1
|
Takeda K, Watanabe T, Smith JR, Vesey D, Tiberghien N, Lewis S, Powney B, Schapira AHV, Hoshikawa T, Takle AK. Identification of novel glucocerebrosidase chaperones by unexpected skeletal rearrangement reaction. Bioorg Med Chem Lett 2023; 96:129531. [PMID: 37866711 DOI: 10.1016/j.bmcl.2023.129531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Compound 5 was identified from a high-throughput screening campaign as a small molecule pharmacological chaperone of glucocerebrocidase (GCase), a lysosomal hydrolase encoded by the GBA1 gene, variants of which are associated with Gaucher disease and Parkinson's disease. Further investigations revealed that compound 5 was slowly transformed into a regio-isomeric compound (6) in PBS buffer, plausibly via a ring-opening at hemiaminal moiety accompanied by subsequent intramolecular CC bond formation. Utilising this unexpected skeletal rearrangement reaction, a series of compound 6 analogues was synthesized which yielded multiple potent GCase pharmacological chaperones with sub-micromolar EC50 values as exemplified by compound 38 (EC50 = 0.14 μM).
Collapse
Affiliation(s)
- Kunitoshi Takeda
- Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Toru Watanabe
- Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - James R Smith
- Charles River Laboratories, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - David Vesey
- Charles River Laboratories, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Nathalie Tiberghien
- Charles River Laboratories, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Sian Lewis
- Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Ben Powney
- Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tamaki Hoshikawa
- Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom.
| | - Andrew K Takle
- Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| |
Collapse
|
2
|
Li F, Wang C, Xu Y, Zhao Z, Su J, Luo C, Ning Y, Li Z, Li C, Wang L. Efficient synthesis of unsymmetrical trisubstituted 1,3,5-triazines catalyzed by hemoglobin. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Zhao J, Zhong P, Xie Z, Zhou W, Zhang C, Cui DM. Ruthenium-catalyzed N-alkylation of amino-1,3,5-triazines using alcohols. NEW J CHEM 2021. [DOI: 10.1039/d1nj03116c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient ruthenium-catalyzed N-alkylation of amino-1,3,5-triazines with alcohols was achieved via BH/HA strategy.
Collapse
Affiliation(s)
- Junna Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pengzhen Zhong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongpao Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Mei Cui
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Guo W, Zhao M, Du C, Zheng L, Li L, Chen L, Tao K, Tan W, Xie Z, Cai L, Fan X, Zhang K. Visible-Light-Catalyzed [3 + 1 + 2] Coupling Annulations for the Synthesis of Unsymmetrical Trisubstituted Amino-1,3,5-triazines. J Org Chem 2019; 84:15508-15519. [DOI: 10.1021/acs.joc.9b02514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Mingming Zhao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Chengtang Du
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Luo Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liping Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Kailiang Tao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wen Tan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Kai Zhang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou 438000, China
| |
Collapse
|
5
|
El-Faham A, Farooq M, Almarhoon Z, Alhameed RA, Wadaan MAM, de la Torre BG, Albericio F. Di- and tri-substituted s-triazine derivatives: Synthesis, characterization, anticancer activity in human breast-cancer cell lines, and developmental toxicity in zebrafish embryos. Bioorg Chem 2019; 94:103397. [PMID: 31706684 DOI: 10.1016/j.bioorg.2019.103397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/15/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022]
Abstract
Here we report on a small library based on a 4-aminobenzonitile-s-triazine moiety. We used a straightforward orthogonal synthetic pathway to prepare di- and tri-substituted s-triazine derivatives, whose basic structure was modified. The newly synthesized compounds were fully characterized by 1H NMR, 13C NMR and elemental analysis. They showed strong anticancer activity against two human breast cancer cell lines (MIDA-MB-231 and MCF-7), with IC50 values less than 1 µM. These s-triazine compounds were generally more selective towards hormone receptor-positive breast cancer cell line MCF-7 than the triple negative MDA-MB-231 cell line. Zebrafish embryos were used to test the developmental toxicity of the target compounds in vivo. The phenotype of embryos treated with the derivatives resembled that of those treated with estrogen disruptors. This observation strongly supports the notion that that these compounds induce their anticancer activity in human breast cancer cells via targeting the estrogen and progesterone receptors.
