1
|
van der Horst D, Carter-Timofte ME, Danneels A, Silva da Costa L, Kurmasheva N, Thielke AL, Hansen AL, Chorošajev V, Holm CK, Belouzard S, de Weber I, Beny C, Olagnier D. Large-scale deep learning identifies the antiviral potential of PKI-179 and MTI-31 against coronaviruses. Antiviral Res 2024; 231:106012. [PMID: 39332537 DOI: 10.1016/j.antiviral.2024.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global pandemic of Coronavirus Disease (2019) (COVID-19), underscoring the urgency for effective antiviral drugs. Despite the development of different vaccination strategies, the search for specific antiviral compounds remains crucial. Here, we combine machine learning (ML) techniques with in vitro validation to efficiently identify potential antiviral compounds. We overcome the limited amount of SARS-CoV-2 data available for ML using various techniques, supplemented with data from diverse biomedical assays, which enables end-to-end training of a deep neural network architecture. We use its predictions to identify and prioritize compounds for in vitro testing. Two top-hit compounds, PKI-179 and MTI-31, originally identified as Pi3K-mTORC1/2 pathway inhibitors, exhibit significant antiviral activity against SARS-CoV-2 at low micromolar doses. Notably, both compounds outperform the well-known mTOR inhibitor rapamycin. Furthermore, PKI-179 and MTI-31 demonstrate broad-spectrum antiviral activity against SARS-CoV-2 variants of concern and other coronaviruses. In a physiologically relevant model, both compounds show antiviral effects in primary human airway epithelial (HAE) cultures derived from healthy donors cultured in an air-liquid interface (ALI). This study highlights the potential of ML combined with in vitro testing to expedite drug discovery, emphasizing the adaptability of AI-driven approaches across different viruses, thereby contributing to pandemic preparedness.
Collapse
Affiliation(s)
| | | | - Adeline Danneels
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, Lille, 59000, France
| | | | - Naziia Kurmasheva
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Anne L Thielke
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | | | | | - Christian K Holm
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, Lille, 59000, France
| | | | | | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark.
| |
Collapse
|
2
|
Li H, Wen X, Ren Y, Fan Z, Zhang J, He G, Fu L. Targeting PI3K family with small-molecule inhibitors in cancer therapy: current clinical status and future directions. Mol Cancer 2024; 23:164. [PMID: 39127670 DOI: 10.1186/s12943-024-02072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The Phosphatidylinositol-3-kinase (PI3K) family is well-known to comprise three classes of intracellular enzymes. Class I PI3Ks primarily function in signaling by responding to cell surface receptor stimulation, while class II and III are more involved in membrane transport. Under normal physiological conditions, the PI3K signaling network orchestrates cell growth, division, migration and survival. Aberrant activation of the PI3K signaling pathway disrupts cellular activity and metabolism, often marking the onset of cancer. Currently, the Food and Drug Administration (FDA) has approved the clinical use of five class I PI3K inhibitors. These small-molecule inhibitors, which exhibit varying selectivity for different class I PI3K family members, are primarily used in the treatment of breast cancer and hematologic malignancies. Therefore, the development of novel class I PI3K inhibitors has been a prominent research focus in the field of oncology, aiming to enhance potential therapeutic selectivity and effectiveness. In this review, we summarize the specific structures of PI3Ks and their functional roles in cancer progression. Additionally, we critically evaluate small molecule inhibitors that target class I PI3K, with a particular focus on their clinical applications in cancer treatment. Moreover, we aim to analyze therapeutic approaches for different types of cancers marked by aberrant PI3K activation and to identify potential molecular targets amenable to intervention with small-molecule inhibitors. Ultimately, we propose future directions for the development of therapeutic strategies that optimize cancer treatment outcomes by modulating the PI3K family.
Collapse
Affiliation(s)
- Hongyao Li
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yueting Ren
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Brain Science, Faculty of Medicine, Imperial College, London, SW72AZ, UK
| | - Zhichao Fan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China.
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Leilei Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
3
|
Du H, Wei GW, Hou T. Multiscale topology in interactomic network: from transcriptome to antiaddiction drug repurposing. Brief Bioinform 2024; 25:bbae054. [PMID: 38499497 PMCID: PMC10948341 DOI: 10.1093/bib/bbae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 03/20/2024] Open
Abstract
The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies. This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment, bridging the gap between transcriptomic data analysis and drug discovery. We initiated our approach by conducting differential gene expression analysis on addiction-related transcriptomic data to identify key genes. We propose a novel topological differentiation to identify key genes from a protein-protein interaction network derived from DEGs. This method utilizes persistent Laplacians to accurately single out pivotal nodes within the network, conducting this analysis in a multiscale manner to ensure high reliability. Through rigorous literature validation, pathway analysis and data-availability scrutiny, we identified three pivotal molecular targets, mTOR, mGluR5 and NMDAR, for drug repurposing from DrugBank. We crafted machine learning models employing two natural language processing (NLP)-based embeddings and a traditional 2D fingerprint, which demonstrated robust predictive ability in gauging binding affinities of DrugBank compounds to selected targets. Furthermore, we elucidated the interactions of promising drugs with the targets and evaluated their drug-likeness. This study delineates a multi-faceted and comprehensive analytical framework, amalgamating bioinformatics, topological data analysis and machine learning, for drug repurposing in addiction treatment, setting the stage for subsequent experimental validation. The versatility of the methods we developed allows for applications across a range of diseases and transcriptomic datasets.
Collapse
Affiliation(s)
- Hongyan Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
4
|
Dai Q, Sun Q, Ouyang X, Liu J, Jin L, Liu A, He B, Fan T, Jiang Y. Antitumor Activity of s-Triazine Derivatives: A Systematic Review. Molecules 2023; 28:molecules28114278. [PMID: 37298753 DOI: 10.3390/molecules28114278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
1,3,5-triazine derivatives, also called s-triazines, are a series of containing-nitrogen heterocyclic compounds that play an important role in anticancer drug design and development. To date, three s-triazine derivatives, including altretamine, gedatolisib, and enasidenib, have already been approved for refractory ovarian cancer, metastatic breast cancer, and leukemia therapy, respectively, demonstrating that the s-triazine core is a useful scaffold for the discovery of novel anticancer drugs. In this review, we mainly focus on s-triazines targeting topoisomerases, tyrosine kinases, phosphoinositide 3-kinases, NADP+-dependent isocitrate dehydrogenases, and cyclin-dependent kinases in diverse signaling pathways, which have been extensively studied. The medicinal chemistry of s-triazine derivatives as anticancer agents was summarized, including discovery, structure optimization, and biological applications. This review will provide a reference to inspire new and original discoveries.
