mimic to an aza-decaline scaffold. Biopolymers 2016; 106:391-403. [PMID: 26572934 PMCID: PMC7159131 DOI: 10.1002/bip.22773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023]
Abstract
Design of inhibitors against severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro) ) is a potentially important approach to fight against SARS. We have developed several synthetic inhibitors by structure-based drug design. In this report, we reveal two crystal structures of SARS 3CL(pro) complexed with two new inhibitors based on our previous work. These structures combined with six crystal structures complexed with a series of related ligands reported by us are collectively analyzed. To these eight complexes, the structural basis for inhibitor binding was analyzed by the COMBINE method, which is a chemometrical analysis optimized for the protein-ligand complex. The analysis revealed that the first two latent variables gave a cumulative contribution ratio of r(2) = 0.971. Interestingly, scores using the second latent variables for each complex were strongly correlated with root mean square deviations (RMSDs) of side-chain heavy atoms of Met(49) from those of the intact crystal structure of SARS-3CL(pro) (r = 0.77) enlarging the S2 pocket. The substantial contribution of this side chain (∼10%) for the explanation of pIC50 s was dependent on stereochemistry and the chemical structure of the ligand adapted to the S2 pocket of the protease. Thus, starting from a substrate mimic inhibitor, a design for a central scaffold for a low molecular weight inhibitor was evaluated to develop a further potent inhibitor. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 391-403, 2016.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of NeurochemistryTohoku University Graduate School of MedicineAoba‐Ku Sendai980‐8575Japan
| | - Yasunao Hattori
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | - Yasuhiro Shimamoto
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | - Kazuya Kobayashi
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | | | - Atsushi Nakagawa
- Institute for Protein Research, Osaka UniversitySuitaOsaka565‐0871Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka UniversitySuitaOsaka565‐0871Japan
| | - Kenichi Akaji
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| |
Collapse
|
8
|
Abstract
Coronaviruses are animal and human pathogens that can cause lethal zoonotic infections like SARS and MERS. They have polycistronic plus-stranded RNA genomes and belong to the order Nidovirales, a diverse group of viruses for which common ancestry was inferred from the common principles underlying their genome organization and expression, and from the conservation of an array of core replicase domains, including key RNA-synthesizing enzymes. Coronavirus genomes (~ 26–32 kilobases) are the largest RNA genomes known to date and their expansion was likely enabled by acquiring enzyme functions that counter the commonly high error frequency of viral RNA polymerases. The primary functions that direct coronavirus RNA synthesis and processing reside in nonstructural protein (nsp) 7 to nsp16, which are cleavage products of two large replicase polyproteins translated from the coronavirus genome. Significant progress has now been made regarding their structural and functional characterization, stimulated by technical advances like improved methods for bioinformatics and structural biology, in vitro enzyme characterization, and site-directed mutagenesis of coronavirus genomes. Coronavirus replicase functions include more or less universal activities of plus-stranded RNA viruses, like an RNA polymerase (nsp12) and helicase (nsp13), but also a number of rare or even unique domains involved in mRNA capping (nsp14, nsp16) and fidelity control (nsp14). Several smaller subunits (nsp7–nsp10) act as crucial cofactors of these enzymes and contribute to the emerging “nsp interactome.” Understanding the structure, function, and interactions of the RNA-synthesizing machinery of coronaviruses will be key to rationalizing their evolutionary success and the development of improved control strategies.
Collapse
Affiliation(s)
- E J Snijder
- Leiden University Medical Center, Leiden, The Netherlands.
