1
|
Taspase1 Facilitates Topoisomerase IIβ-Mediated DNA Double-Strand Breaks Driving Estrogen-Induced Transcription. Cells 2023; 12:cells12030363. [PMID: 36766705 PMCID: PMC9913075 DOI: 10.3390/cells12030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
The human protease Taspase1 plays a pivotal role in developmental processes and cancerous diseases by processing critical regulators, such as the leukemia proto-oncoprotein MLL. Despite almost two decades of intense research, Taspase1's biology is, however, still poorly understood, and so far its cellular function was not assigned to a superordinate biological pathway or a specific signaling cascade. Our data, gained by methods such as co-immunoprecipitation, LC-MS/MS and Topoisomerase II DNA cleavage assays, now functionally link Taspase1 and hormone-induced, Topoisomerase IIβ-mediated transient DNA double-strand breaks, leading to active transcription. The specific interaction with Topoisomerase IIα enhances the formation of DNA double-strand breaks that are a key prerequisite for stimulus-driven gene transcription. Moreover, Taspase1 alters the H3K4 epigenetic signature upon estrogen-stimulation by cleaving the chromatin-modifying enzyme MLL. As estrogen-driven transcription and MLL-derived epigenetic labelling are reduced upon Taspase1 siRNA-mediated knockdown, we finally characterize Taspase1 as a multifunctional co-activator of estrogen-stimulated transcription.
Collapse
|
2
|
Nishino S, Nishii Y, Hirano K. anti-Selective synthesis of β-boryl-α-amino acid derivatives by Cu-catalysed borylamination of α,β-unsaturated esters. Chem Sci 2022; 13:14387-14394. [PMID: 36545143 PMCID: PMC9749109 DOI: 10.1039/d2sc06003e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
A copper-catalysed regio- and diastereoselective borylamination of α,β-unsaturated esters with B2pin2 and hydroxylamines has been developed to deliver acyclic β-boryl-α-amino acid derivatives with high anti-diastereoselectivity (up to >99 : 1), which is difficult to obtain by the established methods. A chiral phosphoramidite ligand also successfully induces the enantioselectivity, giving the optically active β-borylated α-amino acids. The products can be stereospecifically transformed into β-functionalised α-amino acids, which are of potent interest in medicinal chemistry.
Collapse
Affiliation(s)
- Soshi Nishino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
3
|
Höing A, Struth R, Beuck C, Rafieiolhosseini N, Hoffmann D, Stauber RH, Bayer P, Niemeyer J, Knauer SK. Dual activity inhibition of threonine aspartase 1 by a single bisphosphate ligand. RSC Adv 2022; 12:34176-34184. [PMID: 36545626 PMCID: PMC9709806 DOI: 10.1039/d2ra06019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Therapy resistance remains a challenge for the clinics. Here, dual-active chemicals that simultaneously inhibit independent functions in disease-relevant proteins are desired though highly challenging. As a model, we here addressed the unique protease threonine aspartase 1, involved in various cancers. We hypothesized that targeting basic residues in its bipartite nuclear localization signal (NLS) by precise bisphosphate ligands inhibits additional steps required for protease activity. We report the bisphosphate anionic bivalent inhibitor 11d, selectively binding to the basic NLS cluster (220KKRR223) with high affinity (K D = 300 nM), thereby disrupting its interaction and function with Importin α (IC50 = 6 μM). Cell-free assays revealed that 11d additionally affected the protease's catalytic substrate trans-cleavage activity. Importantly, functional assays comprehensively demonstrated that 11d inhibited threonine aspartase 1 also in living tumor cells. We demonstrate for the first time that intracellular interference with independent key functions in a disease-relevant protein by an inhibitor binding to a single site is possible.
Collapse
Affiliation(s)
- Alexander Höing
- Molecular Biology II, Center of Medical Biotechnology (ZMB)/Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Robin Struth
- Organic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7 45141 Essen Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Neda Rafieiolhosseini
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Medical Center Mainz (UMM) Langenbeckstrasse 1 55101 Mainz Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Jochen Niemeyer
- Organic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7 45141 Essen Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB)/Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| |
Collapse
|
4
|
Zhu F, Miller E, Powell WC, Johnson K, Beggs A, Evenson GE, Walczak MA. Umpolung Ala
B
Reagents for the Synthesis of Non‐Proteogenic Amino Acids, Peptides and Proteins**. Angew Chem Int Ed Engl 2022; 61:e202207153. [PMID: 35653581 PMCID: PMC9329247 DOI: 10.1002/anie.202207153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/07/2022]
Abstract
Non-proteogenic amino acids and functionalized peptides are important motifs in modern drug discovery. Here we report that AlaB can serve as universal building blocks in the synthesis of a diverse collection of modified amino acids, peptides, and proteins. First, we develop the synthesis of AlaB from redox-active esters of aspartic acid resulting in a series of β-boronoalanine derivatives. Next, we show that AlaB can be integrated into automated oligopeptide solid-phase synthesis. AlaB is compatible with common transformations used in preparative peptide chemistry such as native chemical ligation and radical desulfurization as showcased by total synthesis of AlaB -containing ubiquitin. Furthermore, AlaB reagents participate in Pd-catalyzed reactions, including C-C cross-couplings and macrocyclizations. Taken together, AlaB synthons are practical reagents to access modified peptides, proteins, and in the synthesis of cyclic/stapled peptides.
