1
|
Mahajan PS, Smith SJ, Hughes SH, Zhao X, Burke TR. A Practical Approach to Bicyclic Carbamoyl Pyridones with Application to the Synthesis of HIV-1 Integrase Strand Transfer Inhibitors. Molecules 2023; 28:molecules28031428. [PMID: 36771093 PMCID: PMC9919513 DOI: 10.3390/molecules28031428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
An efficient one-pot synthetic method has been developed for the preparation of bicyclic carbamoyl pyridones from the known common intermediate methyl 5-((2,4-difluorobenzyl)carbamoyl)-1-(2,2-dimethoxyethyl)-3-methoxy-4-oxo-1,4-dihydropyridine-2-carboxylate (8). The scalable protocol is facile and employs readily available reagents, needing only a single purification as the final step. The utility of the approach was demonstrated by preparing a library of HIV-1 integrase strand transfer inhibitors (INSTIs) that differ by the presence or absence of a double bond in the B-ring of the bicyclic carbamoyl pyridines 6 and 7. Several of the analogs show good antiviral potencies in single-round HIV-1 replication antiviral assays and show no cytotoxicity in cell culture assays. In general, the compounds with a B-ring double bond have higher antiviral potencies than their saturated congeners. Our methodology should be applicable to the synthesis of a range of new metal-chelating analogs.
Collapse
Affiliation(s)
- Pankaj S. Mahajan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Steven J. Smith
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xuezhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Correspondence: ; Tel.: +1-301-846-5906; Fax: +1-301-846-6033
| |
Collapse
|
2
|
Li Yan Xu, Zhou Y, Wang B, Wang XR, Li Q. Theoretical Prediction of Properties of Cyclopenta[b]pyrrol-2-one Derivatives. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Jóźwik IK, Passos DO, Lyumkis D. Structural Biology of HIV Integrase Strand Transfer Inhibitors. Trends Pharmacol Sci 2020; 41:611-626. [PMID: 32624197 PMCID: PMC7429322 DOI: 10.1016/j.tips.2020.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Integrase (IN) strand transfer inhibitors (INSTIs) are recent compounds in the antiretroviral arsenal used against HIV. INSTIs work by blocking retroviral integration; an essential step in the viral lifecycle that is catalyzed by the virally encoded IN protein within a nucleoprotein assembly called an intasome. Recent structures of lentiviral intasomes from simian immunodeficiency virus (SIV) and HIV have clarified the INSTI binding modes within the intasome active sites and helped elucidate an important mechanism of viral resistance. The structures provide an accurate depiction of interactions of intasomes and INSTIs to be leveraged for structure-based drug design. Here, we review these recent structural findings and contrast with earlier studies on prototype foamy virus intasomes. We also present and discuss examples of the latest chemical compounds that show promising inhibitory potential as INSTI candidates.
Collapse
Affiliation(s)
- Ilona K Jóźwik
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Dario O Passos
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA; The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Kumar S, Kumar A, Kumar N, Roy P, Sondhi SM. Grinding and Microwave-assisted Synthesis of Heterocyclic Molecules in High Yields and Their Biological Evaluation. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry; Indian Institute of Technology-Roorkee; Roorkee 247667 Uttarakhand India
| | - Anuj Kumar
- Department of Chemistry; Indian Institute of Technology-Roorkee; Roorkee 247667 Uttarakhand India
| | - Nikhil Kumar
- Department of Biotechnology; Indian Institute of Technology-Roorkee; Roorkee 247667 Uttarakhand India
| | - Partha Roy
- Department of Biotechnology; Indian Institute of Technology-Roorkee; Roorkee 247667 Uttarakhand India
| | - Sham M. Sondhi
- Department of Chemistry; Indian Institute of Technology-Roorkee; Roorkee 247667 Uttarakhand India
| |
Collapse
|
5
|
Liu GN, Luo RH, Zhou Y, Zhang XJ, Li J, Yang LM, Zheng YT, Liu H. Synthesis and Anti-HIV-1 Activity Evaluation for Novel 3a,6a-Dihydro-1H-pyrrolo[3,4-c]pyrazole-4,6-dione Derivatives. Molecules 2016; 21:molecules21091198. [PMID: 27617994 PMCID: PMC6274355 DOI: 10.3390/molecules21091198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
The search for new molecular constructs that resemble the critical two-metal binding pharmacophore and the halo-substituted phenyl functionality required for HIV-1 integrase (IN) inhibition represents a vibrant area of research within drug discovery. As reported herein, we have modified our recently disclosed 1-[2-(4-fluorophenyl)ethyl]-pyrrole-2,5-dione scaffolds to design 35 novel compounds with improved biological activities against HIV-1. These new compounds show single-digit micromolar antiviral potencies against HIV-1 and low toxicity. Among of them, compound 9g and 15i had potent anti-HIV-1 activities (EC50 < 5 μM) and excellent therapeutic index (TI, CC50/EC50 > 100). These two compounds have potential as lead compounds for further optimization into clinical anti-HIV-1 agents.
