1
|
Gu L, Ding Y, Zhou Y, Zhang Y, Wang D, Liu J. Selective Hemin Binding by a Non-G-quadruplex Aptamer with Higher Affinity and Better Peroxidase-like Activity. Angew Chem Int Ed Engl 2024; 63:e202314450. [PMID: 38150561 DOI: 10.1002/anie.202314450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Previous aptamers for porphyrins and metalloporphyrins were all guanine-rich sequences that can fold in G-quadruplex structures. Due to stacking-based binding, these aptamers can hardly tell different porphyrins apart, and they can also bind other planar molecules, hindering their practical applications. In this work, we used the capture selection method to obtain aptamers for hemin and protoporphyrin IX (PPIX). The hemin aptamer (Hem1) features two highly conserved repeating binding loops, and it cannot form a G-quadruplex, which was supported by its Mg2+ -dependent but K+ -independent hemin binding and CD spectroscopy. Isothermal titration calorimetry revealed much higher enthalpy change for the new aptamer, and the best aptamer showed a Kd of 43 nM hemin. Hem1 can also enhance the peroxidase-like activity of hemin. This work demonstrates that aptamers have alternative ways to bind porphyrins allowing selective recognition of different porphyrins.
Collapse
Affiliation(s)
- Lide Gu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yang Zhou
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
2
|
Chen Q, Tu F, Chen X, Yu Y, Gu Y, Wang Y, Liu Z. Visual isothermal amplification detection of ASFV based on trimeric G-quadruplex cis-cleavage activity of Cas-12a. Anal Biochem 2023:115235. [PMID: 37422063 DOI: 10.1016/j.ab.2023.115235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
African swine fever virus (ASFV) is a kind of DNA virus and can infect both domestic pigs and wild boars with fatality up to 100%. The contaminated meat products mainly led to the worldwide transmission of ASFV. The outbreak of ASF greatly affects the supply stability of meat products as well as the development of the global pig industry. In this study, a visual isothermal amplification detection assay for ASFV based on trimeric G-quadruplex cis-cleavage activity of Cas12a was developed. The introduction of Cas12a could discriminate the specific amplification from the non-specific amplification and improve the sensitivity. The detection limit was as low as 0.23 copies/μL. This assay had good potential in the detection of ASFV and would be helpful for the stability of meat production and supply.
Collapse
Affiliation(s)
- Qiming Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fangming Tu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaodi Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yang Yu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yimeng Gu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yikai Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Ahn SY, Kim J, Vellampatti S, Oh S, Lim YT, Park SH, Luo D, Chung J, Um SH. Protein-Encoding Free-Standing RNA Hydrogel for Sub-Compartmentalized Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110424. [PMID: 35263477 DOI: 10.1002/adma.202110424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
RNA can self-fold into complex structures that can serve as major biological regulators in protein synthesis and in catalysis. Due to the abundance of structural primitives and functional diversity, RNA has been utilized for designing nature-defined goals despite its intrinsic chemical instability and lack of technologies. Here, a robust, free-standing RNA hydrogel is developed through a sequential process involving both ligation and rolling circle transcription to form RNA G-quadruplexes, capable of both catalytic activity and enhancing expression of several proteins in sub-compartmentalized, phase-separated translation environments. The observations suggest that this hydrogel will expand RNA research and impact practical RNA principles and applications.