Collapse
Affiliation(s)
- Feng Zhu
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Eric Miller
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | - Wyatt C. Powell
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | - Kelly Johnson
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | - Alexander Beggs
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | | | | |
Collapse
|
5
|
Zhu F, Miller E, Powell W, Johnson K, Beggs A, Evenson G, Walczak MA. Umpolung AlaB Reagents for the Synthesis of Non‐Proteogenic Amino Acids, Peptides and Proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Zhu
- Shanghai Jiao Tong University Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs CHINA
| | - Eric Miller
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Wyatt Powell
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Kelly Johnson
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Alexander Beggs
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Garrett Evenson
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Maciej A. Walczak
- University of Colorado Boulder Department of Chemistry and Biochemistry 215 UCB 80309 Boulder UNITED STATES
| |
Collapse
|
6
|
Closantel is an allosteric inhibitor of human Taspase1. iScience 2021; 24:103524. [PMID: 34934933 DOI: 10.1016/j.isci.2021.103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Dimerization of Taspase1 activates an intrinsic serine protease function that leads to the catalytic Thr234 residue, which allows to catalyze the consensus sequence Q-3X-2D-1⋅G1X2D3D4, present in Trithorax family members and TFIIA. Noteworthy, Taspase1 performs only a single hydrolytic step on substrate proteins, which makes it impossible to screen for inhibitors in a classical screening approach. Here, we report the development of an HTRF reporter assay that allowed the identification of an inhibitor, Closantel sodium, that inhibits Taspase1 in a noncovalent fashion (IC50 = 1.6 μM). The novel inhibitor interferes with the dimerization step and/or the intrinsic serine protease function of the proenzyme. Of interest, Taspase1 is required to activate the oncogenic functions of the leukemogenic AF4-MLL fusion protein and was shown in several studies to be overexpressed in many solid tumors. Therefore, the inhibitor may be useful for further validation of Taspase1 as a target for cancer therapy.
Collapse
|
7
|
Zhu F, Powell WC, Jing R, Walczak MA. Organometallic Ala M Reagents for Umpolung Peptide Diversification. CHEM CATALYSIS 2021; 1:870-884. [PMID: 34738092 PMCID: PMC8562471 DOI: 10.1016/j.checat.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Selective modifications of peptides and proteins have emerged as a promising strategy to develop novel mechanistic probes and prepare compounds with translational potentials. Here, we report alanine carbastannatranes AlaSn as a universal synthon in various C-C and C-heteroatom bond-forming reactions. These reagents are compatible with peptide manipulation techniques and can undergo chemoselective conjugation in minutes when promoted by Pd(0). Despite their increased nucleophilicity and propensity to transfer the alkyl group, C(sp3)-C(sp2) coupling with AlaSn can be accomplished at room temperature under buffered conditions (pH 6.5-8.5). We also show that AlaSn can be easily transformed into several canonical L- and D-amino acids in arylation, acylation, and etherification reactions. Furthermore, AlaSn can partake in macrocyclizations exemplified by the synthesis of medium size cyclic peptides with various topologies. Taken together, metalated alanine AlaSn demonstrates unparalleled scope and represents a new type of umpolung reagents suitable for structure-activity relationship studies and peptide diversification.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. C
- These authors contributed equally
| | - Wyatt C. Powell
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
- These authors contributed equally
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| |
Collapse
|
8
|
Friday SN, Cheng DW, Zagler SG, Zanella BS, Dietz JD, Calbat CN, Roach LT, Bagnal C, Faile IS, Halkides CJ, Viola RE. Design and testing of selective inactivators against an antifungal enzyme target. Drug Dev Res 2021; 83:447-460. [PMID: 34469014 DOI: 10.1002/ddr.21875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/10/2022]
Abstract
Systemic infections from fungal organisms are becoming increasingly difficult to treat as drug resistance continues to emerge. To substantially expand the antifungal drug landscape new compounds must be identified and developed with novel modes of action against previously untested drug targets. Most drugs block the activity of their targets through reversible, noncovalent interactions. However, a significant number of drugs form irreversible, covalent bonds with their selected targets. While more challenging to develop, these irreversible inactivators offer some significant advantages as novel antifungal agents. Vinyl sulfones contain a potentially reactive functional group that could function as a selective enzyme inactivator, and members of this class of compounds are now being developed as inactivators against an antifungal drug target. The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a key step in an essential microbial pathway and is essential for the survival of every microorganism examined. A series of vinyl sulfones have been designed, guided by molecular modeling and docking studies to enhance their affinity for fungal ASADHs. These newly synthesized compounds have been examined against this target enzyme from the pathogenic fungal organism Candida albicans. Vinyl sulfones containing complementary structural elements inhibit this enzyme with inhibition constants in the low-micromolar range. These inhibitors have also led to the rapid and irreversible inactivation of this enzyme, and show some initial selectivity when compared to the inactivation of a bacterial ASADH. The best inactivators will serve as lead compounds for the development of potent and selective antifungal agents.
Collapse
Affiliation(s)
- Samantha N Friday
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Daniel W Cheng
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Sebastian G Zagler
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Brady S Zanella
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Jordan D Dietz
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Christopher N Calbat
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Logan T Roach
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Cindy Bagnal
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Ian S Faile
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Christopher J Halkides
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
9
|
Pasch P, Höing A, Ueclue S, Killa M, Voskuhl J, Knauer SK, Hartmann L. PEGylated sequence-controlled macromolecules using supramolecular binding to target the Taspase1/Importin α interaction. Chem Commun (Camb) 2021; 57:3091-3094. [PMID: 33625405 DOI: 10.1039/d0cc07139k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel strategy to inhibit the oncologically relevant protease Taspase1 is explored by developing PEGylated macromolecular ligands presenting the supramolecular binding motif guanidiniocarbonylpyrrole (GCP). Taspase1 requires interaction of its nuclear localization signal (NLS) with import receptor Importin α. We show the synthesis and effective interference of PEGylated multivalent macromolecular ligands with Taspase1-Importin α-complex formation.