Collapse
Affiliation(s)
- Qiuzi Dai
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Qinsheng Sun
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Xiaorong Ouyang
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Jinyang Liu
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Liye Jin
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Ahao Liu
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Binsheng He
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
El-Tanani M, Nsairat H, Aljabali AA, Serrano-Aroca-Angel Á, Mishra V, Mishra Y, Naikoo GA, Alshaer W, Tambuwala MM. Role of mammalian target of rapamycin (mTOR) signalling in oncogenesis. Life Sci 2023; 323:121662. [PMID: 37028545 DOI: 10.1016/j.lfs.2023.121662] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
The signalling system known as mammalian target of rapamycin (mTOR) is believed to be required for several biological activities involving cell proliferation. The serine-threonine kinase identified as mTOR recognises PI3K-AKT stress signals. It is well established in the scientific literature that the deregulation of the mTOR pathway plays a crucial role in cancer growth and advancement. This review focuses on the normal functions of mTOR as well as its abnormal roles in cancer development.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Ángel Serrano-Aroca-Angel
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman 11942, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom.
| |
Collapse
|
6
|
De Pascale M, Bissegger L, Tarantelli C, Beaufils F, Prescimone A, Mohamed Seid Hedad H, Kayali O, Orbegozo C, Raguž L, Schaefer T, Hebeisen P, Bertoni F, Wymann MP, Borsari C. Investigation of morpholine isosters for the development of a potent, selective and metabolically stable mTOR kinase inhibitor. Eur J Med Chem 2023; 248:115038. [PMID: 36634458 DOI: 10.1016/j.ejmech.2022.115038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022]
Abstract
Upregulation of mechanistic target of rapamycin (mTOR) signaling drives various types of cancers and neurological diseases. Rapamycin and its analogues (rapalogs) are first generation mTOR inhibitors, and selectively block mTOR complex 1 (TORC1) by an allosteric mechanism. In contrast, second generation ATP-binding site inhibitors of mTOR kinase (TORKi) target both TORC1 and TORC2. Here, we explore 3,6-dihydro-2H-pyran (DHP) and tetrahydro-2H-pyran (THP) as isosteres of the morpholine moiety to unlock a novel chemical space for TORKi generation. A library of DHP- and THP-substituted triazines was prepared, and molecular modelling provided a rational for a structure activity relationship study. Finally, compound 11b [5-(4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazin-2-yl)-4-(difluoromethyl)pyridin-2-amine] was selected due its potency and selectivity for mTOR kinase over the structurally related class I phosphoinositide 3-kinases (PI3Ks) isoforms. 11b displayed high metabolic stability towards CYP1A1 degradation, which is of advantage in drug development. After oral administration to male Sprague Dawley rats, 11b reached high concentrations both in plasma and brain, revealing an excellent oral bioavailability. In a metabolic stability assay using human hepatocytes, 11b was more stable than PQR620, the first-in-class brain penetrant TORKi. Compound 11b also displayed dose-dependent anti-proliferative activity in splenic marginal zone lymphoma (SMZL) cell lines as single agent and when combined with BCL2 inhibition (venetoclax). Our results identify the THP-substituted triazine core as a novel scaffold for the development of metabolically stable TORKi for the treatment of chronic diseases and cancers driven by mTOR deregulation and requiring drug distribution also to the central nervous system.
Collapse
Affiliation(s)
- Martina De Pascale
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Lukas Bissegger
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Florent Beaufils
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Alessandro Prescimone
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058, Basel, Switzerland
| | | | - Omar Kayali
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Clara Orbegozo
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Luka Raguž
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Thorsten Schaefer
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Paul Hebeisen
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Matthias P Wymann
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland.
| | - Chiara Borsari
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
7
|
Yuan Y, Long H, Zhou Z, Fu Y, Jiang B. PI3K-AKT-Targeting Breast Cancer Treatments: Natural Products and Synthetic Compounds. Biomolecules 2023; 13:biom13010093. [PMID: 36671478 PMCID: PMC9856042 DOI: 10.3390/biom13010093] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. The high incidence of breast cancer, which is continuing to rise, makes treatment a significant challenge. The PI3K-AKT pathway and its downstream targets influence various cellular processes. In recent years, mounting evidence has shown that natural products and synthetic drugs targeting PI3K-AKT signaling have the potential to treat breast cancer. In this review, we discuss the role of the PI3K-AKT signaling pathway in the occurrence and development of breast cancer and highlight PI3K-AKT-targeting natural products and drugs in clinical trials for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yeqin Yuan
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Huizhi Long
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ziwei Zhou
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuting Fu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Binyuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Correspondence:
| |
Collapse
|
8
|
Dai M, Chen S, Teng X, Chen K, Cheng W. KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. J Cancer 2022; 13:3209-3220. [PMID: 36118526 PMCID: PMC9475360 DOI: 10.7150/jca.76695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors, with a 5-year survival rate of less than 10%. At present, the comprehensive treatment based on surgery, radiotherapy and chemotherapy has encountered a bottleneck, and targeted immunotherapy turns to be the direction of future development. About 90% of PDAC patients have KRAS mutations, and KRAS has been widely used in the diagnosis, treatment, and prognosis of PDAC in recent years. With the development of liquid biopsy and gene testing, KRAS is expected to become a new biomarker to assist the stratification and prognosis of PDAC patients. An increasing number of small molecule inhibitors acting on the KRAS pathway are being developed and put into the clinic, providing more options for PDAC patients.
Collapse
Affiliation(s)
- Manxiong Dai
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Shaofeng Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Xiong Teng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Kang Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Xiangyue Hospital Affiliated to Hunan Institute of Parasitic Diseases, National Clinical Center for Schistosomiasis Treatment, Yueyang 414000, Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| |
Collapse
|
9
|
Xu S, Sun X, Luo L, Yang Y, Guo Q, Tang S, Jiang Z, Li Y, Han J, Gan W, Yang F, Zhang X, Liu Y, Sun C, He J, Liu M, Zuo D, Zhu W, Wu Y. XS-2, a novel potent dual PI3K/mTOR inhibitor, exhibits high in vitro and in vivo anti-breast cancer activity and low toxicity with the potential to inhibit the invasion and migration of triple-negative breast cancer. Biomed Pharmacother 2022; 155:113537. [PMID: 36113258 DOI: 10.1016/j.biopha.2022.113537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022] Open
Abstract
Breast cancer has become the most commonly diagnosed cancer, surpassing lung cancer, with 2.26 million new breast cancers worldwide in 2020. Hence, there is an urgent need to develop effective molecularly targeted therapeutic drugs to treat breast cancer. In this paper, we designed, synthesized and screened a novel thiophene-triazine derivative, XS-2, as a potent dual PI3K/mTOR inhibitor for the treatment of breast cancer. Also, XS-2 was found to be potentially effective against triple-negative breast cancer (TNBC) in vitro during the investigation. We evaluated the in vitro inhibitory effect of XS-2 on 10 cancer cell lines by MTT and 6 kinases to investigated its in vivo antitumor activity in MCF-7 xenograft tumor-bearing BALB/c nude mice. In addition, the in vitro/in vivo toxicity to mice was also assessed by hemolytic toxicity, H&E staining and blood biochemical analysis. In order to investigate the antitumor mechanism of XS-2, a series of experiments were carried out in vitro/in vivo animal model and molecular biological levels such as the cell cycle and the apoptosis assay, real-time PCR, western blot, docking and molecular simulations analysis, etc. What's more, wound healing assay, Transwell and Western Blot were applied to explore the ability of XS-2 to inhibit the cell invasion and migration. The results showed that XS-2 exhibited strong antitumor activity both in vitro and in vivo. The inhibitory activities of XS-2 on ten cancer cell lines were ranging from 1.07 ± 0.11 to 0.002 ± 0.001 μM, which were 1565 times better than that of the lead compound GDC-0941, inhibitory activities against PI3Kα and mTOR kinases were 291.0 and 60.8 nM, respectively. Notably, XS-2 not only showed significant in vivo antitumor activity and low toxicity, with the tumor inhibition rate of 57.0 %, but also exhibited strong inhibitory in the expression of related proteins of PI3K pathway in tumor tissues. In addition, XS-2 significantly inhibited breast cancer MCF-7 and MDA-MB-231 cells in a concentration- and time-dependent manner, and inhibited the migration and invasion ability of MDA-MB-231 and MCF-7 cells. More than that, XS-2 could inhibit the increase of the expression levels of N-cadherin and vimentin upregulated by EGF and reversed the E-cadherin expression down regulated by EGF, resulting in inhibiting EMT in MCF-7 and MDA-MB-231 cells. The results showed that XS-2 was expected to be successfully developed as a high-efficiency and low-toxicity breast cancer therapeutic drug with the potential to inhibit the invasion and migration of TNBC. This provides a new research idea for the treatment of TNBC, which is of great significance.