Collapse
Affiliation(s)
- Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Muhammad Farooq
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zainab Almarhoon
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rakia Abd Alhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad A M Wadaan
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Beatriz G de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - Fernando Albericio
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; School of Chemistry and Physics, University of KwaZulu-Natal, University Road, Westville, Durban 4001, South Africa; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona 08028, Spain.
| |
Collapse
|
6
|
Zheng J, Jeon S, Jiang W, Burbulla LF, Ysselstein D, Oevel K, Krainc D, Silverman RB. Conversion of Quinazoline Modulators from Inhibitors to Activators of β-Glucocerebrosidase. J Med Chem 2019; 62:1218-1230. [PMID: 30645117 DOI: 10.1021/acs.jmedchem.8b01294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gaucher's disease is a lysosomal disease caused by mutations in the β-glucocerebrosidase gene ( GBA1 and GCase) that have been also linked to increased risk of Parkinson's disease (PD) and Diffuse Lewy body dementia. Prior studies have suggested that mutant GCase protein undergoes misfolding and degradation, and therefore, stabilization of the mutant protein represents an important therapeutic strategy in synucleinopathies. In this work, we present a structure-activity relationship (SAR) study of quinazoline compounds that serve as inhibitors of GCase. Unexpectedly, we found that N-methylation of these inhibitors transformed them into GCase activators. A systematic SAR study further revealed that replacement of the key oxygen atom in the linker of the quinazoline derivative also contributed to the activity switch. PD patient-derived fibroblasts and dopaminergic midbrain neurons were treated with a selected compound (9q) that partially stabilized GCase and improved its activity. These results highlight a novel strategy for therapeutic development of noninhibitory GCase modulators in PD and related synucleinopathies.
Collapse
Affiliation(s)
- Jianbin Zheng
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Sohee Jeon
- Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Weilan Jiang
- Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Lena F Burbulla
- Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Daniel Ysselstein
- Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Kristine Oevel
- Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Dimitri Krainc
- Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Richard B Silverman
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
7
|
Zuo Z, Lei F, Song X, Wang L. The crystal structure of N, N-diethyl-4,6-bis(naphthalen-2-yloxy)-1,3,5-triazin-2-amine, C 27H 24N 4O 2. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2018-0207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C27H24N4O2 monoclinic, P21/c (no. 14), a = 5.8073(2) Å, b = 31.2564(9) Å, c = 24.8105(8) Å, β = 90.13°, V = 4503.5(2) Å3, Z = 8, R
gt(F) = 0.0644, wR
ref(F
2) = 0.1854, T = 150(2) K.
Collapse
Affiliation(s)
- Zhenyu Zuo
- Medical University of the Air Force , Xi’an 710032 , China
- College of Pharmacy , Shaanxi University of Chinese Medicine , Xi’an, Shaanxi 712046 , China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products , Nanning 530006 , China
| | - Xiao Song
- College of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xi’an, Shaanxi 712046 , China
| | - Lu Wang
- Shaanxi Key Laboratory of Basic and New Herbal Medicament Research , Xi’an 712046 , China
| |
Collapse
|
8
|
Zheng J, Chen L, Skinner OS, Ysselstein D, Remis J, Lansbury P, Skerlj R, Mrosek M, Heunisch U, Krapp S, Charrow J, Schwake M, Kelleher NL, Silverman RB, Krainc D. β-Glucocerebrosidase Modulators Promote Dimerization of β-Glucocerebrosidase and Reveal an Allosteric Binding Site. J Am Chem Soc 2018; 140:5914-5924. [PMID: 29676907 PMCID: PMC6098685 DOI: 10.1021/jacs.7b13003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
