1
|
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, Bustabad A, Shaw M, Robins J, Vera Gomez K, Suphakorn T, Camacho Gemelgo M, Law A, Lin K, Hospedales E, Haley H, Perez Martinez JP, Khan S, DeCanio J, Padgett M, Abramov A, Nanjundan M. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals (Basel) 2022; 15:1380. [PMID: 36355554 PMCID: PMC9698530 DOI: 10.3390/ph15111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/22/2023] Open
Abstract
One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
2
|
Kriek N, Nock SH, Sage T, Khalifa B, Bye AP, Mitchell JL, Thomson S, McLaughlin MG, Jones S, Gibbins JM, Unsworth AJ. Cucurbitacins Elicit Anti-Platelet Activity via Perturbation of the Cytoskeleton and Integrin Function. Thromb Haemost 2022; 122:1115-1129. [PMID: 35253142 PMCID: PMC9385249 DOI: 10.1055/a-1788-5322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022]
Abstract
Cucurbitacins are dietary compounds that have been shown to elicit a range of anti-tumour, anti-inflammatory and anti-atherosclerotic activities. Originally identified as signal transducer and activator of transcription, STAT, inhibitors, a variety of mechanisms of action have since been described, including dysregulation of the actin cytoskeleton and disruption of integrin function. Integrin outside-in signalling and cytoskeletal rearrangements are critical for the propagation of stable thrombus formation and clot retraction following platelet adhesion at the site of vessel damage. The effects of cucurbitacins on platelet function and thrombus formation are unknown. We report for the first time anti-platelet and anti-thrombotic effects of cucurbitacins B, E and I in human platelets. Treatment of platelets with cucurbitacins resulted in attenuation of platelet aggregation, secretion and fibrinogen binding following stimulation by platelet agonists. Cucurbitacins were also found to potently inhibit other integrin- and cytoskeleton-mediated events, including adhesion, spreading and clot retraction. Further investigation of cytoskeletal dynamics found treatment with cucurbitacins altered cofilin phosphorylation, enhanced activation and increased F actin polymerisation and microtubule assembly. Disruption to cytoskeletal dynamics has been previously shown to impair integrin activation, platelet spreading and clot retraction. Anti-platelet properties of cucurbitacins were found to extend to a disruption of stable thrombus formation, with an increase in thrombi instability and de-aggregation under flow. Our research identifies novel, anti-platelet and anti-thrombotic actions of cucurbitacins that appear to be linked to dysregulation of cytoskeletal dynamics and integrin function.
Collapse
Affiliation(s)
- Neline Kriek
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Sophie H. Nock
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Tanya Sage
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Badrija Khalifa
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alexander P. Bye
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Joanne L. Mitchell
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Steven Thomson
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mark G. McLaughlin
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom
| | - Sarah Jones
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Amanda J. Unsworth
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
3
|
Cucurbitacin B Down-Regulates TNF Receptor 1 Expression and Inhibits the TNF-α-Dependent Nuclear Factor κB Signaling Pathway in Human Lung Adenocarcinoma A549 Cells. Int J Mol Sci 2022; 23:ijms23137130. [PMID: 35806134 PMCID: PMC9267118 DOI: 10.3390/ijms23137130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), induce the expression of intracellular adhesion molecule-1 (ICAM-1) by activating the nuclear factor κB (NF-κB) signaling pathway. In the present study, we found that cucurbitacin B decreased the expression of ICAM-1 in human lung adenocarcinoma A549 cells stimulated with TNF-α or interleukin-1α. We further investigated the mechanisms by which cucurbitacin B down-regulates TNF-α-induced ICAM-1 expression. Cucurbitacin B inhibited the nuclear translocation of the NF-κB subunit RelA and the phosphorylation of IκBα in A549 cells stimulated with TNF-α. Cucurbitacin B selectively down-regulated the expression of TNF receptor 1 (TNF-R1) without affecting three adaptor proteins (i.e., TRADD, RIPK1, and TRAF2). The TNF-α-converting enzyme inhibitor suppressed the down-regulation of TNF-R1 expression by cucurbitacin B. Glutathione, N-acetyl-L-cysteine, and, to a lesser extent, L-cysteine attenuated the inhibitory effects of cucurbitacin B on the TNF-α-induced expression of ICAM-1, suggesting that an α,β-unsaturated carbonyl moiety is essential for anti-inflammatory activity. The present results revealed that cucurbitacin B down-regulated the expression of TNF-R1 at the initial step in the TNF-α-dependent NF-κB signaling pathway.
Collapse
|
4
|
Nakashima S, Oda Y, Morita M, Ohta A, Morikawa T, Matsuda H, Nakamura S. Analysis of Active Compounds Using Target Protein Cofilin―Cucurbitacins in Cytotoxic Plant Bryonia cretica. Toxins (Basel) 2022; 14:toxins14030212. [PMID: 35324709 PMCID: PMC8955846 DOI: 10.3390/toxins14030212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
We examined a two-step target protein binding strategy that uses cofilin as the target protein to analyze the active constituents in Bryonia cretica. In the first step, we prepared the target protein, and used it to analyze the compounds binding to it in the second step. We used the methanolic extract of B. cretica as a library of possible active compounds. We conducted LC–MS analysis using information from our previous study. The peaks in the HPLC profile were identified as cucurbitacin D, isocucurbitacin D, and cucurbitacin I. As far as we know, there is no known study of the activity of isocucurbitacin D in this research field. Therefore, we examined the effects of isocucurbitacin D on cell proliferation and cofilin protein in human fibrosarcoma cell line HT1080 to confirm the effectiveness of this strategy. The cytotoxicity assay, the fibrous/globular actin ratio assay, and the immunoblotting analysis revealed that isocucurbitacin D showed a cytotoxic effect with disruption of target protein cofilin. The target protein binding strategy is a direct and straightforward method for finding new drug seeds from crude sources, such as natural plant extracts.
Collapse
Affiliation(s)
- Souichi Nakashima
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (Y.O.); (M.M.); (A.O.); (H.M.); (S.N.)
- NPR Medical Resource Laboratory, Kyoto 604-0924, Japan
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka 577-8502, Japan;
- Correspondence:
| | - Yoshimi Oda
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (Y.O.); (M.M.); (A.O.); (H.M.); (S.N.)
| | - Moeko Morita
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (Y.O.); (M.M.); (A.O.); (H.M.); (S.N.)
| | - Ayako Ohta
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (Y.O.); (M.M.); (A.O.); (H.M.); (S.N.)
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka 577-8502, Japan;
| | - Hisashi Matsuda
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (Y.O.); (M.M.); (A.O.); (H.M.); (S.N.)
- NPR Medical Resource Laboratory, Kyoto 604-0924, Japan
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka 577-8502, Japan;
| | - Seikou Nakamura
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan; (Y.O.); (M.M.); (A.O.); (H.M.); (S.N.)
| |
Collapse
|
5
|
Chen Y, Peng S, Zhao P, Chen L, Liu GS, Ouyang D, Luo Y, Chen Z. Cell-modified plasmonic interface for the signal-amplified detection of Cucurbitacin E. BIOMEDICAL OPTICS EXPRESS 2022; 13:274-283. [PMID: 35154870 PMCID: PMC8803011 DOI: 10.1364/boe.445679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 05/24/2023]
Abstract
Cucurbitacin E (CuE) plays an important role in anticancer, antichemical carcinogenesis, and body immunity, etc., and the detection of its concentration is meaningful to pharmacological studies and clinical applications. However, the small molecular weight of CuE makes direct detection difficult through a surface plasmon resonance (SPR) sensor. In this work, we propose a cells-amplified signal strategy at the plasmonic interface, realizing the detection of CuE with ultra-low concentration. The seeded HeLa cells are modified onto the surface of the SPR sensor, and a small amount of CuE can lead to the remarkable morphology change of cells and the release of cell-related substances onto the plamonic interface, thus significantly amplifying the signal. Experimental results show that by using an unmodified SPR sensor with the bulk refractive index sensitivity of 2367.3 nm/RIU (RIU: refractive index unit), there no effective signal can be detected during the CuE concentration range of 0-100 nM; whereas, employing the proposed strategy, the signal for CuE detection can be significantly enhanced, resulting in a high detection sensitivity of 0.6196 nm/nM, corresponding to a limit of detection of 45.2 pM (25.2 pg/mL). The proposed cells-based signal amplifying strategy shows great potential applications in drug screening or bio-sensing to small molecules with low concentration.