Collapse
Affiliation(s)
- Shan Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Xin Sun
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Leixuan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Yang Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Qiuyan Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Sheng Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Zhiyan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Yuzhen Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jiaqian Han
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Wenhui Gan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Feiyi Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Yijun Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Chuanchuan Sun
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jie He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Meng Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
10
|
Garsi JB, Guggari S, Deis T, Ma M, Hocine S, Hanessian S. 2-Oxa-5-azabicyclo[2.2.1]heptane as a Platform for Functional Diversity: Synthesis of Backbone-Constrained γ-Amino Acid Analogues. J Org Chem 2022; 87:11261-11273. [PMID: 35900070 DOI: 10.1021/acs.joc.2c01338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We communicate a versatile synthetic approach to C-3 disubstituted 2-oxa-5-azabicyclo[2.2.1]heptanes as carbon-atom bridged morpholines, starting with 4R-hydroxy-l-proline as a chiron. Attaching an acetic acid moiety on the C-3 carbon of the 2-oxa-5-azabicyclo[2.2.1]heptane core reveals the framework of an embedded γ-amino butyric acid (GABA). Variations in the nature of the substituent on the tertiary C-3 atom with different alkyls or aryls led to backbone-constrained analogues of the U.S. Food and Drug Administration-approved drugs baclofen and pregabalin.
Collapse
Affiliation(s)
- Jean-Baptiste Garsi
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Solène Guggari
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Thomas Deis
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Myles Ma
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Sofiane Hocine
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
11
|
Oleksak P, Nepovimova E, Chrienova Z, Musilek K, Patocka J, Kuca K. Contemporary mTOR inhibitor scaffolds to diseases breakdown: A patent review (2015–2021). Eur J Med Chem 2022; 238:114498. [DOI: 10.1016/j.ejmech.2022.114498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
|
12
|
Arora M, Kutinová Canová N, Farghali H. mTOR as an eligible molecular target for possible pharmacological treatment of nonalcoholic steatohepatitis. Eur J Pharmacol 2022; 921:174857. [DOI: 10.1016/j.ejphar.2022.174857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
|
13
|
Borsari C, Wymann MP. Targeting Phosphoinositide 3-Kinase - Five Decades of Chemical Space Exploration. Chimia (Aarau) 2021; 75:1037-1044. [PMID: 34920774 DOI: 10.2533/chimia.2021.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) plays a key role in a plethora of physiologic processes and controls cell growth, metabolism, immunity, cardiovascular and neurological function, and more. The discovery of wort-mannin as the first potent PI3K inhibitor (PI3Ki) in the 1990s provided rapid identification of PI3K-dependent processes, which drove the discovery of the PI3K/protein kinase B (PKB/Akt)/target of rapamycin (mTOR) pathway. Genetic mouse models and first PI3K isoform-specific inhibitors pinpointed putative therapeutic applications. The recognition of PI3K as target for cancer therapy drove subsequently drug development. Here we provide a brief journey through the emerging roles of PI3K to the development of preclinical and clinical PI3Ki candidates.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland;,
| |
Collapse
|
14
|
Borsari C, De Pascale M, Wymann MP. Chemical and Structural Strategies to Selectively Target mTOR Kinase. ChemMedChem 2021; 16:2744-2759. [PMID: 34114360 PMCID: PMC8518124 DOI: 10.1002/cmdc.202100332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/08/2022]
Abstract
Dysregulation of the mechanistic target of rapamycin (mTOR) pathway is implicated in cancer and neurological disorder, which identifies mTOR inhibition as promising strategy for the treatment of a variety of human disorders. First-generation mTOR inhibitors include rapamycin and its analogues (rapalogs) which act as allosteric inhibitors of TORC1. Structurally unrelated, ATP-competitive inhibitors that directly target the mTOR catalytic site inhibit both TORC1 and TORC2. Here, we review investigations of chemical scaffolds explored for the development of highly selective ATP-competitive mTOR kinase inhibitors (TORKi). Extensive medicinal chemistry campaigns allowed to overcome challenges related to structural similarity between mTOR and the phosphoinositide 3-kinase (PI3K) family. A broad region of chemical space is covered by TORKi. Here, the investigation of chemical substitutions and physicochemical properties has shed light on the compounds' ability to cross the blood brain barrier (BBB). This work provides insights supporting the optimization of TORKi for the treatment of cancer and central nervous system disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Martina De Pascale
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Matthias P. Wymann
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| |
Collapse
|
15
|
Iksen, Pothongsrisit S, Pongrakhananon V. Targeting the PI3K/AKT/mTOR Signaling Pathway in Lung Cancer: An Update Regarding Potential Drugs and Natural Products. Molecules 2021; 26:4100. [PMID: 34279440 PMCID: PMC8271933 DOI: 10.3390/molecules26134100] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common cancers and has a high mortality rate. Due to its high incidence, the clinical management of the disease remains a major challenge. Several reports have documented a relationship between the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway and lung cancer. The recognition of this pathway as a notable therapeutic target in lung cancer is mainly due to its central involvement in the initiation and progression of the disease. Interest in using natural and synthetic medications to target these signaling pathways has increased in recent years, with promising results in vitro, in vivo, and in clinical trials. In this review, we focus on the current understanding of PI3K/AKT/mTOR signaling in tumor development. In addition to the signaling pathway, we highlighted the therapeutic potential of recently developed PI3K/AKT/mTOR inhibitors based on preclinical and clinical trials.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan 20131, Indonesia
| | - Sutthaorn Pothongsrisit
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Cluster, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
16
|
Borsari C, Keles E, Rageot D, Treyer A, Bohnacker T, Bissegger L, De Pascale M, Melone A, Sriramaratnam R, Beaufils F, Hamburger M, Hebeisen P, Löscher W, Fabbro D, Hillmann P, Wymann MP. 4-(Difluoromethyl)-5-(4-((3 R,5 S)-3,5-dimethylmorpholino)-6-(( R)-3-methylmorpholino)-1,3,5-triazin-2-yl)pyridin-2-amine (PQR626), a Potent, Orally Available, and Brain-Penetrant mTOR Inhibitor for the Treatment of Neurological Disorders. J Med Chem 2020; 63:13595-13617. [PMID: 33166139 DOI: 10.1021/acs.jmedchem.0c00620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is hyperactivated in cancer and neurological disorders. Rapalogs and mTOR kinase inhibitors (TORKi) have recently been applied to alleviate epileptic seizures in tuberous sclerosis complex (TSC). Herein, we describe a pharmacophore exploration to identify a highly potent, selective, brain penetrant TORKi. An extensive investigation of the morpholine ring engaging the mTOR solvent exposed region led to the discovery of PQR626 (8). 8 displayed excellent brain penetration and was well-tolerated in mice. In mice with a conditionally inactivated Tsc1 gene in glia, 8 significantly reduced the loss of Tsc1-induced mortality at 50 mg/kg p.o. twice a day. 8 overcomes the metabolic liabilities of PQR620 (52), the first-in-class brain penetrant TORKi showing efficacy in a TSC mouse model. The improved stability in human hepatocytes, excellent brain penetration, and efficacy in Tsc1GFAPCKO mice qualify 8 as a potential therapeutic candidate for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Erhan Keles
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Denise Rageot
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Andrea Treyer
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Thomas Bohnacker
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Lukas Bissegger
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Martina De Pascale
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Anna Melone
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Rohitha Sriramaratnam
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Florent Beaufils
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Paul Hebeisen
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany
| | - Doriano Fabbro
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Petra Hillmann
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
17
|
Chen Y, Zhou X. Research progress of mTOR inhibitors. Eur J Med Chem 2020; 208:112820. [PMID: 32966896 DOI: 10.1016/j.ejmech.2020.112820] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a highly conserved Serine/Threonine (Ser/Thr) protein kinase, which belongs to phosphatidylinositol-3-kinase-related kinase (PIKK) protein family. mTOR exists as two types of protein complex: mTORC1 and mTORC2, which act as central controller regulating processes of cell metabolism, growth, proliferation, survival and autophagy. The mTOR inhibitors block mTOR signaling pathway, producing anti-inflammatory, anti-proliferative, autophagy and apoptosis induction effects, thus mTOR inhibitors are mainly used in cancer therapy. At present, mTOR inhibitors are divided into four categories: Antibiotic allosteric mTOR inhibitors (first generation), ATP-competitive mTOR inhibitors (second generation), mTOR/PI3K dual inhibitors (second generation) and other new mTOR inhibitors (third generation). In this article, these four categories of mTOR inhibitors and their structures, properties and some clinical researches will be introduced. Among them, we focus on the structure of mTOR inhibitors and try to analyze the structure-activity relationship. mTOR inhibitors are classified according to their chemical structure and their contents are introduced systematically. Moreover, some natural products that have direct or indirect mTOR inhibitory activities are introduced together. In this article, we analyzed the target, binding mode and structure-activity relationship of each generation of mTOR inhibitors and proposed two hypothetic scaffolds (the inverted-Y-shape scaffold and the C-shape scaffold) for the second generation of mTOR inhibitors. These findings may provide some help or reference for drug designing, drug modification or the future development of mTOR inhibitor.