Collapse
Affiliation(s)
- Peter Pasch
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Liu D, Fan W, Xu Y, Yu S, Liu W, Guo Z, Huang W, Zhou Z, Hou S. Genome-wide association studies demonstrate that TASP1 contributes to increased muscle fiber diameter. Heredity (Edinb) 2021; 126:991-999. [PMID: 33767369 DOI: 10.1038/s41437-021-00425-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Muscle fiber diameter is an economically important trait because it affects meat yield and quality. However, the genetic basis underlying muscle fiber diameter has not been determined. In this study, we collected THREE muscular histological phenotypes in 479 ducks from an F2 segregating population generated by mallard × Pekin duck crosses. We performed genome-wide association studies (GWAS) and identified a quantitative trait locus (QTL) significantly associated with muscle fiber diameter on chromosome 3. Then, we discovered the selection signatures using the fixation index among 40 mallards and 30 Pekin ducks in this QTL region. Furthermore, we characterized the recombination event in this QTL region and identified a 6-kb block located on TASP1 that was significantly associated with muscle fiber diameter. Finally, five SNPs were screened as potential causative mutations within the 6-kb block. In conclusion, we demonstrated that TASP1 contributes to an increase in muscle fiber diameter, which helps to characterize muscle development and contributes to the genetic improvement of meat yield and quality in livestock.
Collapse
Affiliation(s)
- Dapeng Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wenlei Fan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, PR China
| | - Yaxi Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Simeng Yu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wenjing Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China.,College of Animal Science, Qingdao Agricultural University, Qingdao, PR China
| | - Zhanbao Guo
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wei Huang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhengkui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| |
Collapse
|
11
|
Rut W, Poręba M, Kasperkiewicz P, Snipas SJ, Drąg M. Selective Substrates and Activity-Based Probes for Imaging of the Human Constitutive 20S Proteasome in Cells and Blood Samples. J Med Chem 2018; 61:5222-5234. [DOI: 10.1021/acs.jmedchem.8b00026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Poręba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Scott J. Snipas
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Marcin Drąg
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
12
|
Doherty W, Adler N, Knox A, Nolan D, McGouran J, Nikalje AP, Lokwani D, Sarkate A, Evans P. Synthesis and Evaluation of 1,2,3-Triazole-Containing Vinyl and Allyl Sulfones as Anti-Trypanosomal Agents. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601221] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- William Doherty
- Centre for Synthesis and Chemical Biology; School of Chemistry; University College Dublin; 4 Dublin Ireland
| | - Nikoletta Adler
- School of Biochemistry and Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Pearse Street 2 Dublin Ireland
| | - Andrew Knox
- School of Biochemistry and Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Pearse Street 2 Dublin Ireland
- School of Biological Sciences; Dublin Institute of Technology; Kevin Street 8 Dublin Ireland
| | - Derek Nolan
- School of Biochemistry and Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Pearse Street 2 Dublin Ireland
| | - Joanna McGouran
- School of Chemistry; Trinity Biomedical Sciences Institute; Trinity College Dublin; Pearse Street 2 Dublin Ireland
| | - Anna Pratima Nikalje
- Y. B. Chavan College of Pharmacy; Dr. Rafiq Zakaria Campus 431001 Aurangabad Maharashtra India
| | - Deepak Lokwani
- Y. B. Chavan College of Pharmacy; Dr. Rafiq Zakaria Campus 431001 Aurangabad Maharashtra India
| | - Aniket Sarkate
- Department of Chemical Technology; Dr. Babasaheb Ambedkar Marathwada University; 431004 Aurangabad Maharashtra India
| | - Paul Evans
- Centre for Synthesis and Chemical Biology; School of Chemistry; University College Dublin; 4 Dublin Ireland
| |
Collapse
|
13
|
Merlino F, Yousif AM, Billard É, Dufour-Gallant J, Turcotte S, Grieco P, Chatenet D, Lubell WD. Urotensin II((4-11)) Azasulfuryl Peptides: Synthesis and Biological Activity. J Med Chem 2016; 59:4740-52. [PMID: 27140209 DOI: 10.1021/acs.jmedchem.6b00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cyclic azasulfuryl (As) peptide analogs of the urotensin II (UII, 1, H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) fragment 4-11 were synthesized to explore the influences of backbone structure on biological activity. N-Aminosulfamides were inserted as surrogates of the Trp(7) and Lys(8) residues in the biologically relevant Trp-Lys-Tyr triad. A combination of solution- and solid-phase methods were used to prepare novel UII((4-11)) analogs 6-11 by routes featuring alkylation of azasulfuryl-glycine tripeptide precursors to install various side chains. The pharmacological profiles of derivatives 6-11 were tested in vitro using a competitive binding assay and ex vivo using a rat aortic ring bioassay. Although the analogs exhibited weak affinity for the urotensin II receptor (UT) without agonistic activity, azasulfuryl-UII((4-11)) derivatives 7-9 reduced up to 50% of the effects of UII and urotensin II-related peptide (URP) without affecting their potency.