Collapse
Affiliation(s)
- Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Contributed equally
| | - Shuihua Peng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Contributed equally
| | - Peili Zhao
- Pathology department, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Dongyun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Zhe Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Sarkar S, Bardai F, Olsen AL, Lohr KM, Zhang YY, Feany MB. Oligomerization of Lrrk controls actin severing and α-synuclein neurotoxicity in vivo. Mol Neurodegener 2021; 16:33. [PMID: 34030727 PMCID: PMC8142648 DOI: 10.1186/s13024-021-00454-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mutations in LRRK2 are the most common cause of familial Parkinson's disease and typically cause disease in the context of abnormal aggregation and deposition of α-synuclein within affected brain tissue. METHODS We combine genetic analysis of Lrrk-associated toxicity in a penetrant Drosophila model of wild type human α-synuclein neurotoxicity with biochemical analyses and modeling of LRRK2 toxicity in human neurons and transgenic mouse models. RESULTS We demonstrate that Lrrk and α-synuclein interact to promote neuronal degeneration through convergent effects on the actin cytoskeleton and downstream dysregulation of mitochondrial dynamics and function. We find specifically that monomers and dimers of Lrrk efficiently sever actin and promote normal actin dynamics in vivo. Oligomerization of Lrrk, which is promoted by dominant Parkinson's disease-causing mutations, reduces actin severing activity in vitro and promotes excess stabilization of F-actin in vivo. Importantly, a clinically protective Lrrk mutant reduces oligomerization and α-synuclein neurotoxicity. CONCLUSIONS Our findings provide a specific mechanistic link between two key molecules in the pathogenesis of Parkinson's disease, α-synuclein and LRRK2, and suggest potential new approaches for therapy development.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Farah Bardai
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Abby L. Olsen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Kelly M. Lohr
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Ying-Yi Zhang
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| |
Collapse
|
7
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
8
|
Wang D, Tabti R, Elderwish S, Djehal A, Chouha N, Pinot F, Yu P, Nebigil CG, Désaubry L. SFPH proteins as therapeutic targets for a myriad of diseases. Bioorg Med Chem Lett 2020; 30:127600. [PMID: 33035678 PMCID: PMC7536521 DOI: 10.1016/j.bmcl.2020.127600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
The stomatin/prohibitin/flotillin/HflK/HflC (SPFH) domain is present in an evolutionarily conserved family of proteins that regulate a myriad of signaling pathways in archaea, bacteria and eukaryotes. The most studied SPFH proteins, prohibitins, have already been targeted by different families of small molecules to induce anticancer, cardioprotective, anti-inflammatory, antiviral, and antiosteoporotic activities. Ligands of other SPFH proteins have also been identified and shown to act as anesthetics, anti-allodynia, anticancer, and anti-inflammatory agents. These findings indicate that modulators of human or bacterial SPFH proteins can be developed to treat a wide variety of human disorders.
Collapse
Affiliation(s)
- Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Redouane Tabti
- INSERM-University of Strasbourg, Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, Strasbourg, France
| | - Sabria Elderwish
- INSERM-University of Strasbourg, Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, Strasbourg, France
| | - Amel Djehal
- Superior National School Biotechnology Taoufik Khaznadar, Constantine, Algeria
| | - Nora Chouha
- University of Batna 2, Faculty of Biology, Batna, Algeria
| | - Franck Pinot
- University of Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
| | - Peng Yu
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Canan G Nebigil
- INSERM-University of Strasbourg, Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, Strasbourg, France
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; INSERM-University of Strasbourg, Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|
9
|
Ramezani M, Hasani M, Ramezani F, Karimi Abdolmaleki M. Cucurbitacins: A Focus on Cucurbitacin E As A Natural Product and Their Biological Activities. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For the last years, different types of cucurbitacins have been extracted from various species of Cucurbitaceae family. For this review, all related papers were accumulated by searching electronic databases in the English language, including PubMed, Scopus, and Google Scholar. The keywords of cucurbitacin, cucumber anticancer therapy, cytotoxic effects, chemotherapy, and inhibitor effect were searched until February 2020. According to the result of this review, cucurbitacin E as a tetracyclic triterpenes compound, has been exhibited cell cycle arrest, anti-inflammatory and anticancer activities. It showed tumor proliferation prevention, induction of apoptosis or synergistically acts with other established antitumor compounds and cytokines throughout many molecular mechanisms. In a function-structure association manner, cucurbitacin E can inhibit Janus kinas2 (JAK2) phosphorylation, the signal transducer activator of transcription 3 (STAT3) and subsequently block these pathways, which seems to be the main mechanism of its activity. Future studies could target its detection in uninvestigated sources, subsequently its derivatives to improve their anticancer activity.
Collapse
Affiliation(s)
| | | | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
10
|
Risinger AL, Du L. Targeting and extending the eukaryotic druggable genome with natural products: cytoskeletal targets of natural products. Nat Prod Rep 2020; 37:634-652. [PMID: 31764930 PMCID: PMC7797185 DOI: 10.1039/c9np00053d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2014-2019We review recent progress on natural products that target cytoskeletal components, including microtubules, actin, intermediate filaments, and septins and highlight their demonstrated and potential utility in the treatment of human disease. The anticancer efficacy of microtubule targeted agents identified from plants, microbes, and marine organisms is well documented. We highlight new microtubule targeted agents currently in clinical evaluations for the treatment of drug resistant cancers and the accumulating evidence that the anticancer efficacy of these agents is not solely due to their antimitotic effects. Indeed, the effects of microtubule targeted agents on interphase microtubules are leading to their potential for more mechanistically guided use in cancers as well as neurological disease. The discussion of these agents as more targeted drugs also prompts a reevaluation of our thinking about natural products that target other components of the cytoskeleton. For instance, actin active natural products are largely considered chemical probes and non-selective toxins. However, studies utilizing these probes have uncovered aspects of actin biology that can be more specifically targeted to potentially treat cancer, neurological disorders, and infectious disease. Compounds that target intermediate filaments and septins are understudied, but their continued discovery and mechanistic evaluations have implications for numerous therapeutic indications.
Collapse
Affiliation(s)
- April L Risinger
- The University of Texas Health Science Center at San Antonio, Department of Pharmacology, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| | | |
Collapse
|
11
|
Hussain H, Green IR, Saleem M, Khattak KF, Irshad M, Ali M. Cucurbitacins as Anticancer Agents: A Patent Review. Recent Pat Anticancer Drug Discov 2020; 14:133-143. [PMID: 30451116 DOI: 10.2174/1574892813666181119123035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cucurbitacins belong to a group of tetracyclic triterpenoids that display a wide range of biological effects. In the past, numerous cucurbitacins have been isolated from natural sources and many active compounds have been synthesized using the privileged scaffold in order to enhance its cytotoxic effects. OBJECTIVE This review covers patents on the therapeutic effects of natural cucurbitacins and their synthetic analogs published during the past decade. By far, the majority of patents published are related to cancer and Structure-Activity Relationships (SAR) of these compounds are included to lend gravitas to this important class of natural products. METHODS The date about the published patents was downloaded via online open access patent databases. RESULTS Cucurbitacins display significant cytotoxic properties, in particular cucurbitacins B and D which possess very potent effects towards a number of cancer cells. Numerous cucurbitacins isolated from natural sources have been derivatized through chemical modification at the C(2)-OH and C(25)- OH groups. Most importantly, an acyl ester of the C(25)-OH and, iso-propyl, n-propyl and ethyl ether groups of the C(2)-OH demonstrated the most increased cytotoxic activity. CONCLUSION The significant cytotoxic effects of natural and semi-synthetic cucurbitacins make them attractive as new drug candidates. Moreover, cucurbitacins have the capability to form conjugates with other anticancer drugs which will synergistically enhance their anticancer effects. The authors believe that in order to get lead compounds, there should be a greater focus on the synthesis of homodimers, heterodimers, and halo derivatives of cucurbitacins. In the opinion of the authors the analysis of the published patents on the cucurbitacins indicates that these compounds can be developed into a regimen to treat a wide spectrum of cancers.
Collapse
Affiliation(s)
- Hidayat Hussain
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Salle), Germany
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - Muhammad Saleem
- Department of Chemistry, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | | | - Muhammad Irshad
- Department of Chemistry, University of Kotli, Azad Jammu & Kashmir, Pakistan
| | - Maroof Ali
- College of Life Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
12
|
Zhong Y, Xu H, Zhong Y, Zhang X, Zeng T, Li L, Xu G, Li M, Liu J, Yang T. Identification and characterization of the Cucurbitacins, a novel class of small-molecule inhibitors of Tropomyosin receptor kinase a. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:295. [PMID: 31694615 PMCID: PMC6836411 DOI: 10.1186/s12906-019-2709-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Background NGF-TrkA is well known to play a key role in propagating and sustaining pruritogenic signals, which form the pathology of chronic pruritus. Inhibition of NGF-TrkA is a known strategy for the treatment of pruritus. In the present paper, we describe the identification, in vitro characterization, structure–activity analysis, and inhibitory evaluation of a novel TrkA inhibitory scaffold exemplified by Cucurbitacins (Cus). Methods Cus were identified as TrkA inhibitors in a large-scale kinase library screen. To obtain structural models of Cus as TrkA inhibitors, AutoDock was used to explore their binding to TrkA. Furthermore, PC12 cell culture systems have been used to study the effects of Cus and traditional Chinese medicinal plants (Tian Gua Di and bitter gourd leaf) extracts on the kinase activity of TrkA. Results Cus block the phosphorylation of TrkA on several tyrosine sites, including Tyr490, Tyr674/675, and Tyr785, and inhibit downstream Akt and MAPK phosphorylation in response to NGF in PC12 cell model systems. Furthermore, traditional Chinese medicinal plants (Tian Gua Di and bitter gourd leaf) containing Cu extracts were shown to inhibit the phosphorylation of TrkA and Akt. These data reveal mechanisms, at least partly, of the anti-pruritus bioactivity of Cus. Conclusion Taken together, with the recent discovery of the important role of TrkA as a therapeutic target, Cus could be the basis for the design of improved TrkA kinase inhibitors, which could someday help treat pruritus.