Collapse
Affiliation(s)
- Yifan Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaoping Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
18
|
Hocine S, Berger G, Hanessian S. Design and Synthesis of Backbone-Fused, Conformationally Constrained Morpholine-Proline Chimeras. J Org Chem 2020; 85:4237-4247. [PMID: 32134267 DOI: 10.1021/acs.joc.9b03413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report the synthesis of two novel bridged morpholine-proline chimeras 4 and 5, which represent rigid conformationally locked three-dimensional structures wherein the lone pairs of electrons on oxygen and nitrogen are oriented in spatially different "east-west" and "north-west" directions, respectively. In combination with the presence of a carboxylic acid, the electronic features of these compounds may be useful in the context of peptidomimetic design of biologically relevant compounds. Quantitative estimates of the basicity of the nitrogen atoms were obtained using conceptual density functional theory analysis.
Collapse
Affiliation(s)
- Sofiane Hocine
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, Quebec H3C 3J7, Canada
| | - Gilles Berger
- Microbiology, Bioorganic & Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Boulevard du Triomphe, Brussels 1050, Belgium
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
19
|
Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorg Chem 2020; 96:103578. [PMID: 31978684 DOI: 10.1016/j.bioorg.2020.103578] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
Morpholine is a versatile moiety, a privileged pharmacophore and an outstanding heterocyclic motif with wide ranges of pharmacological activities due to different mechanisms of action. The ability of morpholine to enhance the potency of the molecule through molecular interactions with the target protein (kinases) or to modulate the pharmacokinetic properties propelled medicinal chemists and researchers to synthesize morpholine ring by the efficient ways and to incorporate this moiety to develop various lead compounds with diverse therapeutic activities. The present review primarily focused on discussing the most promising synthetic leads containing morpholine ring along with structure-activity relationship (SAR) to reveal the active pharmacophores accountable for anticancer, anti-inflammatory, antiviral, anticonvulsant, antihyperlipidemic, antioxidant, antimicrobial and antileishmanial activity. This review outlines some of the recent effective chemical synthesis for morpholine ring. The review also highlighted the metabolic liability of some clinical drugs containing this nucleus and various researches on modified morpholine to enhance the metabolic stability of drugs as well. Drugs bearing morpholine ring and those under clinical trials are also mentioned with the role of morpholine and their mechanism of action. This review will provide the necessary knowledge base to the medicinal chemists in making strategic structural changes in designing morpholine derivatives.
Collapse
|
20
|
Functional Impacts of the BRCA1-mTORC2 Interaction in Breast Cancer. Int J Mol Sci 2019; 20:ijms20235876. [PMID: 31771139 PMCID: PMC6928641 DOI: 10.3390/ijms20235876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
Deleterious mutations in Breast Cancer 1 (BRCA1) are associated with an increased risk of breast and ovarian cancer. Mutations in the tandem BRCA1 C-terminal (tBRCT) protein domain disrupt critical protein interactions required for the faithful repair of DNA through homologous recombination, which contributes to oncogenesis. Our studies have identified RICTOR, PRR5, and SIN1 subunits of the mammalian target of rapamycin complex 2 (mTORC2) as interacting partners with the tBRCT domain of BRCA1 leading to the disruption of the mTORC2 complex. However, the interplay between mTORC2 signaling and BRCA1 function in the DNA damage response (DDR) remains to be determined. In this study, we used protein interaction assays to determine the binary interactions between the tBRCT domain and mTORC2 subunits, evaluated the impact of mTOR inhibition on the transcriptional function of the tBRCT, evaluated the impact of mTOR signaling on BRCA1 recruitment to DNA damage-induced foci and determined the breast cancer cell line response to mTOR inhibition dependent upon BRCA1 expression and mutation. This study determined that PRR5, RICTOR, and SIN1 could each independently interact with the BRCA1 tBRCT. Inhibition of mTORC1, but not mTORC1/2, increases BRCA1 transcriptional activation activity. Treatment with pan-mTOR inhibitor PP242 diminishes DNA damage-induced γH2AX and BRCA1 foci formation. Breast cancer cells lacking expression of functional BRCA1 are more sensitive to mTOR inhibitors. These data suggest that mTOR signaling is required for BRCA1 response to DNA damage and breast cancer cells lacking BRCA1 are more sensitive to pan-mTOR inhibition. This work suggests chemotherapeutic strategies using mTOR inhibitors could be tailored for patients that lack functional BRCA1.
Collapse
|
21
|
Chhatbar DM, Chaube UJ, Vyas VK, Bhatt HG. CoMFA, CoMSIA, Topomer CoMFA, HQSAR, molecular docking and molecular dynamics simulations study of triazine morpholino derivatives as mTOR inhibitors for the treatment of breast cancer. Comput Biol Chem 2019; 80:351-363. [DOI: 10.1016/j.compbiolchem.2019.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
|
22
|
Patidar K, Panwar U, Vuree S, Sweta J, Sandhu MK, Nayarisseri A, Singh SK. An In silico Approach to Identify High Affinity Small Molecule
Targeting m-TOR Inhibitors for the Clinical Treatment of
Breast Cancer. Asian Pac J Cancer Prev 2019; 20:1229-1241. [PMID: 31030499 PMCID: PMC6948900 DOI: 10.31557/apjcp.2019.20.4.1229] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most frequent malignancy among women. It is a heterogeneous disease with different subtypes defined by its hormone receptor. A hormone receptor is mainly concerned with the progression of the PI3K/AKT/mTOR pathway which is often dysregulated in breast cancer. This is a major signaling pathway that controls the activities such as cell growth, cell division, and cell proliferation. The present study aims to suppress mTOR protein by its various inhibitors and to select one with the highest binding affinity to the receptor protein. Out of 40 inhibitors of mTOR against breast cancer, SF1126 was identified to have the best docking score of -8.705, using Schrodinger Suite which was further subjected for high throughput screening to obtain best similar compound using Lipinski’s filters. The compound obtained after virtual screening, ID: ZINC85569445 is seen to have the highest affinity with the target protein mTOR. The same result based on the binding free energy analysis using MM-GBSA showed that the compound ZINC85569445 to have the the highest binding free energy. The next study of interaction between the ligand and receptor protein with the pharmacophore mapping showed the best conjugates, and the ZINC85569445 can be further studied for future benefits of treatment of breast cancer.