Collapse
Affiliation(s)
- Guan-Nan Liu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, China.
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Yu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xing-Jie Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Jian Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
6
|
Zhao XZ, Metifiot M, Smith SJ, Maddali K, Marchand C, Hughes SH, Pommier Y, Burke TR. 6,7-Dihydroxyisoindolin-1-one and 7,8-Dihydroxy-3,4-Dihydroisoquinolin- 1(2H)-one Based HIV-1 Integrase Inhibitors. Curr Top Med Chem 2016; 16:435-40. [PMID: 26268341 DOI: 10.2174/1568026615666150813150058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/03/2015] [Accepted: 04/05/2015] [Indexed: 11/22/2022]
Abstract
Integrase (IN) is an essential viral enzyme required for HIV-1 replication, which has been targeted by anti-AIDS therapeutics. Integrase strand transfer inhibitors (INSTIs) represent a new class of antiretroviral agents developed for the treatment of HIV-1 infections. Important structural features that are shared by many INSTIs include a coplanar arrangement of three heteroatoms that chelate two catalytic Mg(2+) ions in the IN active site and a linked halophenyl ring that binds in the hydrophobic pocket formed by the complex of IN with viral DNA. We recently reported bicyclic 6,7-dihydroxyoxoisoindolin-1-one-based IN inhibitors. In the current study, we modified these inhibitors in three ways. First, we increased the spacer length between the metalchelating triad and the halophenyl group. Second, we replaced the indoline [5,6] bicycle with a fused dihydroxyisoquinolinones [6,6] ring system. Finally, we prepared bis-6,7-dihydroxyisoindolin-1-one-4-sulfonamides as dimeric HIV-1 IN inhibitors. These new analogues showed low micromolar inhibitory potency in in vitro HIV-1 integrase assays.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Métifiot M, Johnson BC, Kiselev E, Marler L, Zhao XZ, Burke TR, Marchand C, Hughes SH, Pommier Y. Selectivity for strand-transfer over 3'-processing and susceptibility to clinical resistance of HIV-1 integrase inhibitors are driven by key enzyme-DNA interactions in the active site. Nucleic Acids Res 2016; 44:6896-906. [PMID: 27369381 PMCID: PMC5001616 DOI: 10.1093/nar/gkw592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/21/2016] [Indexed: 12/23/2022] Open
Abstract
Integrase strand transfer inhibitors (INSTIs) are highly effective against HIV infections. Co-crystal structures of the prototype foamy virus intasome have shown that all three FDA-approved drugs, raltegravir (RAL), elvitegravir and dolutegravir (DTG), act as interfacial inhibitors during the strand transfer (ST) integration step. However, these structures give only a partial sense for the limited inhibition of the 3′-processing reaction by INSTIs and how INSTIs can be modified to overcome drug resistance, notably against the G140S-Q148H double mutation. Based on biochemical experiments with modified oligonucleotides, we demonstrate that both the viral DNA +1 and −1 bases, which flank the 3′-processing site, play a critical role for 3′-processing efficiency and inhibition by RAL and DTG. In addition, the G140S-Q148H (SH) mutant integrase, which has a reduced 3′-processing activity, becomes more active and more resistant to inhibition of 3′-processing by RAL and DTG in the absence of the −1 and +1 bases. Molecular modeling of HIV-1 integrase, together with biochemical data, indicate that the conserved residue Q146 in the flexible loop of HIV-1 integrase is critical for productive viral DNA binding through specific contacts with the virus DNA ends in the 3′-processing and ST reactions. The potency of integrase inhibitors against 3′-processing and their ability to overcome resistance is discussed.