β-Glucocerebrosidase (GCase) mutations cause Gaucher's disease and are a high risk factor in Parkinson's disease. The implementation of a small molecule modulator is a strategy to restore proper folding and lysosome delivery of degradation-prone mutant GCase. Here, we present a potent quinazoline modulator, JZ-4109, which stabilizes wild-type and N370S mutant GCase and increases GCase abundance in patient-derived fibroblast cells. We then developed a covalent modification strategy using a lysine targeted inactivator (JZ-5029) for in vitro mechanistic studies. By using native top-down mass spectrometry, we located two potentially covalently modified lysines. We obtained the first crystal structure, at 2.2 Å resolution, of a GCase with a noniminosugar modulator covalently bound, and were able to identify the exact lysine residue modified (Lys346) and reveal an allosteric binding site. GCase dimerization was induced by our modulator binding, which was observed by native mass spectrometry, its crystal structure, and size exclusion chromatography with a multiangle light scattering detector. Finally, the dimer form was confirmed by negative staining transmission electron microscopy studies. Our newly discovered allosteric site and observed GCase dimerization provide a new mechanistic insight into GCase and its noniminosugar modulators and facilitate the rational design of novel GCase modulators for Gaucher's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jianbin Zheng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Long Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Owen S. Skinner
- Department of Chemistry and Molecular Biosciences, and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel Ysselstein
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jonathan Remis
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter Lansbury
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Renato Skerlj
- Lysosomal Therapeutics Inc., 19 Blackstone Street, Cambridge, Massachusetts 02139, United States
| | - Michael Mrosek
- Proteros Biostructures GmbH, Bunsenstrasse 7a, Martinsried 82152, Germany
| | - Ursula Heunisch
- Proteros Biostructures GmbH, Bunsenstrasse 7a, Martinsried 82152, Germany
| | - Stephan Krapp
- Proteros Biostructures GmbH, Bunsenstrasse 7a, Martinsried 82152, Germany
| | - Joel Charrow
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Michael Schwake
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Neil L. Kelleher
- Department of Chemistry and Molecular Biosciences, and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
9
|
Synthesis, Characterization, and Antimicrobial Studies of Novel Series of 2,4-Bis(hydrazino)-6-substituted-1,3,5-triazine and Their Schiff Base Derivatives. J CHEM-NY 2018. [DOI: 10.1155/2018/8507567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work represents the synthesis, characterization, and antimicrobial studies of novel series of 2,4-bis(hydrazino)-6-substituted-1,3,5-triazine and their Schiff base derivatives. IR, NMR (H1 and C13), elemental analysis, and LC-MS characterized the prepared compounds. The biological activity of the target products was evaluated as well. Twenty-two of the prepared compounds were selected according to their solubility in aqueous DMSO. Only eight compounds showed good activity against the selected pathogenic bacteria and did not show antagonistic effect against fungus Candida albicans. Two compounds 4k and 5g have wide-range effect presently in Gram-positive and Gram-negative bacteria while other compounds (4f, 4i, 4m, 5d, 6i, and 6h) showed specific effect against the Gram-negative or Gram-positive bacteria. The minimum inhibitory concentration (MIC, μg/mL) of 4f, 4i, 4k, and 6h compounds against Streptococcus mutans was 62.5 μg/mL, 100 μg/mL, 31.25 μg/mL, and 31.25 μg/mL, respectively. The MIC of 4m, 4k, 5d, 5g, and 6h compounds against Staphylococcus aureus was 62.5 μg/mL, 31.25 μg/mL, 31.25 μg/mL, 100 μg/mL, and 62.5 μg/mL, respectively. The MIC of 4k, 5g, and 6i compounds against Salmonella typhimurium was 31.25 μg/mL, 100 μg/mL, and 62.5 μg/mL, respectively. The MIC of 6i compound against Escherichia coli was 62.5 μg/mL.
Collapse
|
10
|
Zheng J, Chen L, Schwake M, Silverman RB, Krainc D. Design and Synthesis of Potent Quinazolines as Selective β-Glucocerebrosidase Modulators. J Med Chem 2016; 59:8508-20. [PMID: 27598312 DOI: 10.1021/acs.jmedchem.6b00930] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gaucher's disease is a common genetic disease caused by mutations in the β-glucocerebrosidase (GBA1) gene that have been also linked to increased risk of Parkinson's disease and Lewy body dementia. Stabilization of misfolded mutant β-glucocerebrosidase (GCase) represents an important therapeutic strategy in synucleinopathies. Here we report a novel class of GCase quinazoline inhibitors, obtained in a high throughput screening, with moderate potency against wild-type GCase. Rational design and a SAR study of this class of compounds led to a new series of quinazoline derivatives with single-digit nanomolar potency. These compounds were shown to selectively stabilize GCase when compared to other lysosomal enzymes and to increase N370S mutant GCase protein concentration and activity in cell assays. To the best of our knowledge, these molecules are the most potent noniminosugar GCase modulators to date that may prove useful for future mechanistic studies and therapeutic approaches in Gaucher's and Parkinson's diseases.