Collapse
Affiliation(s)
- Khushboo Patidar
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. ,
| | - Umesh Panwar
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi,Tamil Nadu, India
| | - Sugunakar Vuree
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Jajoriya Sweta
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. ,
| | - Manpreet Kaur Sandhu
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. ,
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India. , ,Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi,Tamil Nadu, India.,Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd., Indore, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi,Tamil Nadu, India
| |
Collapse
|
23
|
Mitchell R, Hopcroft LEM, Baquero P, Allan EK, Hewit K, James D, Hamilton G, Mukhopadhyay A, O’Prey J, Hair A, Melo JV, Chan E, Ryan KM, Maguer-Satta V, Druker BJ, Clark RE, Mitra S, Herzyk P, Nicolini FE, Salomoni P, Shanks E, Calabretta B, Holyoake TL, Helgason GV. Targeting BCR-ABL-Independent TKI Resistance in Chronic Myeloid Leukemia by mTOR and Autophagy Inhibition. J Natl Cancer Inst 2018; 110:467-478. [PMID: 29165716 PMCID: PMC5946859 DOI: 10.1093/jnci/djx236] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/07/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
Background Imatinib and second-generation tyrosine kinase inhibitors (TKIs) nilotinib and dasatinib have statistically significantly improved the life expectancy of chronic myeloid leukemia (CML) patients; however, resistance to TKIs remains a major clinical challenge. Although ponatinib, a third-generation TKI, improves outcomes for patients with BCR-ABL-dependent mechanisms of resistance, including the T315I mutation, a proportion of patients may have or develop BCR-ABL-independent resistance and fail ponatinib treatment. By modeling ponatinib resistance and testing samples from these CML patients, it is hoped that an alternative drug target can be identified and inhibited with a novel compound. Methods Two CML cell lines with acquired BCR-ABL-independent resistance were generated following culture in ponatinib. RNA sequencing and gene ontology (GO) enrichment were used to detect aberrant transcriptional response in ponatinib-resistant cells. A validated oncogene drug library was used to identify US Food and Drug Administration-approved drugs with activity against TKI-resistant cells. Validation was performed using bone marrow (BM)-derived cells from TKI-resistant patients (n = 4) and a human xenograft mouse model (n = 4-6 mice per group). All statistical tests were two-sided. Results We show that ponatinib-resistant CML cells can acquire BCR-ABL-independent resistance mediated through alternative activation of mTOR. Following transcriptomic analysis and drug screening, we highlight mTOR inhibition as an alternative therapeutic approach in TKI-resistant CML cells. Additionally, we show that catalytic mTOR inhibitors induce autophagy and demonstrate that genetic or pharmacological inhibition of autophagy sensitizes ponatinib-resistant CML cells to death induced by mTOR inhibition in vitro (% number of colonies of control[SD], NVP-BEZ235 vs NVP-BEZ235+HCQ: 45.0[17.9]% vs 24.0[8.4]%, P = .002) and in vivo (median survival of NVP-BEZ235- vs NVP-BEZ235+HCQ-treated mice: 38.5 days vs 47.0 days, P = .04). Conclusion Combined mTOR and autophagy inhibition may provide an attractive approach to target BCR-ABL-independent mechanism of resistance.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy/drug effects
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate/administration & dosage
- Imidazoles/administration & dosage
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Molecular Targeted Therapy/methods
- Protein Kinase Inhibitors/therapeutic use
- Pyridazines/administration & dosage
- Pyrimidines/administration & dosage
- Quinolines/administration & dosage
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Rebecca Mitchell
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lisa E M Hopcroft
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Pablo Baquero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Elaine K Allan
- Scottish National Blood Transfusion Service, Gartnavel General Hospital, Glasgow, UK
| | - Kay Hewit
- Cancer Research UK, Beatson Institute, Garscube Estate, Glasgow, UK
| | - Daniel James
- Cancer Research UK, Beatson Institute, Garscube Estate, Glasgow, UK
| | - Graham Hamilton
- Glasgow Polyomics, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Arunima Mukhopadhyay
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim O’Prey
- Cancer Research UK, Beatson Institute, Garscube Estate, Glasgow, UK
| | - Alan Hair
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Junia V Melo
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia and Imperial College, London, UK
| | - Edmond Chan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Kevin M Ryan
- Cancer Research UK, Beatson Institute, Garscube Estate, Glasgow, UK
| | | | - Brian J Druker
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR
| | - Richard E Clark
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Subir Mitra
- Department of Haematology, Milton Keynes Hospital NHS Foundation Trust, Milton Keynes, UK
| | - Pawel Herzyk
- Glasgow Polyomics, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Franck E Nicolini
- Hématologie Clinique 1G, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, Paul O'Gorman Building, London, UK
| | - Emma Shanks
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia and Imperial College, London, UK
| | - Bruno Calabretta
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Tessa L Holyoake
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Yu T, Li N, Wu C, Guan A, Li Y, Peng Z, He M, Li J, Gong Z, Huang L, Gao B, Hao D, Sun J, Pan Y, Shen L, Chan C, Lu X, Yuan H, Li Y, Li J, Chen S. Discovery of Pyridopyrimidinones as Potent and Orally Active Dual Inhibitors of PI3K/mTOR. ACS Med Chem Lett 2018. [PMID: 29541370 DOI: 10.1021/acsmedchemlett.8b00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The identification and lead optimization of a series of pyridopyrimidinone derivatives are described as a novel class of efficacious dual PI3K/mTOR inhibitors, resulting in the discovery of 31. Compound 31 exhibited high enzyme activity against PI3K and mTOR, potent suppression of Akt and p70s6k phosphorylation in cell assays, and good pharmacokinetic profile. Furthermore, compound 31 demonstrated in vivo efficacy in a PC-3M tumor xenograft model.
Collapse
Affiliation(s)
- Tao Yu
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Ning Li
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Chengde Wu
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Amy Guan
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yi Li
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhengang Peng
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Miao He
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jie Li
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhen Gong
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Lei Huang
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Bo Gao
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Dongling Hao
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jikui Sun
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yan Pan
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Liang Shen
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Chichung Chan
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiulian Lu
- Cisen Pharmaceutical Co. Ltd., Tongji
Sci-tech Industrial Park, High-tech Industrial Development Zone, Jining, Shandong 272073, China
| | - Hongyu Yuan
- Cisen Pharmaceutical Co. Ltd., Tongji
Sci-tech Industrial Park, High-tech Industrial Development Zone, Jining, Shandong 272073, China
| | - Yongguo Li
- Cisen Pharmaceutical Co. Ltd., Tongji
Sci-tech Industrial Park, High-tech Industrial Development Zone, Jining, Shandong 272073, China
| | - Jian Li
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec (Shanghai) Co. Ltd., 288 FuteZhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
25
|
Liu Y, Wan WZ, Li Y, Zhou GL, Liu XG. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents. Oncotarget 2018; 8:7181-7200. [PMID: 27769061 PMCID: PMC5351699 DOI: 10.18632/oncotarget.12742] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022] Open
Abstract
Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China.,Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Wen-Zhu Wan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Yan Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Guan-Lian Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| |
Collapse
|
26
|
Bhutia ZT, Das A, Biswas M, Chatterjee A, Banerjee M. 7-Oxa-4-thia-1-aza-bicyclo[3.2.1]octane 4,4-Dioxides: Mechanochemical Synthesis by Tandem Michael Addition-1,3-Dipolar Cycloaddition of Aldoximes and Evaluation of Antibacterial Activities. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Avijit Das
- Department of Biological Sciences; BITS; Goa Campus 403726 Pilani India
| | - Malabika Biswas
- Department of Biological Sciences; BITS; Goa Campus 403726 Pilani India
| | | | - Mainak Banerjee
- Department of Chemistry; BITS; Goa Campus 403726 Pilani India
| |
Collapse
|
27
|
Zaytsev AV, Pickles JE, Harnor SJ, Henderson AP, Alyasiri M, Waddell PG, Cano C, Griffin RJ, Golding BT. Concise syntheses of bridged morpholines. RSC Adv 2016. [DOI: 10.1039/c6ra08737j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Practical syntheses of 8-oxa-3-aza-bicyclo[3.2.1]octane and 9-oxa-3-aza-bicyclo[3.3.1]nonane, useful intermediates for synthesising kinase inhibitors, were achieved from readily available starting materials, using a solvent-free thermolytic cyclisation for the key step.