Collapse
Affiliation(s)
- Mathieu Métifiot
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Barry C Johnson
- HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Evgeny Kiselev
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Laura Marler
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, National Cancer Institute at Frederick, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, National Cancer Institute at Frederick, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Hajimahdi Z, Zarghi A. Progress in HIV-1 Integrase Inhibitors: A Review of their Chemical Structure Diversity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:595-628. [PMID: 28243261 PMCID: PMC5316242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress has been made, which has facilitated and led to the approval of three drugs. This review focused on the structural features of the most important IN inhibitors and categorized them structurally in 10 scaffolds. We also briefly discussed the structural and functional properties of HIV-1 IN and binding modes of IN inhibitors. The SAR analysis of the known IN inhibitors provides some useful clues to the possible future discovery of novel IN inhibitors.
Collapse
|
9
|
Komissarov VV, Kniazhanskaia ES, Atrokhova AV, Gottikh MB, Kritsyn AM. [The search of novel inhibitors of HIV-1 integrase among 5-(4-halogenophenyl)-5-oxopentyl derivatives of nucleic bases]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:578-87. [PMID: 25895353 DOI: 10.1134/s1068162014050094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
By alkylation of uracil, thymine, cytosine, adenine, 6-chloropurine, and 2-amino-6-chloropurine with 5-chloro-1-(4-halogenophenyl)-1-pentanones novel derivatives of nucleic bases were obtained, their physicochemical properties were studied. The influence of synthesized compounds on HIV-1 integrase was investigated.
Collapse
|
10
|
Kobayashi K, Matsumoto K, Shirai Y, Ishikawa H, Inouchi H, Tanmatsu M. Generation of Aryl(2-lithiophenyl)methanoneO-Methyl Oximes and Their Use for the Synthesis ofN-(3-Alkyl-1-aryl- or 1,3-diaryl-1H-isoindol-1-yl)-O-methylhydroxylaminesviathe Reaction with Nitriles. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201400067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Kundu A, Pathak S, Debnath K, Pramanik A. Facile synthesis of 3H,3′H-spiro[benzofuran-2,1′-isoindole]-3,3′-diones using monobromomalononitrile (MBM) as an efficient organo-brominating agent. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Reddy KK, Singh SK. Combined ligand and structure-based approaches on HIV-1 integrase strand transfer inhibitors. Chem Biol Interact 2014; 218:71-81. [DOI: 10.1016/j.cbi.2014.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 11/25/2022]
|
13
|
Zhao XZ, Smith SJ, Métifiot M, Marchand C, Boyer PL, Pommier Y, Hughes SH, Burke TR. 4-amino-1-hydroxy-2-oxo-1,8-naphthyridine-containing compounds having high potency against raltegravir-resistant integrase mutants of HIV-1. J Med Chem 2014; 57:5190-202. [PMID: 24901667 PMCID: PMC4216207 DOI: 10.1021/jm5001908] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
There
are currently three HIV-1 integrase (IN) strand transfer
inhibitors (INSTIs) approved by the FDA for the treatment of AIDS.
However, the emergence of drug-resistant mutants emphasizes the need
to develop additional agents that have improved efficacies against
the existent resistant mutants. As reported herein, we modified our
recently disclosed 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides
IN inhibitors to develop compounds that have improved efficacies against
recombinant IN in biochemical assays. These new compounds show single-digit
nanomolar antiviral potencies against HIV vectors that carry wild-type
(WT) IN in a single round replication assay and have improved potency
against vectors harboring the major forms of drug resistant IN mutants.