Collapse
|
13
|
Li J, Sun K, Muroi M, Gao L, Chang YT, Osada H, Xiang L, Qi J. Cucurbitacin B induces neurogenesis in PC12 cells and protects memory in APP/PS1 mice. J Cell Mol Med 2019; 23:6283-6294. [PMID: 31257716 PMCID: PMC6714235 DOI: 10.1111/jcmm.14514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/13/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Cucurbitacin B (CuB) isolated from Cucumis melo by using a PC12 cell bioassay system exhibited significant nerve growth factor (NGF)‐mimic or NGF‐enhancing activity in PC12 and primary neuron cells. It was also demonstrated pro‐neurogenesis effects in ICR and APP/PS1 mice and improved memory deficit of APP/PS1 mice. Its possible mechanism includes significant induction of the phosphorylation of glucocorticoid receptor (GR), protein kinase C (PKC), phospholipase C (PLC) and inhibition of cofilin. ChemProteoBase profiling, binding assay and cellular thermal shift assay (CETSA) were used to determine the target protein. Results revealed that CuB could affect actin dynamics as an actin inhibitor but did not bind with GR. The protein level of cofilin in PC12 cells after treating 0.3 μM and different temperatures was significantly higher than that of control group. Other neurotrophic signalling pathways, such as TrkA/TrkB, were analysed with specific inhibitors and Western blot. The inhibitors of TrkA, PLC, PKC, Ras, Raf and ERK1/2 significantly decreased the percentage of PC12 cells with neurite outgrowth and shortened the length of neurite outgrowth induced by CuB. CuB significantly induced the phosphorylation of TrkA, ERK and CREB. The phosphorylation of these proteins was obviously decreased by their specific inhibitors. These results suggest that cofilin is a candidate target protein of CuB in PC12 cells and that the GR/PLC/PKC and TrkA/Ras/Raf/ERK signalling pathways play important roles in the neuroprotective effect of CuB.
Collapse
Affiliation(s)
- Jing Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kaiyue Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Makoto Muroi
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Lijuan Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Bryonia�dioica aqueous extract induces apoptosis and G2/M cell cycle arrest in MDA‑MB 231 breast cancer cells. Mol Med Rep 2019; 20:73-80. [DOI: 10.3892/mmr.2019.10220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/01/2019] [Indexed: 11/05/2022] Open
|
15
|
Theochares B, Vohnoutka R, Boumil E, Shea TB. Beneficial and Deleterious Impact of a Nutritional Supplementation for Inhibition of Proliferation of Neuroblastoma in Culture. Nutr Cancer 2019; 71:1345-1354. [PMID: 31058554 DOI: 10.1080/01635581.2019.1604006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neuroblastoma, a cancer of the sympathetic nervous system, primarily affects infants and children ≤10 yr of age. High-risk neuroblastoma is associated with low survival rates and increased risks of treatment-related side-effects. Therefore, effective treatments that increase survival and reduce adverse side-effects are crucial. Cucurbitacin E (CucE), a nutritional supplement shown to have potential as an alternative to chemotherapy, was investigated for potential impact on neuroblastoma alone and in combination with the standard chemotherapeutic agent, paclitaxel, (PAC). CucE and PAC each inhibited proliferation of murine neuroblastoma cells in culture. Combined treatment with CucE and PAC also induced morphological differentiation. However, both differentiation and antiproliferative effects were reversible. Consequently, while nutritional supplementation represents a potential therapeutic approach toward treatment of cancer, certain nutritional/chemotherapeutic combinations may induce transient rather than permanent effects. Transient inhibition of proliferation by nutritional supplementation could inadvertently protect carcinogenic cells from toxicity otherwise induced by a chemotherapeutic agent. Combinatorial treatments involving nutritional supplements should therefore be utilized with caution.
Collapse
Affiliation(s)
- Brittany Theochares
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts, Lowell , One University Avenue , Lowell , Massachusetts , USA
| | - Rishel Vohnoutka
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts, Lowell , One University Avenue , Lowell , Massachusetts , USA
| | - Edward Boumil
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts, Lowell , One University Avenue , Lowell , Massachusetts , USA
| | - Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts, Lowell , One University Avenue , Lowell , Massachusetts , USA
| |
Collapse
|
16
|
Bryce NS, Hardeman EC, Gunning PW, Lock JG. Chemical biology approaches targeting the actin cytoskeleton through phenotypic screening. Curr Opin Chem Biol 2019; 51:40-47. [PMID: 30901618 DOI: 10.1016/j.cbpa.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/29/2022]
Abstract
The actin cytoskeleton is dysregulated in cancer, yet this critical cellular machinery has not translated as a druggable clinical target due to cardio-toxic side-effects. Many actin regulators are also considered undruggable, being structural proteins lacking clear functional sites suitable for targeted drug design. In this review, we discuss opportunities and challenges associated with drugging the actin cytoskeleton through its structural regulators, taking tropomyosins as a target example. In particular, we highlight emerging data acquisition and analysis trends driving phenotypic, imaging-based compound screening. Finally, we consider how the confluence of these trends is now bringing functionally integral machineries such as the actin cytoskeleton, and associated structural regulatory proteins, into an expanded repertoire of druggable targets with previously unexploited clinical potential.
Collapse
Affiliation(s)
- Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia.
| | - John G Lock
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Wang W, Nakashima S, Nakamura S, Oda Y, Matsuda H. Anti-proliferative effect of auriculataoside A on B16 melanoma 4A5 cells by suppression of Cdc42-Rac1-RhoA signaling protein levels. J Nat Med 2019; 73:450-455. [PMID: 30627935 DOI: 10.1007/s11418-018-01278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/27/2018] [Indexed: 01/24/2023]
Abstract
Auriculataoside A, an anthracenone dimer glycoside isolated from Cassia auriculata seed, shows anti-proliferative effects on cell line B16 melanoma 4A5 cells with an IC50 value of 0.82 μM. However, it shows no such effect on normal human dermal fibroblast (HDF) cells. To evaluate the mode of action underlying the anti-proliferative effect of auriculataoside A on cells, we examined changes in whole protein expression after treatment with auriculataoside A and found that the expression Cdc42, RhoA, and Rac1, which are Rho family GTPases, was reduced. Auriculataoside A also arrested the cell cycle at G1 phase. These results suggest that the suppression of the above proteins induced G1 arrest. In addition, auriculataoside A also suppressed the expression of β-catenin and c-Myc proteins. This action of auriculataoside A could be one of the mechanisms underlying its selective anti-proliferative effect on B16 melanoma cells.
Collapse
Affiliation(s)
- Weicheng Wang
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Souichi Nakashima
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Seikou Nakamura
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Yoshimi Oda
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.,N.T.H Co., Ltd., 4F Sky-Ebisu Bldg., 1-8-11 Ebisu, Shibuya-ku, Tokyo, 150-0013, Japan
| | - Hisashi Matsuda
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| |
Collapse
|
18
|
A quantitative proteomic analysis of cofilin phosphorylation in myeloid cells and its modulation using the LIM kinase inhibitor Pyr1. PLoS One 2018; 13:e0208979. [PMID: 30550596 PMCID: PMC6294390 DOI: 10.1371/journal.pone.0208979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/28/2018] [Indexed: 01/10/2023] Open
Abstract
LIM kinases are located at a strategic crossroad, downstream of several signaling pathways and upstream of effectors such as microtubules and the actin cytoskeleton. Cofilin is the only LIM kinases substrate that is well described to date, and its phosphorylation on serine 3 by LIM kinases controls cofilin actin-severing activity. Consequently, LIM kinases inhibition leads to actin cytoskeleton disorganization and blockade of cell motility, which makes this strategy attractive in anticancer treatments. LIMK has also been reported to be involved in pathways that are deregulated in hematologic malignancies, with little information regarding cofilin phosphorylation status. We have used proteomic approaches to investigate quantitatively and in detail the phosphorylation status of cofilin in myeloid tumor cell lines of murine and human origin. Our results show that under standard conditions, only a small fraction (10 to 30% depending on the cell line) of cofilin is phosphorylated (including serine 3 phosphorylation). In addition, after a pharmacological inhibition of LIM kinases, a residual cofilin phosphorylation is observed on serine 3. Interestingly, this 2D gel based proteomic study identified new phosphorylation sites on cofilin, such as threonine 63, tyrosine 82 and serine 108.