Collapse
Affiliation(s)
- Francesco Merlino
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Ali M Yousif
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Étienne Billard
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Quebéc , Ville de Laval, Quebec H7V 1B7, Canada
| | - Julien Dufour-Gallant
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Stéphane Turcotte
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - David Chatenet
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Quebéc , Ville de Laval, Quebec H7V 1B7, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
14
|
van den Boom J, Trusch F, Hoppstock L, Beuck C, Bayer P. Structural Characterization of the Loop at the Alpha-Subunit C-Terminus of the Mixed Lineage Leukemia Protein Activating Protease Taspase1. PLoS One 2016; 11:e0151431. [PMID: 26974973 PMCID: PMC4790943 DOI: 10.1371/journal.pone.0151431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/29/2016] [Indexed: 11/27/2022] Open
Abstract
Type 2 asparaginases, a subfamily of N-terminal nucleophile (Ntn) hydrolases, are activated by limited proteolysis. This activation yields a heterodimer and a loop region at the C-terminus of the α-subunit is released. Since this region is unresolved in all type 2 asparaginase crystal structures but is close to the active site residues, we explored this loop region in six members of the type 2 asparaginase family using homology modeling. As the loop model for the childhood cancer-relevant protease Taspase1 differed from the other members, Taspase1 activation as well as the conformation and dynamics of the 56 amino acids loop were investigated by CD and NMR spectroscopy. We propose a helix-turn-helix motif, which can be exploited as novel anticancer target to inhibit Taspase1 proteolytic activity.
Collapse
Affiliation(s)
- Johannes van den Boom
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Franziska Trusch
- Aberdeen Oomycetes Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lukas Hoppstock
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
15
|
Hahlbrock A, Goesswein D, Künzel J, Wünsch D, Stauber RH. Threonine Aspartase1: An unexplored protease with relevance for oral oncology? Oral Oncol 2016; 54:e10-2. [PMID: 26777068 DOI: 10.1016/j.oraloncology.2015.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/03/2015] [Accepted: 12/19/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Angelina Hahlbrock
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany.
| | - Dorothee Goesswein
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany.
| | - Julian Künzel
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany.
| | - Désirée Wünsch
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany.
| | - Roland H Stauber
- ENT Department, Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany.
| |
Collapse
|
16
|
Taspase1: a 'misunderstood' protease with translational cancer relevance. Oncogene 2015; 35:3351-64. [PMID: 26657154 DOI: 10.1038/onc.2015.436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/20/2022]
Abstract
Proteolysis is not only a critical requirement for life, but the executing enzymes also play important roles in numerous pathological conditions, including cancer. Therefore, targeting proteases is clearly relevant for improving cancer patient care. However, to effectively control proteases, a profound knowledge of their mechanistic function as well as their regulation and downstream signalling in health and disease is required. The highly conserved protease Threonine Aspartase1 (Taspase1) is overexpressed in numerous liquid and solid malignancies and was characterized as a 'non-oncogene addiction' protease. Although Taspase1 was shown to cleave various regulatory proteins in humans as well as leukaemia provoking mixed lineage leukaemia fusions, our knowledge on its detailed functions and the underlying mechanisms contributing to cancer is still incomplete. Despite superficial similarity to type 2 asparaginases as well as Ntn proteases, such as the proteasome, Taspase1-related research so far gives us the picture of a unique protease exhibiting special features. Moreover, neither effective genetic nor chemical inhibitors for this enzyme are available so far, thus hampering not only to further dissect Taspase1's pathobiological functions but also precluding the assessment of its clinical impact. Based on recent insights, we here critically review the current knowledge of Taspase1's structure-function relationship and its mechanistic relevance for tumorigenesis obtained from in vitro and in vivo cancer models. We provide a comprehensive overview of tumour entities for which Taspase1 might be of predictive and therapeutic value, and present the respective experimental evidence. To stimulate progress in the field, a comprehensive overview of Taspase1 targeting approaches is presented, including coverage of Taspase1-related patents. We conclude by discussing future inhibition strategies and relevant challenges, which need to be resolved by the field.
Collapse
|
17
|
Stauber RH, Hahlbrock A, Knauer SK, Wünsch D. Cleaving for growth: threonine aspartase 1--a protease relevant for development and disease. FASEB J 2015; 30:1012-22. [PMID: 26578689 DOI: 10.1096/fj.15-270611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022]
Abstract
From the beginning of life, proteases are key to organismal development comprising morphogenesis, cellular differentiation, and cell growth. Regulated proteolytic activity is essential for the orchestration of multiple developmental pathways, and defects in protease activity can account for multiple disease patterns. The highly conserved protease threonine aspartase 1 is a member of such developmental proteases and critically involved in the regulation of complex processes, including segmental identity, head morphogenesis, spermatogenesis, and proliferation. Additionally, threonine aspartase 1 is overexpressed in numerous liquid as well as in solid malignancies. Although threonine aspartase 1 is able to cleave the master regulator mixed lineage leukemia protein as well as other regulatory proteins in humans, our knowledge of its detailed pathobiological function and the underlying molecular mechanisms contributing to development and disease is still incomplete. Moreover, neither effective genetic nor chemical inhibitors for this enzyme are available so far precluding the detailed dissection of the pathobiological functions of threonine aspartase 1. Here, we review the current knowledge of the structure-function relationship of threonine aspartase 1 and its mechanistic impact on substrate-mediated coordination of the cell cycle and development. We discuss threonine aspartase 1-mediated effects on cellular transformation and conclude by presenting a short overview of recent interference strategies.