These compounds also have low toxicity for cultured cells, which in
several cases, results in selectivity indices (CC50/EC50) of greater than 10000. The compounds have the potential,
with additional structural modifications, to yield clinical agents
that are effective against the known strains of resistant viruses.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, and ‡HIV Drug Resistance Program, Center for Cancer Research, NCI at Frederick, National Institutes of Health , Building 376, Boyles Street, P.O. Box B, Frederick, Maryland 21702, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mu X, Wang Q, Wang LP, Fried SD, Piquemal JP, Dalby KN, Ren P. Modeling organochlorine compounds and the σ-hole effect using a polarizable multipole force field. J Phys Chem B 2014; 118:6456-65. [PMID: 24484473 PMCID: PMC4065202 DOI: 10.1021/jp411671a] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The charge distribution of halogen
atoms on organochlorine compounds
can be highly anisotropic and even display a so-called σ-hole,
which leads to strong halogen bonds with electron donors. In this
paper, we have systematically investigated a series of chloromethanes
with one to four chloro substituents using a polarizable multipole-based
molecular mechanics model. The atomic multipoles accurately reproduced
the ab initio electrostatic potential around chloromethanes, including
CCl4, which has a prominent σ-hole on the Cl atom.
The van der Waals parameters for Cl were fitted to the experimental
density and heat of vaporization. The calculated hydration free energy,
solvent reaction fields, and interaction energies of several homo-
and heterodimer of chloromethanes are in good agreement with experimental
and ab initio data. This study suggests that sophisticated electrostatic
models, such as polarizable atomic multipoles, are needed for accurate
description of electrostatics in organochlorine compounds and halogen
bonds, although further improvement is necessary for better transferability.
Collapse
Affiliation(s)
- Xiaojiao Mu
- Department of Biomedical Engineering, ‡Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin , Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhao XZ, Smith SJ, Métifiot M, Johnson BC, Marchand C, Pommier Y, Hughes SH, Burke TR. Bicyclic 1-hydroxy-2-oxo-1,2-dihydropyridine-3-carboxamide-containing HIV-1 integrase inhibitors having high antiviral potency against cells harboring raltegravir-resistant integrase mutants. J Med Chem 2014; 57:1573-82. [PMID: 24471816 PMCID: PMC3983366 DOI: 10.1021/jm401902n] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Integrase
(IN) inhibitors are the newest class of antiretroviral
agents developed for the treatment of HIV-1 infections. Merck’s
Raltegravir (RAL) (October 2007) and Gilead’s Elvitegravir
(EVG) (August 2012), which act as IN strand transfer inhibitors (INSTIs),
were the first anti-IN drugs to be approved by the FDA. However, the
virus develops resistance to both RAL and EVG, and there is extensive
cross-resistance to these two drugs. New “2nd-generation”
INSTIs are needed that will have greater efficacy against RAL- and
EVG-resistant strains of IN. The FDA has recently approved the first
second generation INSTI, GSK’s Dolutegravir (DTG) (August 2013).
Our current article describes the design, synthesis, and evaluation
of a series of 1,8-dihydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamides,
1,4-dihydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides,
and 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides.
This resulted in the identification of noncytotoxic inhibitors that
exhibited single digit nanomolar EC50 values against HIV-1
vectors harboring wild-type IN in cell-based assays. Importantly,
some of these new inhibitors retain greater antiviral efficacy compared
to that of RAL when tested against a panel of IN mutants that included
Y143R, N155H, G140S/Q148H, G118R, and E138K/Q148K.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health , Frederick, Maryland 21702, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Métifiot M, Maddali K, Johnson BC, Hare S, Smith SJ, Zhao X, Marchand C, Burke TR, Hughes SH, Cherepanov P, Pommier Y. Activities, crystal structures, and molecular dynamics of dihydro-1H-isoindole derivatives, inhibitors of HIV-1 integrase. ACS Chem Biol 2013; 8:209-17. [PMID: 23075516 PMCID: PMC3548936 DOI: 10.1021/cb300471n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
On the basis of a series of lactam and phthalimide derivatives that inhibit HIV-1 integrase, we developed a new molecule, XZ-259, with biochemical and antiviral activities comparable to raltegravir. We determined the crystal structures of XZ-259 and four other derivatives in complex with the prototype foamy virus intasome. The compounds bind at the integrase-Mg(2+)-DNA interface of the integrase active site. In biochemical and antiviral assays, XZ-259 inhibits raltegravir-resistant HIV-1 integrases harboring the Y143R mutation. Molecular modeling is also presented suggesting that XZ-259 can bind in the HIV-1 intasome with its dimethyl sulfonamide group adopting two opposite orientations. Molecular dynamics analyses of the HIV-1 intasome highlight the importance of the viral DNA in drug potency.