Collapse
Affiliation(s)
- So Yeon Ahn
- Progeneer Incorporation, 12, Digital-ro 31-gil, Guro-gu, Seoul, 08380, Korea
| | - Jeonghun Kim
- Progeneer Incorporation, 12, Digital-ro 31-gil, Guro-gu, Seoul, 08380, Korea
| | | | - Sung Oh
- Progeneer Incorporation, 12, Digital-ro 31-gil, Guro-gu, Seoul, 08380, Korea
| | - Yong Taik Lim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
| | - Sung Ha Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soong Ho Um
- Progeneer Incorporation, 12, Digital-ro 31-gil, Guro-gu, Seoul, 08380, Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
| |
Collapse
|
4
|
Fenati RA, Chen Z, Yamagishi Y, Tsukakoshi K, Ikebukuor K, Manian A, Russo SP, Yamazaki T, Ellis AV. Enhancement of DNAzymatic activity using iterative in silico maturation. J Mater Chem B 2022; 10:8960-8969. [DOI: 10.1039/d2tb01638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enhancement of DNZymatic activity using a combined iterative in silico and in vitro method as a cheaper and more stable alternative to antibodies or enzymes.
Collapse
Affiliation(s)
- Renzo A. Fenati
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia, 5042, Australia
- School of Chemical and Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Zifei Chen
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, 3010, Australia
| | - Yasuko Yamagishi
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuor
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Anjay Manian
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Salvy P. Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Tomohiko Yamazaki
- Nanomedicine Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0047, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0808, Japan
| | - Amanda V. Ellis
- School of Chemical and Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| |
Collapse
|
5
|
Zhu L, Wang W, Zhao H, Xu M, Tada S, Uzawa T, Liu M, Ito Y. A dual functional peptide carrying in vitro selected catalytic and binding activities. Org Biomol Chem 2016; 13:9808-12. [PMID: 26272651 DOI: 10.1039/c5ob01271f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When minimal functional sequences are used, it is possible to integrate multiple functions on a single peptide chain, like a "single stroke drawing". Here a dual functional peptide was designed by combining in vitro selected catalytic and binding activities. For catalytic activity, we performed in vitro selection for a peptide aptamer binding to hemin by using ribosome display and isolated a peptide that had peroxidase activity in the presence of hemin. By combining the selected catalytic peptide with a peptide antigen, which can be recognized by an antibody, an enzyme-antibody conjugate-like peptide was obtained. This study demonstrates a successful strategy to create dual functionalized peptide chains for use in immunoassays.
Collapse
Affiliation(s)
- Liping Zhu
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Matsumura S, Ito T, Tanaka T, Furuta H, Ikawa Y. Modulation of group I ribozyme activity by cationic porphyrins. BIOLOGY 2015; 4:251-63. [PMID: 25811638 PMCID: PMC4498298 DOI: 10.3390/biology4020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/03/2015] [Indexed: 11/16/2022]
Abstract
The effects of cationic porphyrins on the catalytic activities of four group I ribozymes were investigated. A cationic porphyrin possessing four pyridinium moieties (pPyP) inhibited two group IC3 ribozymes (Syn Rz and Azo Rz) and a group IC1 ribozyme (Tet Rz). In the case of a group IA2 ribozyme (Td Rz), however, pPyP served not only as an inhibitor but also as an activator, and the effects of pPyP were dependent on its concentration. To analyze the structural and electronic factors determining the effects of pPyP on group I ribozymes, three cationic porphyrins (pPyNCP, pPyF4P, and TMPyP) were also examined. As interactions between small organic molecules and nucleic acids are attractive and important issues in biochemistry and biotechnology, this study contributes to the development of porphyrin-based molecules that can modulate functions of structured RNA molecules.