Collapse
Affiliation(s)
- Roland H Stauber
- *Molecular and Cellular Oncology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of Mainz, Mainz, Germany; and Institute for Molecular Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Angelina Hahlbrock
- *Molecular and Cellular Oncology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of Mainz, Mainz, Germany; and Institute for Molecular Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Shirley K Knauer
- *Molecular and Cellular Oncology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of Mainz, Mainz, Germany; and Institute for Molecular Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Désirée Wünsch
- *Molecular and Cellular Oncology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of Mainz, Mainz, Germany; and Institute for Molecular Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Bartoccini F, Bartolucci S, Lucarini S, Piersanti G. Synthesis of Boron- and Silicon-Containing Amino Acids through Copper-Catalysed Conjugate Additions to Dehydroalanine Derivatives. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500362] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4-MLL Fusion Protein. EBioMedicine 2015; 2:386-95. [PMID: 26137584 PMCID: PMC4486195 DOI: 10.1016/j.ebiom.2015.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
We have recently demonstrated that Taspase1-mediated cleavage of the AF4–MLL oncoprotein results in the formation of a stable multiprotein complex which forms the key event for the onset of acute proB leukemia in mice. Therefore, Taspase1 represents a conditional oncoprotein in the context of t(4;11) leukemia. In this report, we used site-directed mutagenesis to unravel the molecular events by which Taspase1 becomes sequentially activated. Monomeric pro-enzymes form dimers which are autocatalytically processed into the enzymatically active form of Taspase1 (αββα). The active enzyme cleaves only very few target proteins, e.g., MLL, MLL4 and TFIIA at their corresponding consensus cleavage sites (CSTasp1) as well as AF4–MLL in the case of leukemogenic translocation. This knowledge was translated into the design of a dominant-negative mutant of Taspase1 (dnTASP1). As expected, simultaneous expression of the leukemogenic AF4–MLL and dnTASP1 causes the disappearance of the leukemogenic oncoprotein, because the uncleaved AF4–MLL protein (328 kDa) is subject to proteasomal degradation, while the cleaved AF4–MLL forms a stable oncogenic multi-protein complex with a very long half-life. Moreover, coexpression of dnTASP1 with a BFP-CSTasp1-GFP FRET biosensor effectively inhibits cleavage. The impact of our findings on future drug development and potential treatment options for t(4;11) leukemia will be discussed. Taspase1 has coevolved with the Trithorax/MLL protein family. Taspase1 hydrolyzes MLL and few other substrate proteins at consensus cleavage sites. Taspase1 is a conditional oncoprotein in of solid and hematological cancers. Taspase1 is required for the processing of the leukemogenic AF4–MLL fusion protein. Inhibition of Taspase1 might have a great therapeutic potential.
Collapse
|
20
|
Maity J, Honcharenko D, Strömberg R. Synthesis of triamino acid building blocks with different lipophilicities. PLoS One 2015; 10:e0124046. [PMID: 25876040 PMCID: PMC4397077 DOI: 10.1371/journal.pone.0124046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/10/2015] [Indexed: 11/18/2022] Open
Abstract
To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis.
Collapse
Affiliation(s)
- Jyotirmoy Maity
- Department of Biosciences and Nutrition, Novum, Karolinska Institute (KI), Stockholm, Sweden
| | - Dmytro Honcharenko
- Department of Biosciences and Nutrition, Novum, Karolinska Institute (KI), Stockholm, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Novum, Karolinska Institute (KI), Stockholm, Sweden
- * E-mail:
| |
Collapse
|
21
|
Dong Y, Van Tine BA, Oyama T, Wang PI, Cheng EH, Hsieh JJ. Taspase1 cleaves MLL1 to activate cyclin E for HER2/neu breast tumorigenesis. Cell Res 2014; 24:1354-66. [PMID: 25267403 PMCID: PMC4220155 DOI: 10.1038/cr.2014.129] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/29/2014] [Accepted: 08/17/2014] [Indexed: 01/07/2023] Open
Abstract
Taspase1, a highly conserved threonine protease, cleaves nuclear transcriptional regulators mixed-lineage leukemia (MLL, MLL1), MLL2, TFIIA, and ALF to orchestrate a wide variety of biological processes. In vitro studies thus far demonstrated that Taspase1 plays important roles in the proliferation of various cancer cell lines, including HER2-positive breast cancer cells. To investigate the role of Taspase1 in breast tumorigenesis in vivo, we deleted Taspase1 from mouse mammary glands by generating MMTV-neu;MMTV-cre;Tasp1(F/-) mice. We demonstrate that initiation of MMTV-neu- but not MMTV-wnt-driven breast cancer is blocked in the absence of Taspase1. Importantly, Taspase1 loss alone neither impacts normal development nor pregnancy physiology of the mammary gland. In mammary glands Taspase1 deficiency abrogates MMTV-neu-induced cyclins E and A expression, thereby preventing tumorigenesis. The mechanisms were explored in HER2-positive breast cancer cell line BT474 and HER2-transformed MCF10A cells and validated using knockdown-resistant Taspase1. As Taspase1 was shown to cleave MLL which forms complexes with E2F transcription factors to regulate Cyclins E, A, and B expression in mouse embryonic fibroblasts (MEFs), we investigated whether the cleavage of MLL by Taspase1 constitutes an essential in vivo axis for HER2/neu-induced mammary tumorigenesis. To this end, we generated MMTV-neu;MLL(nc/nc) transgenic mice that carry homozygous non-cleavable MLL alleles. Remarkably, these mice are also protected from HER2/neu-driven breast tumorigenesis. Hence, MLL is the primary Taspase1 substrate whose cleavage is required for MMTV-neu-induced tumor formation. As Taspase1 plays critical roles in breast cancer pathology, it may serve as a therapeutic target for HER2-positive human breast cancer.