Collapse
Affiliation(s)
| | | | - Barry C. Johnson
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Stephen Hare
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Steven J. Smith
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - XueZhi Zhao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Terrence R. Burke
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Stephen H. Hughes
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Peter Cherepanov
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892 (KM, MM, CM, YP). Division of Infectious Diseases, Imperial College London, London, UK (SH, PC). HIV Drug Resistance Program (SS, BJ, SHH) and Chemical Biology Laboratory (XZ, TB), Molecular Discovery Program, Center for Cancer Research, Frederick National Laboratory, National Institutes of Health, Frederick, MD 21702
| |
Collapse
|
18
|
Xue W, Jin X, Ning L, Wang M, Liu H, Yao X. Exploring the Molecular Mechanism of Cross-Resistance to HIV-1 Integrase Strand Transfer Inhibitors by Molecular Dynamics Simulation and Residue Interaction Network Analysis. J Chem Inf Model 2012; 53:210-22. [DOI: 10.1021/ci300541c] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Weiwei Xue
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaojie Jin
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Lulu Ning
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Meixia Wang
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Zhao XZ, Maddali K, Smith SJ, Métifiot M, Johnson BC, Marchand C, Hughes SH, Pommier Y, Burke TR. 6,7-Dihydroxy-1-oxoisoindoline-4-sulfonamide-containing HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2012; 22:7309-13. [PMID: 23149229 PMCID: PMC3523327 DOI: 10.1016/j.bmcl.2012.10.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/22/2022]
Abstract
Although an extensive body of scientific and patent literature exists describing the development of HIV-1 integrase (IN) inhibitors, Merck's raltegravir and Gilead's elvitegravir remain the only IN inhibitors FDA-approved for the treatment of AIDS. The emergence of raltegravir-resistant strains of HIV-1 containing mutated forms of IN underlies the need for continued efforts to enhance the efficacy of IN inhibitors against resistant mutants. We have previously described bicyclic 6,7-dihydroxyoxoisoindolin-1-ones that show good IN inhibitory potency. This report describes the effects of introducing substituents into the 4- and 5-positions of the parent 6,7-dihydroxyoxoisoindolin-1-one platform. We have developed several sulfonamide-containing analogs that enhance potency in cell-based HIV assays by more than two orders-of-magnitude and we describe several compounds that are more potent than raltegravir against the clinically relevant Y143R IN mutant.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Kasthuraiah Maddali
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Steven J. Smith
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Mathieu Métifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Barry C. Johnson
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Stephen H. Hughes
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| |
Collapse
|
20
|
Viral enzymes containing magnesium: Metal binding as a successful strategy in drug design. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Zhao XZ, Maddali K, Metifiot M, Smith SJ, Vu BC, Marchand C, Hughes SH, Pommier Y, Burke TR. Bicyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors. Chem Biol Drug Des 2011; 79:157-65. [PMID: 22107736 DOI: 10.1111/j.1747-0285.2011.01270.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HIV-1 integrase (IN) is a validated therapeutic target for the treatment of AIDS. However, the emergence of resistance to raltegravir, the sole marketed FDA-approved IN inhibitor, emphasizes the need to develop second-generation inhibitors that retain efficacy against clinically relevant IN mutants. We report herein bicyclic hydroxy-1H-pyrrolopyridine-triones as a new family of HIV-1 integrase inhibitors that were efficiently prepared using a key 'Pummerer cyclization deprotonation cycloaddition' cascade of imidosulfoxides. In in vitro HIV-1 integrase assays, the analogs showed low micromolar inhibitory potencies with selectivity for strand transfer reactions as compared with 3'-processing inhibition. A representative inhibitor (5e) retained most of its inhibitory potency against the three major raltegravir-resistant IN mutant enzymes, G140S/Q148H, Y143R, and N155H. In antiviral assays employing viral vectors coding these IN mutants, compound 5e was approximately 200- and 20-fold less affected than raltegravir against the G140S/Q148H and Y143R mutations, respectively. Against the N155H mutation, 5e was approximately 10-fold less affected than raltegravir. Thus, our new compounds represent a novel structural class that may be further developed to overcome resistance to raltegravir, particularly in the case of the G140S/Q148H mutations.