| | - E Decroly
- Aix-Marseille Université, AFMB UMR 7257, Marseille, France; CNRS, AFMB UMR 7257, Marseille, France
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
9
|
Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J Med Chem 2016; 59:6595-628. [PMID: 26878082 PMCID: PMC7075650 DOI: 10.1021/acs.jmedchem.5b01461] [Citation(s) in RCA: 530] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Indexed: 01/17/2023]
Abstract
Severe acute respiratory syndrome (SARS) is caused by a newly emerged coronavirus that infected more than 8000 individuals and resulted in more than 800 (10-15%) fatalities in 2003. The causative agent of SARS has been identified as a novel human coronavirus (SARS-CoV), and its viral protease, SARS-CoV 3CL(pro), has been shown to be essential for replication and has hence been recognized as a potent drug target for SARS infection. Currently, there is no effective treatment for this epidemic despite the intensive research that has been undertaken since 2003 (over 3500 publications). This perspective focuses on the status of various efficacious anti-SARS-CoV 3CL(pro) chemotherapies discovered during the last 12 years (2003-2015) from all sources, including laboratory synthetic methods, natural products, and virtual screening. We describe here mainly peptidomimetic and small molecule inhibitors of SARS-CoV 3CL(pro). Attempts have been made to provide a complete description of the structural features and binding modes of these inhibitors under many conditions.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University
of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Manoj Manickam
- College
of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Vigneshwaran Namasivayam
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University
of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Sang-Hun Jung
- College
of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
10
|
Shimamoto Y, Hattori Y, Kobayashi K, Teruya K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K. Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors. Bioorg Med Chem 2015; 23:876-90. [PMID: 25614110 PMCID: PMC7111320 DOI: 10.1016/j.bmc.2014.12.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/07/2023]
Abstract
The design and evaluation of a novel decahydroisoquinolin scaffold as an inhibitor for severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro)) are described. Focusing on hydrophobic interactions at the S2 site, the decahydroisoquinolin scaffold was designed by connecting the P2 site cyclohexyl group of the substrate-based inhibitor to the main-chain at the α-nitrogen atom of the P2 position via a methylene linker. Starting from a cyclohexene enantiomer obtained by salt resolution, trans-decahydroisoquinolin derivatives were synthesized. All decahydroisoquinolin inhibitors synthesized showed moderate but clear inhibitory activities for SARS 3CL(pro), which confirmed the fused ring structure of the decahydroisoquinolin functions as a novel scaffold for SARS 3CL(pro) inhibitor. X-ray crystallographic analyses of the SARS 3CL(pro) in a complex with the decahydroisoquinolin inhibitor revealed the expected interactions at the S1 and S2 sites, as well as additional interactions at the N-substituent of the inhibitor.
Collapse
Affiliation(s)
- Yasuhiro Shimamoto
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yasunao Hattori
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kazuya Kobayashi
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kenta Teruya
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Sakyo-ku, Kyoto 606-0823, Japan
| | - Akira Sanjoh
- R&D Center, Protein Wave Co., Nara 631-0006, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
| |
Collapse
|
11
|
Subissi L, Imbert I, Ferron F, Collet A, Coutard B, Decroly E, Canard B. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets. Antiviral Res 2014; 101:122-30. [PMID: 24269475 PMCID: PMC7113864 DOI: 10.1016/j.antiviral.2013.11.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 12/17/2022]
Abstract
The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses".
Collapse
Affiliation(s)
- Lorenzo Subissi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Isabelle Imbert
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - François Ferron
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Axelle Collet
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Bruno Coutard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Etienne Decroly
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Bruno Canard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France.
| |
Collapse
|
12
|
Synthesis, modification and docking studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease inhibitors. Bioorg Med Chem 2013; 22:292-302. [PMID: 24316352 PMCID: PMC7111328 DOI: 10.1016/j.bmc.2013.11.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 11/21/2022]
Abstract
The Severe Acute Respiratory Syndrome (SARS) is a serious life-threatening and strikingly mortal respiratory illness caused by SARS-CoV. SARS-CoV which contains a chymotrypsin-like main protease analogous to that of the main picornavirus protease, 3CL(pro). 3CL(pro) plays a pivotal role in the viral replication cycle and is a potential target for SARS inhibitor development. A series of isatin derivatives as possible SARS-CoV 3CL(pro) inhibitors was designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide, in which several showed potent inhibition against the 3CL(pro). Structure-activity relationship was analyzed, and possible binding interaction modes were proposed by molecular docking studies. Among all compounds, 8k₁ showed most potent inhibitory activity against 3CL(pro) (IC₅₀=1.04 μM). These results indicated that these inhibitors could be potentially developed into anti-SARS drugs.