Collapse
Affiliation(s)
- Yiyu Dong
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Brian A Van Tine
- Department of Internal Medicine, Washington University, St Louis, MO 63110, USA
| | - Toshinao Oyama
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Patricia I Wang
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Emily H Cheng
- 1] Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA [2] Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - James J Hsieh
- 1] Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA [2] Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA [3] Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
22
|
van den Boom J, Mamić M, Baccelliere D, Zweerink S, Kaschani F, Knauer S, Bayer P, Kaiser M. Peptidyl Succinimidyl Peptides as Taspase 1 Inhibitors. Chembiochem 2014; 15:2233-7. [DOI: 10.1002/cbic.201402108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Indexed: 12/16/2022]
|
23
|
Lasheen DS, Ismail MA, Abou El Ella DA, Ismail NS, Eid S, Vleck S, Glenn JS, Watts AG, Abouzid KA. Analogs design, synthesis and biological evaluation of peptidomimetics with potential anti-HCV activity. Bioorg Med Chem 2013; 21:2742-55. [DOI: 10.1016/j.bmc.2013.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/23/2013] [Accepted: 03/03/2013] [Indexed: 02/01/2023]
|
24
|
Jansen PAM, van Diepen JA, Ritzen B, Zeeuwen PLJM, Cacciatore I, Cornacchia C, van Vlijmen-Willems IMJJ, de Heuvel E, Botman PNM, Blaauw RH, Hermkens PHH, Rutjes FPJT, Schalkwijk J. Discovery of small molecule vanin inhibitors: new tools to study metabolism and disease. ACS Chem Biol 2013; 8:530-4. [PMID: 23270378 DOI: 10.1021/cb3006424] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vanins are enzymes with pantetheinase activity and are presumed to play a role in the recycling of pantothenic acid (vitamin B5) from pantetheine. Pantothenic acid is an essential nutrient required to synthesize coenzyme A, a cofactor involved in many biological processes such as fatty acid synthesis and oxidation of pyruvate to fuel the citric acid cycle. Hydrolysis of pantetheine also liberates cysteamine, a known antioxidant. Vanin-1 is highly expressed in liver and is under transcriptional control of PPAR-α and nutritional status, suggesting a role in energy metabolism. The lack of potent and specific inhibitors of vanins has hampered detailed investigation of their function. We hereby report the design, synthesis, and characterization of a novel pantetheine analogue, RR6, that acts as a selective, reversible, and competitive vanin inhibitor at nanomolar concentration. Oral administration of RR6 in rats completely inhibited plasma vanin activity and caused alterations of plasma lipid concentrations upon fasting, thereby illustrating its potential use in chemical biology research.
Collapse
Affiliation(s)
| | | | - Bas Ritzen
- Department
of Synthetic Organic
Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands
| | | | - Ivana Cacciatore
- Department of Pharmacy, “G. d’Annunzio” University, Chieti-Pescara,
Italy
| | - Catia Cornacchia
- Department of Pharmacy, “G. d’Annunzio” University, Chieti-Pescara,
Italy
| | | | | | | | | | - Pedro H. H. Hermkens
- Department
of Synthetic Organic
Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands
| | - Floris P. J. T. Rutjes
- Department
of Synthetic Organic
Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands
| | | |
Collapse
|
25
|
Overexpression of the catalytically impaired Taspase1 T234V or Taspase1 D233A variants does not have a dominant negative effect in T(4;11) leukemia cells. PLoS One 2012; 7:e34142. [PMID: 22570686 PMCID: PMC3343046 DOI: 10.1371/journal.pone.0034142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/22/2012] [Indexed: 01/24/2023] Open
Abstract
Background The chromosomal translocation t(4;11)(q21;q23) is associated with high-risk acute lymphoblastic leukemia of infants. The resulting AF4•MLL oncoprotein becomes activated by Taspase1 hydrolysis and is considered to promote oncogenic transcriptional activation. Hence, Taspase1’s proteolytic activity is a critical step in AF4•MLL pathophysiology. The Taspase1 proenzyme is autoproteolytically processed in its subunits and is assumed to assemble into an αββα-heterodimer, the active protease. Therefore, we investigated here whether overexpression of catalytically inactive Taspase1 variants are able to interfere with the proteolytic activity of the wild type enzyme in AF4•MLL model systems. Methodology/Findings The consequences of overexpressing the catalytically dead Taspase1 mutant, Taspase1T234V, or the highly attenuated variant, Taspase1D233A, on Taspase1’s processing of AF4•MLL and of other Taspase1 targets was analyzed in living cancer cells employing an optimized cell-based assay. Notably, even a nine-fold overexpression of the respective Taspase1 mutants neither inhibited Taspase1’s cis- nor trans-cleavage activity in vivo. Likewise, enforced expression of the α- or β-subunits showed no trans-dominant effect against the ectopically or endogenously expressed enzyme. Notably, co-expression of the individual α- and β-subunits did not result in their assembly into an enzymatically active protease complex. Probing Taspase1 multimerization in living cells by a translocation-based protein interaction assay as well as by biochemical methods indicated that the inactive Taspase1 failed to assemble into stable heterocomplexes with the wild type enzyme. Conclusions Collectively, our results demonstrate that inefficient heterodimerization appears to be the mechanism by which inactive Taspase1 variants fail to inhibit wild type Taspase1’s activity in trans. Our work favours strategies targeting Taspase1’s catalytic activity rather than attempts to block the formation of active Taspase1 dimers to interfere with the pathobiological function of AF4•MLL.