Collapse
|
19
|
Song H, Wang Y, Li L, Sui H, Wang P, Wang F. Cucurbitacin E Inhibits Proliferation and Migration of Intestinal Epithelial Cells via Activating Cofilin. Front Physiol 2018; 9:1090. [PMID: 30131725 PMCID: PMC6090878 DOI: 10.3389/fphys.2018.01090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023] Open
Abstract
The proliferation and migration of intestinal epithelial cell is important to the barrier integrity of intestinal epithelium. Cucurbitacin E (CuE) is one of the tetracyclic triterpenoids extracted from the cucurbitaceae that has been shown to inhibit cancer cell growth, tumor angiogenesis and inflammatory response. Nevertheless, the role of Cucurbitacin E in regulating the proliferation and migration of intestinal epithelial cells remain unclear. In this study, the human intestinal epithelial cell line Caco-2 was treated with CuE and the effects of CuE on cell cycle, proliferation, migration and actin dynamics in Caco-2 cells were investigated successively. We found that CuE significantly inhibited the cell proliferation and migration, inducing the cell cycle arrest in G2/M phase and disrupting the actin dynamic balance in Caco-2 cells. Finally, we showed that CuE inhibited cofilin phosphorylation by suppressing the phosphorylation of both LIM kinase (LIMK)1 and LIMK2 in vitro, resulting in the activation of cofilin, which is closely associated with cell proliferation and migration. Therefore, our studies provided the first evidence that CuE inhibited the proliferation and migration of intestinal epithelial cells via activating cofilin, and CuE is a potential candidate in intestinal disease therapy.
Collapse
Affiliation(s)
- Huapei Song
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Li
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hehuan Sui
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pei Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
20
|
Nakashima S, Oda Y, Ogawa Y, Nakamura S, Uno M, Kishimoto M, Yoshikawa M, Matsuda H. Protective Effects of Compounds in Bombax ceiba flower on Benzo[a]pyrene-Induced Cytotoxicity. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The methanolic extract of the flower of Bombax ceiba was found to show protective effects on cytotoxicity induced by benzo[a]pyrene (BaP) in HT1080 cells. We therefore tried to examine and estimate the active constituents. We isolated 16 compounds from the extract, including four butyrolactones and two ascorbic acid derivatives, as well as mangiferin. Among the isolated compounds, a butyrolactone derivative, (-)-loliolide, and two flavonoids, kaempferol 3- O-β-D-glucopyranoside and quercetin 3- O-β-D-glucopyranoside, protected the cells against the BaP-induced cytotoxicity. Quercetin, the aglycone of one of the active constituents, showed a weaker effect than its glycoside. This is the first report of the protective effects of the methanolic extract of B. ceiba and its constituents on BaP-induced cytotoxicity.
Collapse
Affiliation(s)
- Souichi Nakashima
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
- N. T. H. Co., Ltd., 1-8-11 4F Sky-ebisu Bldg., Ebisu, Shibuya-ku, Tokyo 150-0013, Japan
| | - Yoshimi Oda
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
- N. T. H. Co., Ltd., 1-8-11 4F Sky-ebisu Bldg., Ebisu, Shibuya-ku, Tokyo 150-0013, Japan
| | - Yuki Ogawa
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Seikou Nakamura
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Miyako Uno
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Mariko Kishimoto
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Masayuki Yoshikawa
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hisashi Matsuda
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| |
Collapse
|
21
|
Cucurbitacin I inhibits STAT3, but enhances STAT1 signaling in human cancer cells in vitro through disrupting actin filaments. Acta Pharmacol Sin 2018; 39:425-437. [PMID: 29119966 DOI: 10.1038/aps.2017.99] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/09/2017] [Indexed: 12/11/2022] Open
Abstract
STAT1 and STAT3 are two important members of the STAT (signal transducers and activators of transcription) protein family and play opposing roles in regulating cancer cell growth. Suppressing STAT3 and/or enhancing STAT1 signaling are considered to be attractive anticancer strategies. Cucurbitacin I (CuI) isolated from the cucurbitacin family was reported to be an inhibitor of STAT3 signaling and a disruptor of actin cytoskeleton. In this study we investigated the function and mechanisms of CuI in regulating STAT signaling in human cancer cells in vitro. CuI (0.1-10 mmol/L) dose-dependently inhibited the phosphorylation of STAT3, and enhanced the phosphorylation of STAT1 in lung adenocarcinoma A549 cells possibly through disrupting actin filaments. We further demonstrated that actin filaments physically associated with JAK2 and STAT3 in A549 cells and regulated their phosphorylation through two signaling complexes, the IL-6 receptor complex and the focal adhesion complex. Actin filaments also interacted with STAT1 in A549 cells and regulated its dephosphorylation. Taken together, this study reveals the molecular mechanisms of CuI in the regulation of STAT signaling and in a possible inhibition of human cancer cell growth. More importantly, this study uncovers a novel role of actin and actin-associated signaling complexes in regulating STAT signaling.
Collapse
|
22
|
Yang T, Liu J, Yang M, Huang N, Zhong Y, Zeng T, Wei R, Wu Z, Xiao C, Cao X, Li M, Li L, Han B, Yu X, Li H, Zou Q. Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways. Oncotarget 2018; 8:5800-5813. [PMID: 27418139 PMCID: PMC5351590 DOI: 10.18632/oncotarget.10584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/30/2016] [Indexed: 02/05/2023] Open
Abstract
Cucurbitacin B (CuB), a triterpenoid compound isolated from the stems of Cucumis melo, has long been used to treat hepatitis and hepatoma in China. Although its remarkable anti-cancer activities have been reported, the mechanism by which it achieves this therapeutic activity remains unclear. This study was designed to investigate the molecular mechanisms by which CuB inhibits cancer cell proliferation. Our results indicate that CuB is a novel inhibitor of Aurora A in multiple myeloma (MM) cells, arresting cells in the G2/M phase. CuB also inhibited IL-10-induced STAT3 phosphorylation, synergistically increasing the anti-tumor activity of Adriamycin in vitro. CuB induced dephosphorylation of cofilin, resulting in the loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-8. CuB inhibited MM tumor growth in a murine MM model, without host toxicity. In conclusion, these results indicate that CuB interferes with multiple cellular pathways in MM cells. CuB thus represents a promising therapeutic tool for the treatment of MM.
Collapse
Affiliation(s)
- Tai Yang
- School of Pharmacy, Chengdu Medical College, Chengdu, China.,Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Jin Liu
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Mali Yang
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Ning Huang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yueling Zhong
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Ting Zeng
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Rong Wei
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Zhongjun Wu
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Cui Xiao
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Xiaohua Cao
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Minhui Li
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Limei Li
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Bin Han
- Department of Public Health, Chengdu Medical College, Chengdu, China
| | - Xiaoping Yu
- Department of Public Health, Chengdu Medical College, Chengdu, China
| | - Hua Li
- Cancer Center, Chengdu Military General Hospital, Chengdu, China
| | - Qiang Zou
- Department of Immunology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
23
|
Wang Z, Zhu W, Gao M, Wu C, Yang C, Yang J, Wu G, Yang B, Kuang H. Simultaneous determination of cucurbitacin B and cucurbitacin E in rat plasma by UHPLC-MS/MS: A pharmacokinetics study after oral administration of cucurbitacin tablets. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066:63-69. [DOI: 10.1016/j.jchromb.2017.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 12/19/2022]
|
24
|
Dimri M, Bilogan C, Pierce LX, Naegele G, Vasanji A, Gibson I, McClendon A, Tae K, Sakaguchi TF. Three-dimensional structural analysis reveals a Cdk5-mediated kinase cascade regulating hepatic biliary network branching in zebrafish. Development 2017; 144:2595-2605. [PMID: 28720653 DOI: 10.1242/dev.147397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/31/2017] [Indexed: 12/17/2022]
Abstract
The intrahepatic biliary network is a highly branched three-dimensional network lined by biliary epithelial cells, but how its branching patterns are precisely established is not clear. We designed a new computer-based algorithm that quantitatively computes the structural differences of the three-dimensional networks. Utilizing the algorithm, we showed that inhibition of Cyclin-dependent kinase 5 (Cdk5) led to reduced branching in the intrahepatic biliary network in zebrafish. Further, we identified a previously unappreciated downstream kinase cascade regulated by Cdk5. Pharmacological manipulations of this downstream kinase cascade produced a crowded branching defect in the intrahepatic biliary network and influenced actin dynamics in biliary epithelial cells. We generated larvae carrying a mutation in cdk5 regulatory subunit 1a (cdk5r1a), an essential activator of Cdk5. cdk5r1a mutant larvae show similar branching defects as those observed in Cdk5 inhibitor-treated larvae. A small-molecule compound that interferes with the downstream kinase cascade rescued the mutant phenotype. These results provide new insights into branching morphogenesis of the intrahepatic biliary network.