Collapse
Affiliation(s)
- Jianbin Zheng
- Department of Neurology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States.,Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - Long Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| | - Michael Schwake
- Department of Neurology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| |
Collapse
|
11
|
El-Faham A, Soliman SM, Osman SM, Ghabbour HA, Siddiqui MRH, Fun HK, Albericio F. One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV-Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:184-198. [PMID: 26845586 DOI: 10.1016/j.saa.2016.01.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/10/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R(2)=0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1 nm (f=0.1389), 204.2 nm (f=0.2053), 205.0 (f=0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems.
Collapse
Affiliation(s)
- Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt.
| | - Saied M Soliman
- Department of Chemistry, Rabigh College of Science and Art, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt.
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hazem A Ghabbour
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box. 2457, 11451, Riyadh, Saudi Arabia
| | - Mohammed R H Siddiqui
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hoong-Kun Fun
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box. 2457, 11451, Riyadh, Saudi Arabia; X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Fernando Albericio
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; Institute for Research in Biomedicine (IRB Barcelona), BaldiriReixac 10, Barcelona 08028, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Barcelona 08028, Spain; Department of Organic Chemistry, University of Barcelona,Barcelona 08028, Spain
| |
Collapse
|
12
|
Selective chaperone effect of aminocyclitol derivatives on G202R and other mutant glucocerebrosidases causing Gaucher disease. Int J Biochem Cell Biol 2014; 54:245-54. [DOI: 10.1016/j.biocel.2014.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/04/2014] [Accepted: 07/22/2014] [Indexed: 11/20/2022]
|
13
|
Denny RA, Gavrin LK, Saiah E. Recent developments in targeting protein misfolding diseases. Bioorg Med Chem Lett 2013; 23:1935-44. [PMID: 23454013 DOI: 10.1016/j.bmcl.2013.01.089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
Protein misfolding is an emerging field that crosses multiple therapeutic areas and causes many serious diseases. As the biological pathways of protein misfolding become more clearly elucidated, small molecule approaches in this arena are gaining increased attention. This manuscript will survey current small molecules from the literature that are known to modulate misfolding, stabilization or proteostasis. Specifically, the following targets and approaches will be discussed: CFTR, glucocerebrosidase, modulation of toxic oligomers, serum amyloid P (SAP) sections and HSF1 activators.
Collapse
Affiliation(s)
- Rajiah Aldrin Denny
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | | | | |
Collapse
|
14
|
Bendikov-Bar I, Maor G, Filocamo M, Horowitz M. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase. Blood Cells Mol Dis 2012; 50:141-5. [PMID: 23158495 PMCID: PMC3547170 DOI: 10.1016/j.bcmd.2012.10.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/13/2012] [Indexed: 12/25/2022]
Abstract
Gaucher disease (GD) is characterized by accumulation of glucosylceramide in lysosomes due to mutations in the GBA1 gene encoding the lysosomal hydrolase β-glucocerebrosidase (GCase). The disease has a broad spectrum of phenotypes, which were divided into three different Types; Type 1 GD is not associated with primary neurological disease while Types 2 and 3 are associated with central nervous system disease. GCase molecules are synthesized on endoplasmic reticulum (ER)-bound polyribosomes, translocated into the ER and following modifications and correct folding, shuttle to the lysosomes. Mutant GCase molecules, which fail to fold correctly, undergo ER associated degradation (ERAD) in the proteasomes, the degree of which is one of the factors that determine GD severity. Several pharmacological chaperones have already been shown to assist correct folding of mutant GCase molecules in the ER, thus facilitating their trafficking to the lysosomes. Ambroxol, a known expectorant, is one such chaperone. Here we show that ambroxol increases both the lysosomal fraction and the enzymatic activity of several mutant GCase variants in skin fibroblasts derived from Type 1 and Type 2 GD patients.