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bacchi A, Carcelli M, Compari C, Fisicaro E, Pala N, Rispoli G, Rogolino D, Sanchez TW, Sechi M, Sinisi V, Neamati N. Investigating the role of metal chelation in HIV-1 integrase strand transfer inhibitors. J Med Chem 2011; 54:8407-20. [PMID: 22066494 DOI: 10.1021/jm200851g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
HIV-1 integrase (IN) has been validated as an attractive target for the treatment of HIV/AIDS. Several studies have confirmed that the metal binding function is a crucial feature in many of the reported IN inhibitors. To provide new insights on the metal chelating mechanism of IN inhibitors, we prepared a series of metal complexes of two ligands (HL1 and HL2), designed as representative models of the clinically used compounds raltegravir and elvitegravir. Potentiometric measurements were conducted for HL2 in the presence of Mg(II), Mn(II), Co(II), and Zn(II) in order to delineate a metal speciation model. We also determined the X-ray structures of both of the ligands and of three representative metal complexes. Our results support the hypothesis that several selective strand transfer inhibitors preferentially chelate one cation in solution and that the metal complexes can interact with the active site of the enzyme.
Collapse
Affiliation(s)
- Alessia Bacchi
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Molecular dynamics approaches estimate the binding energy of HIV-1 integrase inhibitors and correlate with in vitro activity. Antimicrob Agents Chemother 2011; 56:411-9. [PMID: 22037850 DOI: 10.1128/aac.05292-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The design of novel integrase (IN) inhibitors has been aided by recent crystal structures revealing the binding mode of these compounds with a full-length prototype foamy virus (PFV) IN and synthetic viral DNA ends. Earlier docking studies relied on incomplete structures and did not include the contribution of the viral DNA to inhibitor binding. Using the structure of PFV IN as the starting point, we generated a model of the corresponding HIV-1 complex and developed a molecular dynamics (MD)-based approach that correlates with the in vitro activities of novel compounds. Four well-characterized compounds (raltegravir, elvitegravir, MK-0536, and dolutegravir) were used as a training set, and the data for their in vitro activity against the Y143R, N155H, and G140S/Q148H mutants were used in addition to the wild-type (WT) IN data. Three additional compounds were docked into the IN-DNA complex model and subjected to MD simulations. All three gave interaction potentials within 1 standard deviation of values estimated from the training set, and the most active compound was identified. Additional MD analysis of the raltegravir- and dolutegravir-bound complexes gave internal and interaction energy values that closely match the experimental binding energy of a compound related to raltegravir that has similar activity. These approaches can be used to gain a deeper understanding of the interactions of the inhibitors with the HIV-1 intasome and to identify promising scaffolds for novel integrase inhibitors, in particular, compounds that retain activity against a range of drug-resistant mutants, making it possible to streamline synthesis and testing.
Collapse
|
24
|
Abstract
With the U.S. Food and Drug Administration approval of raltegravir (RAL; MK-0518; Merck & Co.), HIV-1 integrase (IN) is the newest therapeutic target for AIDS and HIV infections. Recent structural analyses show that IN strand transfer inhibitors (INSTIs) share a common binding mode in the enzyme active site. While RAL represents a therapeutic breakthrough, the emergence of IN resistance mutations imposes the development of new INSTIs. We report here the biochemical and antiviral activities of MK-0536, a new IN inhibitor. We demonstrate that, like RAL, MK-0536 is highly potent against recombinant IN and viral replication. It is also effective against INs that carry the three main RAL resistance mutations (Y143R, N155H, and to a lesser extent G140S-Q148H) and against the G118R mutant. Modeling of IN developed from recent prototype foamy virus structures is presented to account for the differences in the drug activities of MK-0536 and RAL against the IN mutants.