Collapse
|
13
|
Xu R, Liu F, Liu Y, Chen B, Liu FW. Directly Regioselective Protection of Secondary Hydroxyl Group on Ribosides in Aqueous Solution. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Rivero CW, De Benedetti EC, Sambeth JE, Lozano ME, Trelles JA. Biosynthesis of anti-HCV compounds using thermophilic microorganisms. Bioorg Med Chem Lett 2012; 22:6059-62. [PMID: 22959520 PMCID: PMC7125738 DOI: 10.1016/j.bmcl.2012.08.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 01/12/2023]
Abstract
This work describes the application of thermophilic microorganisms for obtaining 6-halogenated purine nucleosides. Biosynthesis of 6-chloropurine-2′-deoxyriboside and 6-chloropurine riboside was achieved by Geobacillus stearothermophilus CECT 43 with a conversion of 90% and 68%, respectively. Furthermore, the selected microorganism was satisfactorily stabilized by immobilization in an agarose matrix. This biocatalyst can be reused at least 70 times without significant loss of activity, obtaining 379 mg/L of 6-chloropurine-2′-deoxyriboside. The obtained compounds can be used as antiviral agents.
Collapse
Affiliation(s)
- Cintia W Rivero
- Laboratorio de Investigaciones en Biotecnología Sustentable (LIBioS), Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal (B1868BXD), Argentina
| | | | | | | | | |
Collapse
|
15
|
Novel 4-azasteroidal N-glycoside analogues bearing sugar-like D ring: Synthesis and anticancer activities. Bioorg Med Chem Lett 2011; 21:6203-5. [DOI: 10.1016/j.bmcl.2011.07.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/10/2011] [Accepted: 07/12/2011] [Indexed: 11/20/2022]
|
16
|
Wang J, Wang Y. Synthesis and characterization of oligodeoxyribonucleotides containing a site-specifically incorporated N6-carboxymethyl-2'-deoxyadenosine or N4-carboxymethyl-2'-deoxycytidine. Nucleic Acids Res 2010; 38:6774-84. [PMID: 20507914 PMCID: PMC2965219 DOI: 10.1093/nar/gkq458] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Humans are exposed to both endogenous and exogenous N-nitroso compounds (NOCs), and many NOCs can be metabolically activated to generate a highly reactive species, diazoacetate, which is capable of inducing carboxymethylation of nucleobases in DNA. Here we report, for the first time, the chemical syntheses of authentic N6-carboxymethyl-2′-deoxyadenosine (N6-CMdA) and N4-carboxymethyl-2′-deoxycytidine (N4-CMdC), liquid chromatography–ESI tandem MS confirmation of their formation in calf thymus DNA upon diazoacetate exposure, and the preparation of oligodeoxyribonucleotides containing a site-specifically incorporated N6-CMdA or N4-CMdC. Additionally, thermodynamic studies showed that the substitutions of a dA with N6-CMdA and dC with N4-CMdC in a 12-mer duplex increased Gibbs free energy for duplex formation at 25°C by 5.3 and 6.8 kcal/mol, respectively. Moreover, primer extension assay revealed that N4-CMdC was a stronger blockade to Klenow fragment-mediated primer extension than N6-CMdA. The polymerase displayed substantial frequency of misincorporation of dAMP opposite N6-CMdA and, to a lesser extent, misinsertion of dAMP and dTMP opposite N4-CMdC. The formation and the mutagenic potential of N6-CMdA and N4-CMdC suggest that these lesions may bear important implications in the etiology of NOC-induced tumor development.
Collapse
Affiliation(s)
- Jianshuang Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | |
Collapse
|
17
|
Zink CN, Soissons N, Fishbein JC. Products of the Direct Reaction of the Diazonium Ion of a Metabolite of the Carcinogen N-Nitrosomorpholine with Purines of Nucleosides and DNA. Chem Res Toxicol 2010; 23:1223-33. [PMID: 20443589 DOI: 10.1021/tx100093a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Charles N. Zink
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21228
| | - Nicolas Soissons
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21228
| | - James C. Fishbein
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21228
| |
Collapse
|
18
|
Cleri DJ, Ricketti AJ, Vernaleo JR. Severe acute respiratory syndrome (SARS). Infect Dis Clin North Am 2010; 24:175-202. [PMID: 20171552 PMCID: PMC7135483 DOI: 10.1016/j.idc.2009.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This article reviews the virology, history, pathology, epidemiology, clinical presentations, complications, radiology, laboratory testing, diagnosis, treatment, and prevention of severe respiratory distress syndrome, with reference to documented outbreaks of the disease.