Collapse
Affiliation(s)
| | - James E. Pickles
- Newcastle Cancer Centre
- Northern Institute for Cancer Research
- School of Chemistry
- Newcastle University
- Newcastle upon Tyne
| | - Suzannah J. Harnor
- Newcastle Cancer Centre
- Northern Institute for Cancer Research
- School of Chemistry
- Newcastle University
- Newcastle upon Tyne
| | | | - Mohammed Alyasiri
- Newcastle Cancer Centre
- Northern Institute for Cancer Research
- School of Chemistry
- Newcastle University
- Newcastle upon Tyne
| | - Paul G. Waddell
- School of Chemistry
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Celine Cano
- Newcastle Cancer Centre
- Northern Institute for Cancer Research
- School of Chemistry
- Newcastle University
- Newcastle upon Tyne
| | - Roger J. Griffin
- Newcastle Cancer Centre
- Northern Institute for Cancer Research
- School of Chemistry
- Newcastle University
- Newcastle upon Tyne
| | - Bernard T. Golding
- NewChem Technologies Ltd
- Whitesmocks
- UK
- Newcastle Cancer Centre
- Northern Institute for Cancer Research
| |
Collapse
|
28
|
Zuo SJ, Zhang S, Mao S, Xie XX, Xiao X, Xin MH, Xuan W, He YY, Cao YX, Zhang SQ. Combination of 4-anilinoquinazoline, arylurea and tertiary amine moiety to discover novel anticancer agents. Bioorg Med Chem 2015; 24:179-90. [PMID: 26706113 DOI: 10.1016/j.bmc.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/10/2023]
Abstract
In present study, 4-anilinoquinazolines scaffold, arylurea and tertiary amine moiety were combined to design, synthesize gefitinib analogs and discover novel anticancer agents. A series of 4-anilinoquinazoline derivatives (1, 2, 3 and 4) bearing arylurea and tertiary amine moiety at its 6-position were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against A431 cell and A549 cell. The SAR of the title compounds was discussed. The compounds 2d, 2i and 2j with potent antiproliferative activities were evaluated their inhibitory activity against EGFR-TK. Compound 2j displayed potent inhibitory activity against EGFR-TK. In addition, compound 2j, at 50 mg/kg, can completely inhibit cancer growth in established nude mouse A549 xenograft model in vivo. These results suggest that the 4-anilinoquinazoline derivatives bearing diarylurea and tertiary amino moiety at its 6-position can serve as anticancer agents and EGFR inhibitors.
Collapse
Affiliation(s)
- Sai-Jie Zuo
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Sai Zhang
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xiao-Xiao Xie
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Min-Hnag Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wei Xuan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yuan-Yuan He
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
29
|
A structural insight into the inhibitory mechanism of an orally active PI3K/mTOR dual inhibitor, PKI-179 using computational approaches. J Mol Graph Model 2015; 62:226-234. [PMID: 26500112 DOI: 10.1016/j.jmgm.2015.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 09/07/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
The PI3K/AKT/mTOR signaling pathway has been identified as an important target for cancer therapy. Attempts are increasingly made to design the inhibitors against the key proteins of this pathway for anti-cancer therapy. The PI3K/mTOR dual inhibitors have proved more effective than the inhibitors against only single protein targets. Recently discovered PKI-179, an orally effective compound, is one such dual inhibitor targeting both PI3K and mTOR. This anti-cancer compound is efficacious both in vitro and in vivo. However, the binding mechanisms and the molecular interactions of PKI-179 with PI3K and mTOR are not yet available. The current study investigated the exact binding mode and the molecular interactions of PKI-179 with PI3Kγ and mTOR using molecular docking and (un)binding simulation analyses. The study identified PKI-179 interacting residues of both the proteins and their importance in binding was ranked by the loss in accessible surface area, number of molecular interactions of the residue, and consistent appearance of the residue in (un)binding simulation analysis. The key residues involved in binding of PKI-179 were Ala-805 in PI3Kγ and Ile-2163 in mTOR as they have lost maximum accessible surface area due to binding. In addition, the residues which played a role in binding of the drug but were away from the catalytic site were also identified using (un)binding simulation analyses. Finally, comparison of the interacting residues in the respective catalytic sites was done for the difference in the binding of the drug to the two proteins. Thus, the pairs of the residues falling at the similar location with respect to the docked drug were identified. The striking similarity in the interacting residues of the catalytic site explains the concomitant inhibition of both proteins by a number of inhibitors. In conclusion, the docking and (un)binding simulation analyses of dual inhibitor PKI-179 with PI3K and mTOR will provide a suitable multi-target model for studying drug-protein interactions and thus help in designing the novel drugs with higher potency.
Collapse
|
30
|
Singla P, Luxami V, Paul K. Triazine as a promising scaffold for its versatile biological behavior. Eur J Med Chem 2015; 102:39-57. [PMID: 26241876 DOI: 10.1016/j.ejmech.2015.07.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/19/2022]
Abstract
Among all heterocycles, the triazine scaffold occupies a prominent position, possessing a broad range of biological activities. Triazine is found in many potent biologically active molecules with promising biological potential like anti-inflammatory, anti-mycobacterial, anti-viral, anti-cancer etc. which makes it an attractive scaffold for the design and development of new drugs. The wide spectrum of biological activity of this moiety has attracted attention in the field of medicinal chemistry. Due to these biological activities, their structure-activity relationship has generated interest among medicinal chemists and this has culminated in the discovery of several lead molecules. The outstanding development of triazine derivatives in diverse diseases within very short span of time proves its magnitude for medicinal chemistry research. Therefore, these compounds have been synthesized as target structure by many researchers, and were further evaluated for their biological activities. In this review, we have compiled and discussed the biological potential of s-triazine derivatives, which could provide a low-height flying bird's eye view of the triazine derived compounds to a medicinal chemist, for a comprehensive and target oriented information for the development of clinically viable drugs.
Collapse
Affiliation(s)
- Prinka Singla
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India.
| |
Collapse
|
31
|
Andrs M, Korabecny J, Jun D, Hodny Z, Bartek J, Kuca K. Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring. J Med Chem 2014; 58:41-71. [PMID: 25387153 DOI: 10.1021/jm501026z] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) and phosphatidylinositol 3-kinase-related protein kinases (PIKKs) are two related families of kinases that play key roles in regulation of cell proliferation, metabolism, migration, survival, and responses to diverse stresses including DNA damage. To design novel efficient strategies for treatment of cancer and other diseases, these kinases have been extensively studied. Despite their different nature, these two kinase families have related origin and share very similar kinase domains. Therefore, chemical inhibitors of these kinases usually carry analogous structural motifs. The most common feature of these inhibitors is a critical hydrogen bond to morpholine oxygen, initially present in the early nonspecific PI3K and PIKK inhibitor 3 (LY294002), which served as a valuable chemical tool for development of many additional PI3K and PIKK inhibitors. While several PI3K pathway inhibitors have recently shown promising clinical responses, inhibitors of the DNA damage-related PIKKs remain thus far largely in preclinical development.