Collapse
Affiliation(s)
- Manali Dimri
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Cassandra Bilogan
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lain X Pierce
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gregory Naegele
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Isabel Gibson
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Allyson McClendon
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kevin Tae
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Takuya F Sakaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
25
|
Wang X, Tanaka M, Peixoto HS, Wink M. Cucurbitacins: elucidation of their interactions with the cytoskeleton. PeerJ 2017; 5:e3357. [PMID: 28584704 PMCID: PMC5452965 DOI: 10.7717/peerj.3357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/26/2017] [Indexed: 01/25/2023] Open
Abstract
Cucurbitacins, a class of toxic tetracyclic triterpenoids in Cucurbitaceae, modulate many molecular targets. Here we investigated the interactions of cucurbitacin B, E and I with cytoskeletal proteins such as microtubule and actin filaments. The effects of cucurbitacin B, E and I on microtubules and actin filaments were studied in living cells (Hela and U2OS) and in vitro using GFP markers, immunofluorescence staining and in vitro tubulin polymerization assay. Cucurbitacin B, E and I apparently affected microtubule structures in living cells and cucurbitacin E inhibited tubulin polymerization in vitro with IC50 value of 566.91 ± 113.5 µM. Cucurbitacin E did not affect the nucleation but inhibited the growth phase and steady state during microtubule assembly in vitro. In addition, cucurbitacin B, E and I all altered mitotic spindles and induced the cell cycle arrest at G2/M phase. Moreover, they all showed potent effects on actin cytoskeleton by affecting actin filaments through the depolymerization and aggregation. The interactions of cucubitacin B, E and I with microtubules and actin filaments present new insights into their modes of action.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Mine Tanaka
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Herbenya Silva Peixoto
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
He X, Gao Q, Qiang Y, Guo W, Ma Y. Cucurbitacin E induces apoptosis of human prostate cancer cells via cofilin-1 and mTORC1. Oncol Lett 2017; 13:4905-4910. [PMID: 28599494 DOI: 10.3892/ol.2017.6086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/21/2016] [Indexed: 01/07/2023] Open
Abstract
Cucurbitacin E is an important member of the cucurbitacin family and exhibits inhibitory effects in various types of cancer. Cucurbitacin is a potential antineoplastic drug; however, its anticancer effect in human prostate cancer (PC) remains unknown. The aim of the present study was to determine whether the effect of cucurbitacin E on the cell viability and apoptosis of the human PC cell line, LNCaP, was mediated by cofilin-1- and mammalian target of rapamycin (mTOR). The results of the present study demonstrated that cucurbitacin E significantly exhibited cytotoxicity, suppressed cell viability (P<0.0001) and induced apoptosis (P=0.0082) in LNCaP cells. In addition, it was demonstrated that treatment with cucurbitacin E significantly induced cofilin-1 (P=0.0031), p-mTOR (P=0.0022), AMP-activated protein kinase (AMPK; P=0.0048), cellular tumor antigen p53 (p53; P=0.0018) and caspase-9 (P=0.0026) protein expression in LNCaP cells, suggesting that cucurbitacin E exerts its effects on LNCaP cells through cofilin-1, mTOR, AMPK, p53 and caspase-9 signaling. These results suggested that cucurbitacin E maybe used as a therapeutic agent in the treatment of human PC.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Urology, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Qi Gao
- Department of Urology, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Yayong Qiang
- Department of Urology, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Wei Guo
- Department of Urology, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Yadong Ma
- Department of Urology, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
27
|
Nakashima S, Ohta T, Nakamura S, Oda Y, Koumoto M, Kashiwazaki E, Kado M, Shimada A, Akita R, Matsuda H. Caffeic Acid Derivatives from Bacopa monniera Plants as Inhibitors of Pancreatic Lipase Activity and their Structural Requirements. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The methanol extract of whole Bacopa monniera plants inhibited pancreatic lipase activity in vitro. From this extract we have reported the isolation of 11 triterpene glycosides and 5 phenylethanoid- and/or phenylpropanoid- glycosides. In this paper, we describe the effects of the methanol extract and/or its constituents on pancreatic lipase activity and the isolation of an active constituent, desrhamnosyl isoacteoside. In addition, the structural requirements for its inhibitory effects were examined. We also examined the effects on the elevation of plasma triglyceride (TG) levels in olive oil loaded mice. The major active constituents, desrhamnosyl isoacteoside and plantainoside B, reduced plasma TG levels in the mice. The inhibitory effects of B. monniera and its constituents on pancreatic lipase activity and plasma TG level are reported for the first time.
Collapse
Affiliation(s)
- Souichi Nakashima
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
- N. T. H. Co., Ltd., 1-8-11 4F Sky-ebisu Bldg., Ebisu, Shibuya-ku, Tokyo 150-0013, Japan
| | - Tomoe Ohta
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Seikou Nakamura
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yoshimi Oda
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
- N. T. H. Co., Ltd., 1-8-11 4F Sky-ebisu Bldg., Ebisu, Shibuya-ku, Tokyo 150-0013, Japan
| | - Mari Koumoto
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Eri Kashiwazaki
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Maiko Kado
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Atsumi Shimada
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Ryogo Akita
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hisashi Matsuda
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| |
Collapse
|
28
|
Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells. Chem Biol Interact 2016; 253:1-9. [PMID: 27106530 DOI: 10.1016/j.cbi.2016.04.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/21/2016] [Accepted: 04/18/2016] [Indexed: 11/21/2022]
Abstract
Cucurbitacin E (CuE) is a triterpenoid with potent anticancer activities while the underlying mechanisms remain elusive. In the present study, the anticancer effects of CuE on 95D lung cancer cells were investigated. CuE decreased cell viability, inhibited colony formation, and increased reactive oxygen species (ROS) in a concentration-dependent manner, which were reversed by N-acetyl-l-cysteine (NAC). CuE induced apoptosis as determined by JC-1 staining, expression of Bcl-2 family proteins, cleavage of caspases, and TUNEL staining. NAC and Ac-DEVD-CHO partially reversed CuE-induced cleavage of caspase-3, caspase-7, and PARP. Furthermore, CuE caused accumulation of autophagic vacuoles and concentration- and time-dependent expression of LC3II protein. Autophagy inhibitors chloroquine and bafilomycin A1 enhanced CuE-induced LC3II expression and cell death. CuE-triggered protein expression of p-AKT, p-mTOR, Beclin-1, and p-ULK1 was partially reversed by NAC pretreatment. In addition, CuE treatment damaged F-actin without affecting β-tubulin as confirmed by immunofluorescence. In conclusion, CuE induced ROS-dependent apoptosis through Bcl-2 family and caspases in 95D lung cancer cells. Furthermore, CuE induced protective autophagy mediated by ROS through AKT/mTOR pathway. This study provides novel roles of ROS in the anticancer effect of CuE.
Collapse
|
29
|
Sari-Hassoun M, Clement MJ, Hamdi I, Bollot G, Bauvais C, Joshi V, Toma F, Burgo A, Cailleret M, Rosales-Hernández MC, Macias Pérez ME, Chabane-Sari D, Curmi PA. Cucurbitacin I elicits the formation of actin/phospho-myosin II co-aggregates by stimulation of the RhoA/ROCK pathway and inhibition of LIM-kinase. Biochem Pharmacol 2015; 102:45-63. [PMID: 26707799 DOI: 10.1016/j.bcp.2015.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cucurbitacins are cytotoxic triterpenoid sterols isolated from plants. One of their earliest cellular effect is the aggregation of actin associated with blockage of cell migration and division that eventually lead to apoptosis. We unravel here that cucurbitacin I actually induces the co-aggregation of actin with phospho-myosin II. This co-aggregation most probably results from the stimulation of the Rho/ROCK pathway and the direct inhibition of the LIMKinase. We further provide data that suggest that the formation of these co-aggregates is independent of a putative pro-oxidant status of cucurbitacin I. The results help to understand the impact of cucurbitacins on signal transduction and actin dynamics and open novel perspectives to use it as drug candidates for cancer research.
Collapse
Affiliation(s)
- Meryem Sari-Hassoun
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France; Laboratoire des Produits Naturels, LAPRONA, Université Abou Bekr Belkaid, Tlemcen 13000, Algeria
| | - Marie-Jeanne Clement
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Imane Hamdi
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | | | | | - Vandana Joshi
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Flavio Toma
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Andrea Burgo
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Michel Cailleret
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatalisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, México D.F. 11340, México
| | - Martha Edith Macias Pérez
- Laboratorio de Biofísica y Biocatalisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, México D.F. 11340, México
| | - Daoudi Chabane-Sari
- Laboratoire des Produits Naturels, LAPRONA, Université Abou Bekr Belkaid, Tlemcen 13000, Algeria
| | - Patrick A Curmi
- Institut National de la Santé et de la Recherche Médicale, UMR1204, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France.
| |
Collapse
|
30
|
Marostica LL, Silva IT, Kratz JM, Persich L, Geller FC, Lang KL, Caro MSB, Durán FJ, Schenkel EP, Simões CMO. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549. Chem Res Toxicol 2015; 28:1949-60. [PMID: 26372186 DOI: 10.1021/acs.chemrestox.5b00153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer.