Collapse
Affiliation(s)
- Inna Bendikov-Bar
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Gali Maor
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Mirella Filocamo
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, IRCCS G. Gaslini, Genova, Italy
| | - Mia Horowitz
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, 69978, Israel
- Corresponding author. Fax: + 972 3 6422046.
| |
Collapse
|
15
|
Patnaik S, Zheng W, Choi JH, Motabar O, Southall N, Westbroek W, Lea WA, Velayati A, Goldin E, Sidransky E, Leister W, Marugan JJ. Discovery, structure-activity relationship, and biological evaluation of noninhibitory small molecule chaperones of glucocerebrosidase. J Med Chem 2012; 55:5734-48. [PMID: 22646221 PMCID: PMC3400126 DOI: 10.1021/jm300063b] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A major challenge in the field of Gaucher disease has been the development of new therapeutic strategies including molecular chaperones. All previously described chaperones of glucocerebrosidase are enzyme inhibitors, which complicates their clinical development because their chaperone activity must be balanced against the functional inhibition of the enzyme. Using a novel high throughput screening methodology, we identified a chemical series that does not inhibit the enzyme but can still facilitate its translocation to the lysosome as measured by immunostaining of glucocerebrosidase in patient fibroblasts. These compounds provide the basis for the development of a novel approach toward small molecule treatment for patients with Gaucher disease.
Collapse
Affiliation(s)
- Samarjit Patnaik
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| | - Wei Zheng
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| | - Jae H. Choi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - Omid Motabar
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - Noel Southall
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| | - Wendy Westbroek
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - Wendy A. Lea
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| | - Arash Velayati
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - Ehud Goldin
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892; USA
| | - William Leister
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| | - Juan J. Marugan
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD
| |
Collapse
|
16
|
Thomas CJ, Auld DS, Huang R, Huang W, Jadhav A, Johnson RL, Leister W, Maloney DJ, Marugan JJ, Michael S, Simeonov A, Southall N, Xia M, Zheng W, Inglese J, Austin CP. The pilot phase of the NIH Chemical Genomics Center. Curr Top Med Chem 2010; 9:1181-93. [PMID: 19807664 DOI: 10.2174/156802609789753644] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/24/2009] [Indexed: 01/28/2023]
Abstract
The NIH Chemical Genomics Center (NCGC) was the inaugural center of the Molecular Libraries and Screening Center Network (MLSCN). Along with the nine other research centers of the MLSCN, the NCGC was established with a primary goal of bringing industrial technology and experience to empower the scientific community with small molecule compounds for use in their research. We intend this review to serve as 1) an introduction to the NCGC standard operating procedures, 2) an overview of several of the lessons learned during the pilot phase and 3) a review of several of the innovative discoveries reported during the pilot phase of the MLSCN.
Collapse
Affiliation(s)
- Craig J Thomas
- NIH Chemical Genomics Center, NHGRI, National Institutes of Health, 9800 Medical Center Drive, Building B, Room 3005, MSC: 3370, Bethesda, MD 20892-3370, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wennekes T, van den Berg RJBHN, Boot RG, van der Marel GA, Overkleeft HS, Aerts JMFG. Glycosphingolipids--nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 2010; 48:8848-69. [PMID: 19862781 DOI: 10.1002/anie.200902620] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The discovery of the glycosphingolipids is generally attributed to Johan L. W. Thudichum, who in 1884 published on the chemical composition of the brain. In his studies he isolated several compounds from ethanolic brain extracts which he coined cerebrosides. He subjected one of these, phrenosin (now known as galactosylceramide), to acid hydrolysis, and this produced three distinct components. One he identified as a fatty acid and another proved to be an isomer of D-glucose, which is now known as D-galactose. The third component, with an "alkaloidal nature", presented "many enigmas" to Thudichum, and therefore he named it sphingosine, after the mythological riddle of the Sphinx. Today, sphingolipids and their glycosidated derivatives are the subjects of intense study aimed at elucidating their role in the structural integrity of the cell membrane, their participation in recognition and signaling events, and in particular their involvement in pathological processes that are at the basis of human disease (for example, sphingolipidoses and diabetes type 2). This Review details some of the recent findings on the biosynthesis, function, and degradation of glycosphingolipids in man, with a focus on the glycosphingolipid glucosylceramide. Special attention is paid to the clinical relevance of compounds directed at interfering with the factors responsible for glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Tom Wennekes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Synthesis of aryl phosphates based on pyrimidine and triazine scaffolds. Eur J Med Chem 2010; 45:244-55. [DOI: 10.1016/j.ejmech.2009.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 09/25/2009] [Accepted: 10/01/2009] [Indexed: 11/21/2022]