Collapse
|
25
|
Pendri A, Meanwell NA, Peese KM, Walker MA. New first and second generation inhibitors of human immunodeficiency virus-1 integrase. Expert Opin Ther Pat 2011; 21:1173-89. [DOI: 10.1517/13543776.2011.586631] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Zhao XZ, Maddali K, Metifiot M, Smith SJ, Vu BC, Marchand C, Hughes SH, Pommier Y, Burke TR. Development of tricyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2011; 21:2986-90. [PMID: 21493066 PMCID: PMC3085635 DOI: 10.1016/j.bmcl.2011.03.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 11/20/2022]
Abstract
New tricyclic HIV-1 integrase (IN) inhibitors were prepared that combined structural features of bicyclic pyrimidinones with recently disclosed 4,5-dihydroxy-1H-isoindole-1,3(2H)-diones. This combination resulted in the introduction of a nitrogen into the aryl ring and the addition of a fused third ring to our previously described inhibitors. The resulting analogues showed low micromolar inhibitory potency in in vitro HIV-1 integrase assays, with good selectivity for strand transfer relative to 3'-processing.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Molecular Discovery Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702
| | - Kasthuraiah Maddali
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mathieu Metifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Steven J. Smith
- HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702
| | - B. Christie Vu
- HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephen H. Hughes
- HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Terrence R. Burke
- Chemical Biology Laboratory, Molecular Discovery Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702
| |
Collapse
|
27
|
Bacchi A, Carcelli M, Compari C, Fisicaro E, Pala N, Rispoli G, Rogolino D, Sanchez TW, Sechi M, Neamati N. HIV-1 IN Strand Transfer Chelating Inhibitors: A Focus on Metal Binding. Mol Pharm 2011; 8:507-19. [DOI: 10.1021/mp100343x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Nicolino Pala
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | | | | | - Tino W. Sanchez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 304, Los Angeles, California 90089, United States
| | - Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - Nouri Neamati
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 304, Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Marchand C, Maddali K, Métifiot M, Pommier Y. HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem 2010; 9:1016-37. [PMID: 19747122 DOI: 10.2174/156802609789630910] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 06/13/2009] [Indexed: 12/29/2022]
Abstract
Integrase (IN) is the newest validated target against AIDS and retroviral infections. The remarkable activity of raltegravir (Isentress((R))) led to its rapid approval by the FDA in 2007 as the first IN inhibitor. Several other IN strand transfer inhibitors (STIs) are in development with the primary goal to overcome resistance due to the rapid occurrence of IN mutations in raltegravir-treated patients. Thus, many scientists and drug companies are actively pursuing clinically useful IN inhibitors. The objective of this review is to provide an update on the IN inhibitors reported in the last two years, including second generation STI, recently developed hydroxylated aromatics, natural products, peptide, antibody and oligonucleotide inhibitors. Additionally, the targeting of IN cofactors such as LEDGF and Vpr will be discussed as novel strategies for the treatment of AIDS.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
29
|
Zhao XZ, Maddali K, Marchand C, Pommier Y, Burke TR. Diketoacid-genre HIV-1 integrase inhibitors containing enantiomeric arylamide functionality. Bioorg Med Chem 2009; 17:5318-24. [PMID: 19527935 DOI: 10.1016/j.bmc.2009.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/29/2009] [Accepted: 05/01/2009] [Indexed: 11/30/2022]
Abstract
Using our recently disclosed 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one and 4,5-dihydroxy-1H-isoindole-1,3(2H)-dione integrase inhibitors, we report differential effects on inhibitory potency induced by introduction of an alpha-chiral center into a key aryl substituent. We show that introduction of the chiral center is uniformly deleterious to binding, with the (R)-enantiomer being more deleterious than the (S)-enantiomer. A greater enantiomeric difference in potency is shown by inhibitors that have restricted rotation of the aryl ring, with the larger difference being due to poorer potency of the (R)-enantiomer rather than higher potency of the (S)-enantiomer. The potency difference for enantiomers based on the isoindoline-1,3-dione ring system is less than for those derived from the isoindol-1-one ring system. Our findings provide useful information that should aid in understanding molecular binding interactions of DKA-derived IN inhibitors.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Laboratory of Medicinal, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702, United States
| | | | | | | | | |
Collapse
|