Collapse
Affiliation(s)
- Lucas Lourenço Marostica
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Izabella Thaís Silva
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Jadel Müller Kratz
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Lara Persich
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Fabiana Cristina Geller
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Karen Luise Lang
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Miguel Soriano Balparda Caro
- Departamento de Química, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Fernando Javier Durán
- UMYMFOR-CONICET, Departamento de Química Orgánica, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Eloir Paulo Schenkel
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina , Campus Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
31
|
Wang L, Li C, Lin Q, Zhang X, Pan H, Xu L, Shi Z, Ouyang D, He X. Cucurbitacin E suppresses cytokine expression in human Jurkat T cells through down-regulating the NF-κB signaling. Acta Biochim Biophys Sin (Shanghai) 2015; 47:459-65. [PMID: 25921411 DOI: 10.1093/abbs/gmv030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/08/2015] [Indexed: 12/15/2022] Open
Abstract
Cucurbitacin E (CucE), a triterpenoid isolated from Cucurbitaceae plants, has been shown to possess an anti-inflammatory or immunosuppressive activity in vitro and in vivo, yet the underlying mechanism has been incompletely understood. The aim of the present study was to explore its effect on cytokine expression and the underlying mechanism in human Jurkat T cells as a cellular model. The results showed that CucE significantly inhibited the production of interleukin-2, tumor necrosis factor-α, and interferon-γ in culture medium of cells treated with phorbol 12,13-dibutyrate (PDB) plus ionomycin (Ion). Furthermore, the mRNA levels of these cytokines in activated Jurkat T cells were also decreased upon CucE treatment, suggesting a potential modulatory effect on the critical signaling pathways for cytokine expression, including nuclear factor-κB (NF-κB) or mitogen-activated protein kinases (MAPKs). In support of its effect on the NF-κB signaling pathway, CucE decreased the phosphorylation levels of inhibitor of κB (IκB) and NF-κB/p65 in PDB + Ion-stimulated cells. Further supporting this, the nuclear translocation of NF-κB/p65 was significantly suppressed in response to PDB plus Ion stimulation in the presence of CucE. The phosphorylation of p38MAPK, c-Jun N-terminal kinase (JNK), and Erk1/2, however, was not decreased or slightly increased at some time points by CucE treatment. Collectively, these data suggest that CucE may exhibit immunosuppressive effect by attenuating critical cytokine expression through down-regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lixian Wang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China Key Laboratory of Physical and Training Adapted Control System, Guangdong Provincial Institute of Sports Science, Guangzhou 510663, China
| | - Chenguang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiuru Lin
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaoyu Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lihui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zijian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Dongyun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xianhui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
32
|
Zha QB, Zhang XY, Lin QR, Xu LH, Zhao GX, Pan H, Zhou D, Ouyang DY, Liu ZH, He XH. Cucurbitacin E Induces Autophagy via Downregulating mTORC1 Signaling and Upregulating AMPK Activity. PLoS One 2015; 10:e0124355. [PMID: 25970614 PMCID: PMC4430304 DOI: 10.1371/journal.pone.0124355] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/01/2015] [Indexed: 12/25/2022] Open
Abstract
Cucurbitacins, the natural triterpenoids possessing many biological activities, have been reported to suppress the mTORC1/p70S6K pathway and to induce autophagy. However, the correlation between such activities is largely unknown. In this study, we addressed this issue in human cancer cells in response to cucurbitacin E (CuE) treatment. Our results showed that CuE induced autophagy as evidenced by the formation of LC3-II and colocalization of punctate LC3 with the lysosomal marker LAMP2 in HeLa and MCF7 cells. However, CuE induced much lower levels of autophagy in ATG5-knocked down cells and failed to induce autophagy in DU145 cells lacking functional ATG5 expression, suggesting the dependence of CuE-induced autophagy on ATG5. Consistent with autophagy induction, mTORC1 activity (as reflected by p70S6K and ULK1S758 phosphorylation) was inhibited by CuE treatment. The suppression of mTORC1 activity was further confirmed by reduced recruitment of mTOR to the lysosome, which is the activation site of mTORC1. In contrast, CuE rapidly activated AMPK leading to increased phosphorylation of its substrates. AMPK activation contributed to CuE-induced suppression of mTORC1/p70S6K signaling and autophagy induction, since AMPK knockdown diminished these effects. Collectively, our data suggested that CuE induced autophagy in human cancer cells at least partly via downregulation of mTORC1 signaling and upregulation of AMPK activity.
Collapse
Affiliation(s)
- Qing-Bing Zha
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Yu Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiu-Ru Lin
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gao-Xiang Zhao
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hao Pan
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dan Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ze-Huan Liu
- College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (ZL); (XH)
| | - Xian-Hui He
- College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (ZL); (XH)
| |
Collapse
|
33
|
Zheng K, Kitazato K, Wang Y, He Z. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol 2015; 42:677-95. [PMID: 25853495 DOI: 10.3109/1040841x.2015.1010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.
Collapse
Affiliation(s)
- Kai Zheng
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China .,c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Kaio Kitazato
- b Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology , Nagasaki University , Nagasaki , Japan , and
| | - Yifei Wang
- c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Zhendan He
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China
| |
Collapse
|
34
|
Hung CM, Chang CC, Lin CW, Chen CC, Hsu YC. GADD45γ induces G2/M arrest in human pharynx and nasopharyngeal carcinoma cells by cucurbitacin E. Sci Rep 2014; 4:6454. [PMID: 25245461 PMCID: PMC4171705 DOI: 10.1038/srep06454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common form of malignant cancer, for which radiotherapy or chemotherapy are the main treatment methods. Cucurbitacin E (CuE) is a natural compound-based drug which from the climbing stem of Cucumic melo L (Guadi). Previously shown to be an antifeedant as well as a potent chemopreventive agent against several types of cancer. The present study, investigated anti-proliferation and cell cycle G2/M arrest induced by CuE in Detroit 562 cells (pharynx carcinoma) and HONE-1 (nasopharyngeal carcinoma) cells. Results indicate that the cytotoxicity is associated with accumulation in G2/M cell-cycle phases. CuE produced cell cycle arrest as well as the downregulation of cyclin B1 and CDC2 expression. In addition, treated cells with CuE and GADD45γ SiRNA that also coincided with GADD45γ gene activation in cell cycle arrest. Both effects increased proportionally with the dose of CuE; however, proliferation inhibition and mitosis delay was dependant on the amount of CuE treatment in the cancer cells.
Collapse
Affiliation(s)
- Chao-Ming Hung
- Department of General Surgery, E-Da Hospital, I-Shou University, 82445, Kaohsiung, Taiwan
| | - Chi-Chang Chang
- Department of Obstetrics & Gynecology, E-Da Hospital, E-Da Hospital/I-Shou University, 82445, Kaohsiung, Taiwan
| | - Chen-Wei Lin
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
| | - Chih-Chen Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, E-Da Hospital/I-Shou University, 82445, Kaohsiung, Taiwan
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
- Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, 71101, Tainan, Taiwan
| |
Collapse
|
35
|
Zhang YT, Xu LH, Lu Q, Liu KP, Liu PY, Ji F, Liu XM, Ouyang DY, He XH. VASP activation via the Gα13/RhoA/PKA pathway mediates cucurbitacin-B-induced actin aggregation and cofilin-actin rod formation. PLoS One 2014; 9:e93547. [PMID: 24691407 PMCID: PMC3972149 DOI: 10.1371/journal.pone.0093547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 03/06/2014] [Indexed: 11/25/2022] Open
Abstract
Cucurbitacin B (CuB), a potent antineoplastic agent of cucurbitacin triterpenoids, induces rapid disruption of actin cytoskeleton and aberrant cell cycle inhibiting carcinogenesis. However, the underlying molecular mechanism of such anticancer effects remains incompletely understood. In this study, we showed that CuB treatment rapidly induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation (i.e. activation) at the Ser157 residue and generated VASP clumps which were co-localized with amorphous actin aggregates prior to the formation of highly-ordered cofilin-actin rods in melanoma cells. Knockdown of VASP or inhibition of VASP activation using PKA-specific inhibitor H89 suppressed CuB-induced VASP activation, actin aggregation and cofilin-actin rod formation. The VASP activation was mediated by cAMP-independent PKA activation as CuB decreased the levels of cAMP while MDL12330A, an inhibitor of adenylyl cyclase, had weak effect on VASP activation. Knockdown of either Gα13 or RhoA not only suppressed VASP activation, but also ameliorated CuB-induced actin aggregation and abrogated cofilin-actin rod formation. Collectively, our studies highlighted that the CuB-induced actin aggregation and cofilin-actin rod formation was mediated via the Gα13/RhoA/PKA/VASP pathway.