Collapse
Affiliation(s)
- Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove , Sokolska 81, 500 05 Hradec Kralove, Czech Republic
| | | | | | | | | | | |
Collapse
|
32
|
Houédé N, Pourquier P. Targeting the genetic alterations of the PI3K-AKT-mTOR pathway: its potential use in the treatment of bladder cancers. Pharmacol Ther 2014; 145:1-18. [PMID: 24929024 DOI: 10.1016/j.pharmthera.2014.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 02/07/2023]
Abstract
Urothelial carcinoma of the bladder is the most frequent tumor of the urinary tract and represents the fifth cause of death by cancer worldwide. The current first line chemotherapy is a combination of cisplatin and gemcitabine with median survival not exceeding 15months. Vinflunine is the only drug approved by EMEA as second-line treatment and few progresses have been made for the past 20years to increase the survival of metastatic patients, especially those who are not eligible for cisplatin-based regimen. The recent studies characterizing the genetic background of urothelial cancers of the bladder, revealed chromosomal alterations that are not seen at the same level in other types of cancers. This is especially the case for mutations of genes involved in the PI3K/AKT/mTOR signaling pathway that occupies a major place in the etiology of these tumors. Here, we describe the mutations leading to constitutive activation of the PI3K/AKT/mTOR pathway and discuss the potential use of the different classes of PI3K/AKT/mTOR inhibitors in the treatment of urothelial bladder cancers. Despite the recent pivotal study evidencing specific mutations of TSC1 in bladder cancer patients responding to everolimus and the encouraging results obtained with other derivatives than rapalogs, few clinical trials are ongoing in bladder cancers. Because of the genetic complexity of these tumors, the cross-talks of the PI3K/AKT/mTOR pathway with other pathways, and the small number of eligible patients, it will be of utmost importance to carefully choose the drugs or drug combinations to be further tested in the clinic.
Collapse
Affiliation(s)
- Nadine Houédé
- Service d'Oncologie Médicale, Centre Hospitalier Universitaire de Nîmes, France; INSERM U896, Institut de Recherche en Cancérologie de Montpellier & Université de Montpellier 1, France.
| | - Philippe Pourquier
- Service d'Oncologie Médicale, Centre Hospitalier Universitaire de Nîmes, France; INSERM U896, Institut de Recherche en Cancérologie de Montpellier & Université de Montpellier 1, France
| |
Collapse
|
33
|
Pop MS, Stransky N, Garvie CW, Theurillat JP, Hartman EC, Lewis TA, Zhong C, Culyba EK, Lin F, Daniels DS, Pagliarini R, Ronco L, Koehler AN, Garraway LA. A small molecule that binds and inhibits the ETV1 transcription factor oncoprotein. Mol Cancer Ther 2014; 13:1492-502. [PMID: 24737027 DOI: 10.1158/1535-7163.mct-13-0689] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Members of the ETS transcription factor family have been implicated in several cancers, where they are often dysregulated by genomic derangement. ETS variant 1 (ETV1) is an ETS factor gene that undergoes chromosomal translocation in prostate cancers and Ewing sarcomas, amplification in melanomas, and lineage dysregulation in gastrointestinal stromal tumors. Pharmacologic perturbation of ETV1 would be appealing in these cancers; however, oncogenic transcription factors are often deemed "undruggable" by conventional methods. Here, we used small-molecule microarray screens to identify and characterize drug-like compounds that modulate the biologic function of ETV1. We identified the 1,3,5-triazine small molecule BRD32048 as a top candidate ETV1 perturbagen. BRD32048 binds ETV1 directly, modulating both ETV1-mediated transcriptional activity and invasion of ETV1-driven cancer cells. Moreover, BRD32048 inhibits p300-dependent acetylation of ETV1, thereby promoting its degradation. These results point to a new avenue for pharmacologic ETV1 inhibition and may inform a general means to discover small molecule perturbagens of transcription factor oncoproteins.
Collapse
Affiliation(s)
- Marius S Pop
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MassachusettsAuthors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Nicolas Stransky
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Colin W Garvie
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Jean-Philippe Theurillat
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MassachusettsAuthors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Emily C Hartman
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Timothy A Lewis
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Cheng Zhong
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Elizabeth K Culyba
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Fallon Lin
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Douglas S Daniels
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Raymond Pagliarini
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Lucienne Ronco
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Angela N Koehler
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MassachusettsAuthors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MassachusettsAuthors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Levi A Garraway
- Authors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MassachusettsAuthors' Affiliations: Dana Farber Cancer Institute, Boston; Broad Institute; Novartis Institute for Biomedical Research; Department of Biological Engineering; and Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| |
Collapse
|
34
|
Design, synthesis and anticancer activity of novel 6-(aminophenyl)-2,4-bismorpholino-1,3,5-triazine derivatives bearing arylmethylene hydrazine moiety. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-3253-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Shao T, Wang J, Chen JG, Wang XM, Li H, Li YP, Li Y, Yang GD, Mei QB, Zhang SQ. Discovery of 2-methoxy-3-phenylsulfonamino-5-(quinazolin-6-yl or quinolin-6-yl)benzamides as novel PI3K inhibitors and anticancer agents by bioisostere. Eur J Med Chem 2014; 75:96-105. [PMID: 24530495 DOI: 10.1016/j.ejmech.2014.01.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/17/2013] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
2-Substituted-3-sulfonamino-5-(quinazolin-6-yl or quinolin-6-yl)benzamides have been proposed as novel structures of PI3K inhibitors and anticancer agents based on bioisostere. In the present study, 2-substituted-3-sulfonamino-5-(4-morpholinoquinazolin-6-yl)benzamides and 2-methoxy-3-sulfonamino-5-(4-morpholinoquinolin-6-yl)benzamides were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against four human cancer cell lines, including A549, HCT-116, U-87 MG and KB. The SAR of the title compounds was preliminarily discussed. Compound 1a with potent antiproliferative activity was tested for its inhibitory activity against PI3K and mTOR and its effect on the AKT and p-AKT(473). The anticancer effect of 1a was evaluated in established nude mice U-87 MG xenograft model. The results suggest that compound 1a can significantly inhibit PI3K/AKT/mTOR pathway and tumor growth. These findings strongly support the assumption that title compounds are potent PI3K inhibitors and anticancer agents.
Collapse
Affiliation(s)
- Teng Shao
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Juan Wang
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, PR China
| | - Jian-Gang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiao-Meng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Huan Li
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yi-Ping Li
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Guang-De Yang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qi-Bing Mei
- Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, PR China.
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
36
|
Yang W, Shu M, Wang Y, Wang R, Hu Y, Meng L, Lin Z. 3D-QSAR and docking studies of 3-Pyridine heterocyclic derivatives as potent PI3K/mTOR inhibitors. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.09.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Gao Q, Lei T, Ye F. Therapeutic targeting of EGFR-activated metabolic pathways in glioblastoma. Expert Opin Investig Drugs 2013; 22:1023-40. [PMID: 23731170 DOI: 10.1517/13543784.2013.806484] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The highly divergent histological heterogeneities, aggressive invasion and extremely poor response to treatment make glioblastoma (GBM) one of the most lethal and difficult cancers in humans. Among key elements driving its behavior is epidermal growth factor receptor (EGFR), however, neither traditional therapy including neurosurgery, radiation, temozolomide, nor targeted EGFR therapeutics in clinic has generated promising results to date. Strategies are now focusing on blocking the downstream EGFR-activated metabolic pathways and the key phosphorylated kinases. AREAS COVERED Here, we review two major EGFR-activated downstream metabolic pathways including the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways and their key phosphorylated kinase alterations in GBMs. This review also discusses potential pharmacological progress from bench work to clinical trials in order to evaluate specific inhibitors as well as therapeutics targeting PI3K and RAS signaling pathways. EXPERT OPINION Several factors impede clinical progress in targeting GBM, including the high rates of acquired resistance, heterogeneity within and across the tumors, complexity of signaling pathways and difficulty in traversing the blood-brain barrier (BBB). Substantial insight into genetic and molecular pathways and strategies to better tap the potential of these agents include rational combinatorial regimens and molecular phenotype-based patient enrichment, each of which will undoubtedly generate new therapeutic approaches to combat these devastating disabilities in the near future.