|
19
|
Wennekes T, van den Berg R, Boot R, van der Marel G, Overkleeft H, Aerts J. Glycosphingolipide - Natur, Funktion und pharmakologische Modulierung. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902620] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Gavrilyuk JI, Wuellner U, Salahuddin S, Goswami RK, Sinha SC, Barbas CF. An efficient chemical approach to bispecific antibodies and antibodies of high valency. Bioorg Med Chem Lett 2009; 19:3716-20. [PMID: 19497743 DOI: 10.1016/j.bmcl.2009.05.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 11/25/2022]
Abstract
Irreversible chemical programming of monoclonal aldolase antibody (mAb) 38C2 has been accomplished with beta-lactam equipped mono- and bifunctional targeting modules, including a cyclic-RGD peptide linked to either the peptide (D-Lys(6))-LHRH or another cyclic RGD unit and a small-molecule integrin inhibitor SCS-873 conjugated to (D-Lys(6))LHRH. We also prepared monofunctional targeting modules containing either cyclic RGD or (D-Lys(6))-LHRH peptides. Binding of the chemically programmed antibodies to integrin receptors alpha(v)beta(3) and alpha(v)beta(5) and to the luteinizing hormone releasing hormone receptor were evaluated. The bifunctional and bivalent c-RGD/LHRH and SCS-783/LHRH, the monofunctional and tetravalent c-RGD/c-RGD, and the monofunctional bivalent c-RGD chemically programmed antibodies bound specifically to the isolated integrin receptor proteins as well as to integrins expressed on human melanoma M-21 cells. c-RGD/LHRH, SCS-783/LHRH, and LHRH chemically programmed antibodies bound specifically to the LHRH receptors expressed on human ovarian cancer cells. This approach provides an efficient, versatile, and economically viable route to high-valency therapeutic antibodies that target defined combinations of specific receptors. Additionally, this approach should be applicable to chemically programmed vaccines.
Collapse
Affiliation(s)
- Julia I Gavrilyuk
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
21
|
Brady LS, Winsky L, Goodman W, Oliveri ME, Stover E. NIMH initiatives to facilitate collaborations among industry, academia, and government for the discovery and clinical testing of novel models and drugs for psychiatric disorders. Neuropsychopharmacology 2009; 34:229-43. [PMID: 18800066 PMCID: PMC2917632 DOI: 10.1038/npp.2008.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is an urgent need to transform basic research discoveries into tools for treatment and prevention of mental illnesses. This article presents an overview of the National Institute of Mental Health (NIMH) programs and resources to address the challenges and opportunities in psychiatric drug development starting at the point of discovery through the early phases of translational research. We summarize NIMH and selected National Institutes of Health (NIH) efforts to stimulate translation of basic and clinical neuroscience findings into novel targets, models, compounds, and strategies for the development of innovative therapeutics for psychiatric disorders. Examples of collaborations and partnerships among NIMH/NIH, academia, and industry are highlighted.
Collapse
Affiliation(s)
- Linda S Brady
- Divison of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
22
|
Abe N, Koizumi K, Fujii H, Yoshioka E. Heteroarylamination and Heteroarylsulfidation of 2-Chloro-1-azaazulenes. HETEROCYCLES 2009. [DOI: 10.3987/com-09-11806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Lee JW, Bork JT, Ha HH, Samanta A, Chang YT. Novel Orthogonal Synthesis of a Tagged Combinatorial Triazine Library via Grignard Reaction. Aust J Chem 2009. [DOI: 10.1071/ch09153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To expand the diversity of 1,3,5-triazine libraries to aryl and alkyl functionalities through the C–C bond, we employed a novel orthogonal synthesis via Grignard monoalkylation or monoarylation of cyanuric chloride in solution to prepare aryl- or alkyl-substituted triazine building blocks. These aryl- or alkyl-substituted triazine building blocks were captured by a resin-bound amine, followed by amination and acidic cleavage with high purity. Herein, we demonstrate a novel orthogonal synthesis of a tagged aryl- and alkyl-triazine library on solid support, utilizing building blocks prepared via Grignard reaction in solution. Through incorporation of a triethylene glycol linker at one of the alternate sites on the triazine scaffold we explored an intrinsic tagged library approach.
Collapse
|
24
|
Abe N, Koizumi K, Yamauchi N, Fujii H, Konakahara T, Shimabara K, Takemoto A, Yamazaki S, Kurosawa M. Palladium-Catalyzed Heteroarylamination of Ethyl 2-Chloro-1-azaazulene-3-carboxylate and Annulation of Heteroarylamino-1-azaazurenes. HETEROCYCLES 2009. [DOI: 10.3987/com-08-s(d)6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|