Collapse
Affiliation(s)
- Yan-Ting Zhang
- Department of Immunobiology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Qun Lu
- Department of Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, North Carolina, United States of America
| | - Kun-Peng Liu
- Department of Immunobiology, Jinan University, Guangzhou, China
| | - Pei-Yan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fang Ji
- Guangdong Entomological Institute, Guangzhou, China
| | - Xiao-Ming Liu
- Southern China Primate Research Center, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, Jinan University, Guangzhou, China
- * E-mail: (DO); (XH)
| | - Xian-Hui He
- Department of Immunobiology, Jinan University, Guangzhou, China
- * E-mail: (DO); (XH)
| |
Collapse
|
36
|
Georgess D, Mazzorana M, Terrado J, Delprat C, Chamot C, Guasch RM, Pérez-Roger I, Jurdic P, Machuca-Gayet I. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts. Mol Biol Cell 2013; 25:380-96. [PMID: 24284899 PMCID: PMC3907278 DOI: 10.1091/mbc.e13-07-0363] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two-step transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs generated a list of 115 genes potentially involved in bone resorption. Of these, RhoE was investigated. Its role in podosome dynamics is central for OC migration, SZ formation, and, ultimately, bone resorption. The function of osteoclasts (OCs), multinucleated giant cells (MGCs) of the monocytic lineage, is bone resorption. To resorb bone, OCs form podosomes. These are actin-rich adhesive structures that pattern into rings that drive OC migration and into “sealing-zones” (SZs) that confine the resorption lacuna. Although changes in actin dynamics during podosome patterning have been documented, the mechanisms that regulate these changes are largely unknown. From human monocytic precursors, we differentiated MGCs that express OC degradation enzymes but are unable to resorb the mineral matrix. We demonstrated that, despite exhibiting bona fide podosomes, these cells presented dysfunctional SZs. We then performed two-step differential transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs to generate a list of genes implicated in bone resorption. From this list of candidate genes, we investigated the role of Rho/Rnd3. Using primary RhoE-deficient OCs, we demonstrated that RhoE is indispensable for OC migration and bone resorption by maintaining fast actin turnover in podosomes. We further showed that RhoE activates podosome component cofilin by inhibiting its Rock-mediated phosphorylation. We conclude that the RhoE-Rock-cofilin pathway, by promoting podosome dynamics and patterning, is central for OC migration, SZ formation, and, ultimately, bone resorption.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Laboratoire de Biologie Moléculaire de la Cellule, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Departamento Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, 46115 Alfara del Patriarca, Valencia, Spain Plateau Technique Imagerie/Microscopie Facility, SFR Biosciences (UMS3444/US8), Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France Laboratory of Cellular Pathology, 46012 Valencia, Spain Departamento Ciencias Biomédicas-Seminario Salud, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Guo S, Zou J, Wang G. Advances in the proteomic discovery of novel therapeutic targets in cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1259-71. [PMID: 24187485 PMCID: PMC3810204 DOI: 10.2147/dddt.s52216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Clark Atlanta University, Atlanta, GA, USA
| | | | | |
Collapse
|
38
|
Zhang YT, Ouyang DY, Xu LH, Zha QB, He XH. Formation of cofilin-actin rods following cucurbitacin-B-induced actin aggregation depends on slingshot homolog 1-mediated cofilin hyperactivation. J Cell Biochem 2013; 114:2415-29. [DOI: 10.1002/jcb.24587] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/02/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Yan-Ting Zhang
- Department of Immunobiology; Jinan University; Guangzhou; 510632; China
| | - Dong-Yun Ouyang
- Department of Immunobiology; Jinan University; Guangzhou; 510632; China
| | | | - Qing-Bing Zha
- Department of Immunobiology; Jinan University; Guangzhou; 510632; China
| | - Xian-Hui He
- Department of Immunobiology; Jinan University; Guangzhou; 510632; China
| |
Collapse
|
39
|
Gabrielsen M, Schuldt M, Munro J, Borucka D, Cameron J, Baugh M, Mleczak A, Lilla S, Morrice N, Olson MF. Cucurbitacin covalent bonding to cysteine thiols: the filamentous-actin severing protein Cofilin1 as an exemplary target. Cell Commun Signal 2013; 11:58. [PMID: 23945128 PMCID: PMC3751690 DOI: 10.1186/1478-811x-11-58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/06/2013] [Indexed: 12/03/2022] Open
Abstract
Background Cucurbitacins are a class of triterpenoid natural compounds with potent bioactivities that led to their use as traditional remedies, and which continue to attract considerable attention as chemical biology tools and potential therapeutics. One obvious target is the actin-cytoskeleton; treatment with cucurbitacins results in cytoskeletal rearrangements that impact upon motility and cell morphology. Findings Cucurbitacin reacted with protein cysteine thiols as well as dithiothreitol, and we propose that the cucurbitacin mechanism of action is through broad protein thiol modifications that could result in inhibition of numerous protein targets. An example of such a target protein is Cofilin1, whose filamentous actin severing activity is inhibited by cucurbitacin conjugation. Conclusions The implications of these results are that cucurbitacins are unlikely to be improved for selectivity by medicinal chemistry and that their use as chemical biology probes to analyse the role of specific signalling pathways should be undertaken with caution.
Collapse
Affiliation(s)
- Mads Gabrielsen
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Habib L, Khreich N, Jraij A, Abbas S, Magdalou J, Charcosset C, Greige-Gerges H. Preparation and characterization of liposomes incorporating cucurbitacin E, a natural cytotoxic triterpene. Int J Pharm 2013; 448:313-9. [DOI: 10.1016/j.ijpharm.2013.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/27/2022]
|
41
|
The cucurbitacins E, D and I: Investigation of their cytotoxicity toward human chondrosarcoma SW 1353 cell line and their biotransformation in man liver. Toxicol Lett 2013. [DOI: 10.1016/j.toxlet.2012.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Cucurbitacin E exhibits anti-inflammatory effect in RAW 264.7 cells via suppression of NF-κB nuclear translocation. Inflamm Res 2013; 62:461-9. [DOI: 10.1007/s00011-013-0598-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/31/2012] [Accepted: 01/16/2013] [Indexed: 02/01/2023] Open
|
43
|
Biological activities and potential molecular targets of cucurbitacins: a focus on cancer. Anticancer Drugs 2012; 23:777-87. [PMID: 22561419 DOI: 10.1097/cad.0b013e3283541384] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cucurbitacin and its derivatives (cucurbitacins) are a class of highly oxidized tetracyclic triterpenoids. They are widely distributed in the plant kingdom, where they act as heterologous chemical pheromones that protect plants from external biological insults. Their bioactivities first attracted attention in the 1960s. Documented data demonstrate that cucurbitacins possess strong pharmacological properties, such as antitumor, anti-inflammatory, and hepatoprotective effects, etc. Several molecular targets for cucurbitacins have been discovered, such as fibrous-actin, signal transducer and activator of transcription 3, cyclooxygenase-2, etc. The present study summarizes the achievements of the 50 years of research on cucurbitacins. The aim was to systematically analyze their bioactivities with an emphasis on their anticancer effects. Research and development has shed new insight into the beneficial properties of these compounds.
Collapse
|
44
|
Nakamura S. [Search for biofunctional constituents from medicinal foods-elucidation of constituents with anti-proliferation effects and the target molecule from Citrullus colocynthis]. YAKUGAKU ZASSHI 2012; 132:1063-7. [PMID: 23023425 DOI: 10.1248/yakushi.132.1063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many foods are known to have not only nutritive and taste values but also medicinal effects. In Egypt, many medicinal foods have been used for the prevention and treatment of various diseases since ancient. However, in most cases, their effective constituents as well as the mechanism of action remained uncharacterized. In the course of our characterization studies on Egyptian medicinal foods and plants, cucurbitane-type triterpene and related compounds such as cucurbitacin E from the fruit of Citrullus colocynthis and the roots of Bryonia cretica were found to show anti-proliferation effects. We therefore synthesized a biotin-linked cucurbitacin E to isolate target proteins based on affinity for the molecule. As a result, cofilin, which regulates the depolymerization of actin, was isolated and suggested to be a target.