Collapse
|
26
|
Chen DY, Lee Y, Van Tine BA, Searleman AC, Westergard TD, Liu H, Tu HC, Takeda S, Dong Y, Piwnica-Worms DR, Oh KJ, Korsmeyer SJ, Hermone A, Gussio R, Shoemaker RH, Cheng EHY, Hsieh JJD. A pharmacologic inhibitor of the protease Taspase1 effectively inhibits breast and brain tumor growth. Cancer Res 2011; 72:736-46. [PMID: 22166309 DOI: 10.1158/0008-5472.can-11-2584] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The threonine endopeptidase Taspase1 has a critical role in cancer cell proliferation and apoptosis. In this study, we developed and evaluated small molecule inhibitors of Taspase1 as a new candidate class of therapeutic modalities. Genetic deletion of Taspase1 in the mouse produced no overt deficiencies, suggesting the possibility of a wide therapeutic index for use of Taspase1 inhibitors in cancers. We defined the peptidyl motifs recognized by Taspase1 and conducted a cell-based dual-fluorescent proteolytic screen of the National Cancer Institute diversity library to identify Taspase1 inhibitors (TASPIN). On the basis of secondary and tertiary screens the 4-[(4-arsonophenyl)methyl]phenyl] arsonic acid NSC48300 was determined to be the most specific active compound. Structure-activity relationship studies indicated a crucial role for the arsenic acid moiety in mediating Taspase1 inhibition. Additional fluorescence resonance energy transfer-based kinetic analysis characterized NSC48300 as a reversible, noncompetitive inhibitor of Taspase1 (K(i) = 4.22 μmol/L). In the MMTV-neu mouse model of breast cancer and the U251 xenograft model of brain cancer, NSC48300 produced effective tumor growth inhibition. Our results offer an initial preclinical proof-of-concept to develop TASPINs for cancer therapy.
Collapse
Affiliation(s)
- David Y Chen
- Department of Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
S-2-Amino-4-cyanobutanoic acid (β-cyanomethyl-l-Ala) as an atom-efficient solubilising synthon for l-glutamine. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Aspartic vinyl sulfones: Inhibitors of a caspase-3-dependent pathway. Eur J Med Chem 2011; 46:2141-6. [DOI: 10.1016/j.ejmech.2011.02.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/16/2011] [Accepted: 02/27/2011] [Indexed: 11/18/2022]
|
29
|
Knauer SK, Fetz V, Rabenstein J, Friedl S, Hofmann B, Sabiani S, Schröder E, Kunst L, Proschak E, Thines E, Kindler T, Schneider G, Marschalek R, Stauber RH, Bier C. Bioassays to monitor Taspase1 function for the identification of pharmacogenetic inhibitors. PLoS One 2011; 6:e18253. [PMID: 21647428 PMCID: PMC3102056 DOI: 10.1371/journal.pone.0018253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/28/2011] [Indexed: 12/12/2022] Open
Abstract
Background Threonine Aspartase 1 (Taspase1) mediates cleavage of the mixed lineage leukemia (MLL) protein and leukemia provoking MLL-fusions. In contrast to other proteases, the understanding of Taspase1's (patho)biological relevance and function is limited, since neither small molecule inhibitors nor cell based functional assays for Taspase1 are currently available. Methodology/Findings Efficient cell-based assays to probe Taspase1 function in vivo are presented here. These are composed of glutathione S-transferase, autofluorescent protein variants, Taspase1 cleavage sites and rational combinations of nuclear import and export signals. The biosensors localize predominantly to the cytoplasm, whereas expression of biologically active Taspase1 but not of inactive Taspase1 mutants or of the protease Caspase3 triggers their proteolytic cleavage and nuclear accumulation. Compared to in vitro assays using recombinant components the in vivo assay was highly efficient. Employing an optimized nuclear translocation algorithm, the triple-color assay could be adapted to a high-throughput microscopy platform (Z'factor = 0.63). Automated high-content data analysis was used to screen a focused compound library, selected by an in silico pharmacophor screening approach, as well as a collection of fungal extracts. Screening identified two compounds, N-[2-[(4-amino-6-oxo-3H-pyrimidin-2-yl)sulfanyl]ethyl]benzenesulfonamide and 2-benzyltriazole-4,5-dicarboxylic acid, which partially inhibited Taspase1 cleavage in living cells. Additionally, the assay was exploited to probe endogenous Taspase1 in solid tumor cell models and to identify an improved consensus sequence for efficient Taspase1 cleavage. This allowed the in silico identification of novel putative Taspase1 targets. Those include the FERM Domain-Containing Protein 4B, the Tyrosine-Protein Phosphatase Zeta, and DNA Polymerase Zeta. Cleavage site recognition and proteolytic processing of these substrates were verified in the context of the biosensor. Conclusions The assay not only allows to genetically probe Taspase1 structure function in vivo, but is also applicable for high-content screening to identify Taspase1 inhibitors. Such tools will provide novel insights into Taspase1's function and its potential therapeutic relevance.