Collapse
Affiliation(s)
- Dennis J Cleri
- Internal Medicine Residency Program, St Francis Medical Center, 601 Hamilton Avenue, Trenton, NJ 08629, USA.
| | | | | |
Collapse
|
19
|
Standara S, Maliňáková K, Marek R, Marek J, Hocek M, Vaara J, Straka M. Understanding the NMR chemical shifts for 6-halopurines: role of structure, solvent and relativistic effects. Phys Chem Chem Phys 2010; 12:5126-39. [DOI: 10.1039/b921383j] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Pharmacogenomics and analogues of the antitumour agent N6-isopentenyladenosine. Int J Cancer 2009; 124:2179-85. [DOI: 10.1002/ijc.24168] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Ikejiri M, Ohshima T, Fukushima A, Shimotohno K, Maruyama T. Synthesis and evaluation of 5'-modified 2'-deoxyadenosine analogues as anti-hepatitis C virus agents. Bioorg Med Chem Lett 2008; 18:4638-41. [PMID: 18644724 DOI: 10.1016/j.bmcl.2008.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/03/2008] [Accepted: 07/05/2008] [Indexed: 12/18/2022]
Abstract
In order to study the effect of 5'-modification of 2'-deoxynucleoside on its anti-HCV activity, several analogues were synthesized and evaluated. Among the analogues, a 5'-deoxy-5'-phenacylated analogue exhibited a good anti-HCV activity with an EC(50) of 15.1 microM. This compound is expected to operate via a type of mechanism that does not involve a generally known 5'-O-triphosphorylation process.
Collapse
Affiliation(s)
- Masahiro Ikejiri
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
| | | | | | | | | |
Collapse
|
22
|
Zlatev I, Vasseur JJ, Morvan F. Deoxygenation of 5- O-benzoyl-1,2-isopropylidene-3- O-imidazolylthiocarbonyl-α-d-xylofuranose using dimethyl phosphite: an efficient alternate method towards a 3'-deoxynucleoside glycosyl donor. Tetrahedron Lett 2008; 49:3288-3290. [PMID: 32287438 PMCID: PMC7111737 DOI: 10.1016/j.tetlet.2008.03.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/04/2008] [Accepted: 03/17/2008] [Indexed: 11/13/2022]
Abstract
An efficient radical deoxygenation reaction of thiocarbonylimidazolyl activated glycoside analogue using dimethyl phosphite as hydrogen source and radical chain carrier was performed as a key step in a multi step synthesis towards a common 3-deoxy glycosyl donor for 3′-deoxynucleosides. This method has safety and cost advantages compared to the generally used radical reduction reagents.
Collapse
Affiliation(s)
- Ivan Zlatev
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier 1, Université Montpellier 2, Place Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier 1, Université Montpellier 2, Place Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France
| | - François Morvan
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier 1, Université Montpellier 2, Place Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France
| |
Collapse
|
23
|
Ikejiri M, Ohshima T, Kato K, Toyama M, Murata T, Shimotohno K, Maruyama T. 5'-O-masked 2'-deoxyadenosine analogues as lead compounds for hepatitis C virus (HCV) therapeutic agents. Bioorg Med Chem 2007; 15:6882-92. [PMID: 17766124 PMCID: PMC7125560 DOI: 10.1016/j.bmc.2007.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/09/2007] [Accepted: 08/14/2007] [Indexed: 01/10/2023]
Abstract
On the basis of our previous study on antiviral agents against the severe acute respiratory syndrome (SARS) coronavirus, a series of nucleoside analogues whose 5'-hydroxyl groups are masked by various protective groups such as carboxylate, sulfonate, and ether were synthesized and evaluated to develop novel anti-hepatitis C virus (HCV) agents. Among these, several 5'-O-masked analogues of 6-chloropurine-2'-deoxyriboside (e.g., 5'-O-benzoyl, 5'-O-p-methoxybenzoyl, and 5'-O-benzyl analogues) were found to exhibit effective anti-HCV activity. In particular, the 5'-O-benzoyl analogue exhibited the highest potency with an EC(50) of 6.1 microM in a cell-based HCV replicon assay. Since the 5'-O-unmasked analogue (i.e., 6-chloropurine-2'-deoxyriboside) was not sufficiently potent (EC(50)=47.2 microM), masking of the 5'-hydroxyl group seems to be an effective method for the development of anti-HCV agents. Presently, we hypothesize two roles for the 5'-O-masked analogues: One is the role as an anti-HCV agent by itself, and the other is as a prodrug of its 5'-O-demasked (deprotected) derivative.
Collapse
Affiliation(s)
- Masahiro Ikejiri
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | | | | | | | | | | | | |
Collapse
|