Collapse
|
45
|
Zhu JS, Ouyang DY, Shi ZJ, Xu LH, Zhang YT, He XH. Cucurbitacin B induces cell cycle arrest, apoptosis and autophagy associated with G actin reduction and persistent activation of cofilin in Jurkat cells. Pharmacology 2012; 89:348-6. [PMID: 22699368 DOI: 10.1159/000338757] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/21/2012] [Indexed: 01/11/2023]
Abstract
AIM The present study aimed to explore the antitumor effect and action mechanism of cucurbitacin B (CuB) on human T-cell leukemia Jurkat cells. METHODS Cell proliferation was measured by the MTS assay. Cell cycle distribution, mitochondrial membrane potential and annexin V staining were analyzed using flow cytometry. Western blotting was used to determine the levels of apoptosis- and autophagy-related proteins. RESULTS CuB inhibited the proliferation of Jurkat cells in a dose-dependent manner and induced G 2 /M phase arrest as well as formation of tetraploid cells. Accompanied with these effects, the actin dynamics was disrupted, and cofilin, a key regulator of actin dynamics, was persistently activated (dephosphorylated). Although CuB induced around 10% cells undergoing apoptosis, most of the cells were alive after CuB treatment for 24 h. Induction of autophagy was also evident by accumulation of LC3-II. CuB-induced autophagy seemed to be a prosurvival response, since suppression of CuB-induced autophagy significantly increased the activation of caspase-3. CONCLUSION Our results demonstrated that CuB exhibited antitumor activity in Jurkat cells through induction of cell cycle arrest and apoptosis which was at least partly due to the disruption of actin dynamics.
Collapse
Affiliation(s)
- Jun-Shan Zhu
- Department of Immunobiology, Jinan University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Anti-proliferative effect of 23,24-dihydrocucurbitacin F on human prostate cancer cells through induction of actin aggregation and cofilin-actin rod formation. Cancer Chemother Pharmacol 2012; 70:415-24. [DOI: 10.1007/s00280-012-1921-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
|
47
|
Cucurbitacin E Induces G(2)/M Phase Arrest through STAT3/p53/p21 Signaling and Provokes Apoptosis via Fas/CD95 and Mitochondria-Dependent Pathways in Human Bladder Cancer T24 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:952762. [PMID: 22272214 PMCID: PMC3261502 DOI: 10.1155/2012/952762] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/25/2011] [Accepted: 10/02/2011] [Indexed: 11/28/2022]
Abstract
Cucurbitacin E, a tetracyclic triterpenes compound extracted from cucurbitaceous plants, has been shown to exhibit anticancer and anti-inflammatory activities. The purpose of this study was to elucidate whether cucurbitacin E promotes cell cycle arrest and induces apoptosis in T24 cells and further to explore the underlying molecular mechanisms. The effects of cucurbitacin E on T24 cell's growth and accompanied morphological changes were examined by MTT assay and a phase-contrast microscope. DNA content, mitochondrial membrane potential (ΔΨm) and annexin V/PI staining were determined by flow cytometry. The protein levels were measured by Western blotting. Our results demonstrated that cucurbitacin E-induced G2/M arrest was associated with a marked increase in the levels of p53, p21 and a decrease in phospho-signal transducer and activator of transcription 3 (STAT3), cyclin-dependent kinase 1 (CDK1) and cyclin B. Cucurbitacin E-triggered apoptosis was accompanied with up-regulation of Fas/CD95, truncated BID (t-BID) and a loss of ΔΨm, resulting in the releases of cytochrome c, apoptotic protease activating factor 1 (Apaf-1) and apoptosis-inducing factor (AIF), and sequential activation of caspase-8, caspase-9, and caspase-3. Our findings provided the first evidence that STAT3/p53/p21 signaling, Fas/CD95 and mitochondria-dependent pathways play critical roles in cucurbitacin E-induced G2/M phase arrest and apoptosis of T24 cells.
Collapse
|
48
|
Zhang Y, Ouyang D, Xu L, Ji Y, Zha Q, Cai J, He X. Cucurbitacin B induces rapid depletion of the G-actin pool through reactive oxygen species-dependent actin aggregation in melanoma cells. Acta Biochim Biophys Sin (Shanghai) 2011; 43:556-67. [PMID: 21642275 DOI: 10.1093/abbs/gmr042] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cucurbitacin B (CuB), a triterpenoid compound isolated from Cucurbitaceae plants, has been reported as a promising anti-cancer agent, yet its action mechanism is still controversial. In this study, we explored the potential mechanism of CuB in murine B16F10 melanoma cells. Anti-proliferation and anti-invasion effects were assessed in cultured cells, and in vivo anti-tumor activity was evaluated in a murine subcutaneous melanoma model. Flow cytometry was adopted to analyze cell cycle distribution and reactive oxygen species (ROS) levels. Actin levels were determined by western blot analysis, and the profiles of differential expressed proteins were identified by a quantitative proteomic approach. The results showed that CuB exerted inhibitory effects on cell proliferation, colony formation, as well as migration and invasion potential of the melanoma cells. The growth of subcutaneous melanoma was significantly inhibited in mice treated with CuB when compared with control group. Furthermore, CuB treatment caused rapid cell membrane blebbing and deformation, and induced G(2)/M-phase arrest and formation of multiploid cells. Notably, the G-actin pool was rapidly depleted and actin aggregates were formed quickly after CuB treatment. A number of cytoskeleton-regulatory proteins were differentially regulated. Blockage of ROS production significantly reduced the G-actin depletion ability and the anti-tumor activity of CuB. These findings indicate that CuB induces rapid depletion of the G-actin pool through ROS-dependent actin aggregation in melanoma cells, which may at least partly account for its anti-tumor activity.
Collapse
Affiliation(s)
- Yanting Zhang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Morikawa T, Xu F, Matsuda H, Yoshikawa M. Structures of novel norstilbene dimer, longusone A, and three new stilbene dimers, longusols A, B, and C, with antiallergic and radical scavenging activities from Egyptian natural medicine Cyperus longus. Chem Pharm Bull (Tokyo) 2011; 58:1379-85. [PMID: 20930408 DOI: 10.1248/cpb.58.1379] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The methanolic extract of the whole plant of Cyperus longus originating in Egypt was found to show antiallergic effect on ear passive cutaneous anaphylaxis reactions in mice. By bioassay-guided separation, 11 stilbenes and stilbene dimers including a novel norstilbene dimer, longusone A, and three new stilbene dimers, longusols A, B, and C, were isolated. Their structures were elucidated on the basis of chemical and physicochemical evidence. Among the isolates, longusol B (IC(50)=96 µM), luteolin (3.0 µM), resveratrol (17 µM), piceatannol (24 µM), and cassigarols E (84 µM) and G (84 µM) were found to inhibit the release of β-hexosaminidase, as a marker of antigen-induced degranulations, in rat basophilic leukemia (RBL-2H3) cells. In addition, the methanolic extract and the constituents showed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (SC(50)=22 µg/ml and 2.8-29 µM, respectively).
Collapse
Affiliation(s)
- Toshio Morikawa
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607–8412, Japan
| | | | | | | |
Collapse
|
50
|
Knecht DA, LaFleur RA, Kahsai AW, Argueta CE, Beshir AB, Fenteany G. Cucurbitacin I inhibits cell motility by indirectly interfering with actin dynamics. PLoS One 2010; 5:e14039. [PMID: 21124831 PMCID: PMC2991314 DOI: 10.1371/journal.pone.0014039] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cucurbitacins are plant natural products that inhibit activation of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway by an unknown mechanism. They are also known to cause changes in the organization of the actin cytoskeleton. METHODOLOGY/PRINCIPAL FINDINGS We show that cucurbitacin I potently inhibits the migration of Madin-Darby canine kidney (MDCK) cell sheets during wound closure, as well as the random motility of B16-F1 mouse melanoma cells, but has no effect on movement of Dictyostelium discoideum amoebae. Upon treatment of MDCK or B16-F1 cells with cucurbitacin I, there is a very rapid cessation of motility and gradual accumulation of filamentous actin aggregates. The cellular effect of the compound is similar to that observed when cells are treated with the actin filament-stabilizing agent jasplakinolide. However, we found that, unlike jasplakinolide or phallacidin, cucurbitacin I does not directly stabilize actin filaments. In in vitro actin depolymerization experiments, cucurbitacin I had no effect on the rate of actin filament disassembly at the nanomolar concentrations that inhibit cell migration. At elevated concentrations, the depolymerization rate was also unaffected, although there was a delay in the initiation of depolymerization. Therefore, cucurbitacin I targets some factor involved in cellular actin dynamics other than actin itself. Two candidate proteins that play roles in actin depolymerization are the actin-severing proteins cofilin and gelsolin. Cucurbitacin I possesses electrophilic reactivity that may lead to chemical modification of its target protein, as suggested by structure-activity relationship data. However, mass spectrometry revealed no evidence for modification of purified cofilin or gelsolin by cucurbitacin I. CONCLUSIONS/SIGNIFICANCE Cucurbitacin I results in accumulation of actin filaments in cells by a unique indirect mechanism. Furthermore, the proximal target of cucurbitacin I relevant to cell migration is unlikely to be the same one involved in activation of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (DAK); (GF)
| | - Rebecca A. LaFleur
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Alem W. Kahsai
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Christian E. Argueta
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Anwar B. Beshir
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Gabriel Fenteany
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (DAK); (GF)
| |
Collapse
|