Collapse
Affiliation(s)
- Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Tatsunobu Ito
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Takahiro Tanaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Molecular Systems, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| |
Collapse
|
7
|
Tada S, Zang Q, Wang W, Kawamoto M, Liu M, Iwashita M, Uzawa T, Kiga D, Yamamura M, Ito Y. In vitro selection of a photoresponsive peptide aptamer to glutathione-immobilized microbeads. J Biosci Bioeng 2015; 119:137-9. [DOI: 10.1016/j.jbiosc.2014.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/04/2023]
|
8
|
Wang LX, Xiang JF, Tang YL. Novel DNA Catalysts Based on G-Quadruplex for Organic Synthesis. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Zhu L, Li C, Zhu Z, Liu D, Zou Y, Wang C, Fu H, Yang CJ. In vitro selection of highly efficient G-quadruplex-based DNAzymes. Anal Chem 2012; 84:8383-90. [PMID: 22954361 DOI: 10.1021/ac301899h] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Because of their ability to greatly enhance the low natural peroxidase activity of hemin, G-quadruplex-based DNAzymes have been widely used as an alternative to peroxidases for many colorimetric, chemiluminescent, or visual detections of metal ions, small molecules, nucleic acids, proteins, and cancer cells. To obtain G-quadruplex-based DNAzymes with better peroxidase activity, we designed three 81-nt ssDNA libraries containing 25%, 35%, and 45% guanine bases, respectively, at the 45-nt random regions to evolve hemin-binding DNA aptamers using hemin-agarose beads by SELEX (systematic evolution of ligands by exponential enrichment). Some G-rich sequences were obtained after 6 rounds of selection and optimized for stronger binding affinity to hemin and higher peroxidase activity. Our results show that the truncated aptamer [B7]-3-0 folds into compact parallel G-quadruplex structure and exhibits the highest peroxidase activity and strong binding affinity to hemin with 29 ± 4 nM of K(d). It was found that the core G-motifs sequences with 5'-flanking nucleotides exhibit higher peroxidase activity than those with 3'-flanking nucleotides. The numbers of 5'-flanking nucleotides also influence peroxidase activity. In addition, 2'-O-methyl modification facilitates the self-assembly of parallel G-quadruplex [B7]-3-0 and significantly promotes peroxidase activity. This study identifies a G-quadruplex sequence with peroxidase-like activity higher than any other sequences reported so far, which could be potentially used to improve the analytical performance of a wide variety of peroxidase-based bioassays.
Collapse
Affiliation(s)
- Ling Zhu
- Key Laboratory of Analytical Science, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nakayama S, Wang J, Sintim HO. DNA-based peroxidation catalyst--what is the exact role of topology on catalysis and is there a special binding site for catalysis? Chemistry 2011; 17:5691-8. [PMID: 21469226 DOI: 10.1002/chem.201002349] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/19/2011] [Indexed: 12/11/2022]
Abstract
In the last decade, there has been growing interests in studies aimed at delineating the strategies used by various nucleic acid enzymes to facilitate catalysis. Insights gained from such studies would enable the design of better DNA/RNA catalysts for various applications such as biosensing. DNA and RNA catalysts have been shown to be able to catalyze myriads of reactions, including peroxidation reactions, which are catalyzed by G-quadruplexes. In this report, we provide data that clarifies how G-quadruplex peroxidases achieve catalysis. Firstly, we show that by covalently linking a hemin cofactor to DNAzymes, anti-parallel G-quadruplexes, which have been previously shown to be catalytically inefficient, can be "resurrected" to become good peroxidation catalysts. We also reveal that the relative rates of peroxidation by DNAzyme peroxidases depend on the nature of the organic reductant, arguing for a special binding site in the peroxidase-mimicking DNAzymes for catalysis.
Collapse
Affiliation(s)
- Shizuka Nakayama
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
11
|
LIU M, ABE H, ITO Y. Creation of Polymer Catalysts by Molecular Evolutionary Engineering and Hybridization of Biocatalysts. KOBUNSHI RONBUNSHU 2011. [DOI: 10.1295/koron.68.405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
In vitro selection of a photoresponsive RNA aptamer to hemin. Bioorg Med Chem Lett 2010; 20:2964-7. [PMID: 20347300 DOI: 10.1016/j.bmcl.2010.02.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/24/2010] [Accepted: 02/27/2010] [Indexed: 01/06/2023]
Abstract
A photoresponsive RNA aptamer to hemin was selected in vitro from a random sequence library of RNAs with azobenzene residues. The aptamer bound to hemin under visible light irradiation and was released by ultraviolet light.
Collapse
|