Collapse
Affiliation(s)
- Shirley K. Knauer
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Verena Fetz
- Mainzer Screening Center (MSC), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jens Rabenstein
- Institute of Pharmaceutical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Sandra Friedl
- Mainzer Screening Center (MSC), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Bettina Hofmann
- Institute Organic Chemistry and Chemical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Samaneh Sabiani
- Institute of Pharmaceutical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Elisabeth Schröder
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Lena Kunst
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Eugen Proschak
- Institute Organic Chemistry and Chemical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research Kaiserslautern (IBWF), Kaiserslautern, Germany
| | - Thomas Kindler
- Department of Hematology/Oncology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Gisbert Schneider
- Institute Organic Chemistry and Chemical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/ZAFES, Goethe-University, Frankfurt/Main, Germany
| | - Roland H. Stauber
- Mainzer Screening Center (MSC), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- * E-mail: (CB); (RHS)
| | - Carolin Bier
- Mainzer Screening Center (MSC), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- * E-mail: (CB); (RHS)
| |
Collapse
|
30
|
Bier C, Knauer SK, Klapthor A, Schweitzer A, Rekik A, Krämer OH, Marschalek R, Stauber RH. Cell-based analysis of structure-function activity of threonine aspartase 1. J Biol Chem 2011; 286:3007-17. [PMID: 21084304 PMCID: PMC3024795 DOI: 10.1074/jbc.m110.161646] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/22/2010] [Indexed: 12/24/2022] Open
Abstract
Taspase1 is a threonine protease responsible for cleaving intracellular substrates. As such, (de)regulated Taspase1 function is expected not only to be vital for ordered development but may also be relevant for disease. However, the full repertoires of Taspase1 targets as well as the exact biochemical requirements for its efficient and substrate-specific cleavage are not yet resolved. Also, no cellular assays for this protease are currently available, hampering the exploitation of the (patho)biological relevance of Taspase1. Here, we developed highly efficient cell-based translocation biosensor assays to probe Taspase1 trans-cleavage in vivo. These modular sensors harbor variations of Taspase1 cleavage sites and localize to the cytoplasm. Expression of Taspase1 but not of inactive Taspase1 mutants or of unrelated proteases triggers proteolytic cleavage and nuclear accumulation of the biosensors. Employing our assay combined with scanning mutagenesis, we identified the sequence and spatial requirements for efficient Taspase1 processing in liquid and solid tumor cell lines. Collectively, our results defined an improved Taspase1 consensus recognition sequence, Q(3)(F/I/L/V)(2)D(1)↓G(1)'X(2)'D(3)'D(4)', allowing the first genome-wide bioinformatic identification of the human Taspase1 degradome. Among the 27 most likely Taspase1 targets are cytoplasmic but also nuclear proteins, such as the upstream stimulatory factor 2 (USF2) or the nuclear RNA export factors 2/5 (NXF2/5). Cleavage site recognition and proteolytic processing of selected targets were verified in the context of the biosensor and for the full-length proteins. We provide novel mechanistic insights into the function and bona fide targets of Taspase1 allowing for a focused investigation of the (patho)biological relevance of this type 2 asparaginase.
Collapse
Affiliation(s)
- Carolin Bier
- From the Molecular and Cellular Oncology/Mainzer Screening Center, University Hospital of Mainz, Langenbeckstrasse 1, 55101 Mainz
| | - Shirley K. Knauer
- the Institute for Molecular Biology, Centre for Medical Biotechnology, University Duisburg-Essen, Universitätsstrasse, 45117 Essen
| | - Alexander Klapthor
- From the Molecular and Cellular Oncology/Mainzer Screening Center, University Hospital of Mainz, Langenbeckstrasse 1, 55101 Mainz
| | - Andrea Schweitzer
- From the Molecular and Cellular Oncology/Mainzer Screening Center, University Hospital of Mainz, Langenbeckstrasse 1, 55101 Mainz
| | - Alexander Rekik
- From the Molecular and Cellular Oncology/Mainzer Screening Center, University Hospital of Mainz, Langenbeckstrasse 1, 55101 Mainz
| | - Oliver H. Krämer
- the Institute for Biochemistry and Biophysics/Centre for Molecular Biomedicine, Friedrich-Schiller-University Jena, Hans-Knöll-Strasse 2, 07745 Jena, and
| | - Rolf Marschalek
- the Institute for Pharmaceutical Biology/ZAFES, Goethe-University, Max-von Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | - Roland H. Stauber
- From the Molecular and Cellular Oncology/Mainzer Screening Center, University Hospital of Mainz, Langenbeckstrasse 1, 55101 Mainz
| |
Collapse
|
31
|
Chen DY, Liu H, Takeda S, Tu HC, Sasagawa S, Van Tine BA, Lu D, Cheng EHY, Hsieh JJD. Taspase1 functions as a non-oncogene addiction protease that coordinates cancer cell proliferation and apoptosis. Cancer Res 2010; 70:5358-67. [PMID: 20516119 DOI: 10.1158/0008-5472.can-10-0027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Taspase1, the mixed lineage leukemia and TFIIAalpha-beta cleaving protease, enables cell proliferation and permits oncogenic initiation. Here, we show its critical role in cancer maintenance and thus offer a new anticancer target. Taspase1 is overexpressed in primary human cancers, and deficiency of Taspase1 in cancer cells not only disrupts proliferation but also enhances apoptosis. Mechanistically, loss of Taspase1 induces the levels of CDK inhibitors (CDKI: p16, p21, and p27) and reduces the level of antiapoptotic MCL-1. Therapeutically, deficiency of Taspase1 synergizes with chemotherapeutic agents and ABT-737, an inhibitor of BCL-2/BCL-X(L), to kill cancer cells. Taspase1 alone or in conjunction with MYC, RAS, or E1A fails to transform NIH/3T3 cells or primary mouse embryonic fibroblasts, respectively, but plays critical roles in cancer initiation and maintenance. Therefore, Taspase1 is better classified as a "non-oncogene addiction" protease, the inhibition of which may offer a novel anticancer therapeutic strategy. The reliance of oncogenes on subordinate non-oncogenes during tumorigenesis underscores the non-oncogene addiction hypothesis in which a large class of non-oncogenes functions to maintain cancer phenotypes and presents attractive anticancer therapeutic targets. The emergence of successful cancer therapeutics targeting non-oncogenes to which cancers are addicted supports the future development and potential application of small-molecule Taspase1 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- David Y Chen
- Departments of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|