Collapse
Affiliation(s)
- Qinglei Gao
- Huazhong University of Science and Technology, Tongji Hospital, Tongji Medical College, Cancer Biology Research Center, wuhan, China
| | | | | |
Collapse
|
38
|
Lv X, Ma X, Hu Y. Furthering the design and the discovery of small molecule ATP-competitive mTOR inhibitors as an effective cancer treatment. Expert Opin Drug Discov 2013; 8:991-1012. [PMID: 23668243 DOI: 10.1517/17460441.2013.800479] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The mammalian target of rapamycin (mTOR) is a serine/threonine kinase, which is the key component of two distinct signaling complexes in cells; these complexes are the mTOR complex 1 (mTORC1) and the mTOR complex 2 (mTORC2). Given the importance of these complexes in cellular growth, survival, motility, proliferation, protein synthesis and transcription, it is not surprising that they are impacted in multiple types of cancer. Studies on a number of ATP-competitive mTOR inhibitors have suggested that these inhibitors have a therapeutic superiority to rapalogs (rapamycin analogs) in a number of cancers. AREAS COVERED This review provides insight into the binding of mTOR inhibitors with the ATP-binding site, for the benefit of future mTOR inhibitor design and discovery. The authors, furthermore, deduce that a hypothetical binding mode is from docking studies, co-crystal structures and the structure-activity relationships (SARs). The authors also highlight the preclinical and clinical development of hit/lead compounds, and the selectivity for representative mTOR inhibitors. EXPERT OPINION The structural analysis of mTOR is hampered by its large size and complexity. Further exploration of mTOR inhibitors may therefore require the combination of structure-based drug design (SBDD, based on the mTOR homology models), fragment-based drug design (FBDD) and analog synthesis. Recent studies suggested that the global inhibition of PI3Ks may be harmful to organisms. Therefore, the future discovery of dual mTOR/PI3K inhibitors needs to ensure that inhibitors are both efficacious and have reduced adverse effects.
Collapse
Affiliation(s)
- Xiaoqing Lv
- Zhejiang University, College of Pharmaceutical Sciences, ZJU-ENS Joint Laboratory of Medicinal Chemistry, Hangzhou 310058, China
| | | | | |
Collapse
|
39
|
|
40
|
Liu Q, Xu C, Kirubakaran S, Zhang X, Hur W, Liu Y, Kwiatkowski NP, Wang J, Westover KD, Gao P, Ercan D, Niepel M, Thoreen CC, Kang SA, Patricelli MP, Wang Y, Tupper T, Altabef A, Kawamura H, Held KD, Chou DM, Elledge SJ, Janne PA, Wong KK, Sabatini DM, Gray NS. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Res 2013; 73:2574-86. [PMID: 23436801 PMCID: PMC3760004 DOI: 10.1158/0008-5472.can-12-1702] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mTOR is a highly conserved serine/threonine protein kinase that serves as a central regulator of cell growth, survival, and autophagy. Deregulation of the PI3K/Akt/mTOR signaling pathway occurs commonly in cancer and numerous inhibitors targeting the ATP-binding site of these kinases are currently undergoing clinical evaluation. Here, we report the characterization of Torin2, a second-generation ATP-competitive inhibitor that is potent and selective for mTOR with a superior pharmacokinetic profile to previous inhibitors. Torin2 inhibited mTORC1-dependent T389 phosphorylation on S6K (RPS6KB1) with an EC(50) of 250 pmol/L with approximately 800-fold selectivity for cellular mTOR versus phosphoinositide 3-kinase (PI3K). Torin2 also exhibited potent biochemical and cellular activity against phosphatidylinositol-3 kinase-like kinase (PIKK) family kinases including ATM (EC(50), 28 nmol/L), ATR (EC(50), 35 nmol/L), and DNA-PK (EC(50), 118 nmol/L; PRKDC), the inhibition of which sensitized cells to Irradiation. Similar to the earlier generation compound Torin1 and in contrast to other reported mTOR inhibitors, Torin2 inhibited mTOR kinase and mTORC1 signaling activities in a sustained manner suggestive of a slow dissociation from the kinase. Cancer cell treatment with Torin2 for 24 hours resulted in a prolonged block in negative feedback and consequent T308 phosphorylation on Akt. These effects were associated with strong growth inhibition in vitro. Single-agent treatment with Torin2 in vivo did not yield significant efficacy against KRAS-driven lung tumors, but the combination of Torin2 with mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor AZD6244 yielded a significant growth inhibition. Taken together, our findings establish Torin2 as a strong candidate for clinical evaluation in a broad number of oncologic settings where mTOR signaling has a pathogenic role.
Collapse
Affiliation(s)
- Qingsong Liu
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Chunxiao Xu
- Ludwig Center at Dana-Farber–Harvard Cancer Center, Departments of Medicine and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA, 02115
| | - Sivapriya Kirubakaran
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Xin Zhang
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Wooyoung Hur
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Yan Liu
- Ludwig Center at Dana-Farber–Harvard Cancer Center, Departments of Medicine and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA, 02115
| | - Nicholas P. Kwiatkowski
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | | | - Peng Gao
- Ludwig Center at Dana-Farber–Harvard Cancer Center, Departments of Medicine and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA, 02115
| | - Dalia Ercan
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Mario Niepel
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115
| | - Carson C. Thoreen
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| | - Seong A. Kang
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Koch Center for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139
| | | | - Yuchuan Wang
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Tanya Tupper
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Abigail Altabef
- Ludwig Center at Dana-Farber–Harvard Cancer Center, Departments of Medicine and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA, 02115
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn D. Held
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Danny M. Chou
- Department of Genetics, Harvard Medical School, Boston, MA, 02115
- Howard Hughes Medical Institute, Division of Genetics, Brigham and Women’s Hospital, Harvard University Medical School, Boston, MA 02115
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Boston, MA, 02115
- Howard Hughes Medical Institute, Division of Genetics, Brigham and Women’s Hospital, Harvard University Medical School, Boston, MA 02115
| | - Pasi A. Janne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Kwok-Kin Wong
- Ludwig Center at Dana-Farber–Harvard Cancer Center, Departments of Medicine and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA, 02115
| | - David M. Sabatini
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Koch Center for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
41
|
Jessica F, Corentin W, Sylvestre D, Christian L, André L. Synthesis of [18F]4-(4-fluorophenyl)-1,2,4-triazole-3,5-dione: an agent for specific radiolabelling of tyrosine. RSC Adv 2013. [DOI: 10.1039/c3ra44666b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Dong JF, Yu X, Ning CQ, Hu L, Yu NF. Selective mono-arylation in palladium-catalyzed cross-coupling reaction of dichlorotriazines with phenylboronate ester derivatives. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2012.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Kaeberlein M. mTOR Inhibition: From Aging to Autism and Beyond. SCIENTIFICA 2013; 2013:849186. [PMID: 24379984 PMCID: PMC3860151 DOI: 10.1155/2013/849186] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/27/2013] [Indexed: 05/10/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is a highly conserved protein that regulates growth and proliferation in response to environmental and hormonal cues. Broadly speaking, organisms are constantly faced with the challenge of interpreting their environment and making a decision between "grow or do not grow." mTOR is a major component of the network that makes this decision at the cellular level and, to some extent, the tissue and organismal level as well. Although overly simplistic, this framework can be useful when considering the myriad functions ascribed to mTOR and the pleiotropic phenotypes associated with genetic or pharmacological modulation of mTOR signaling. In this review, I will consider mTOR function in this context and attempt to summarize and interpret the growing body of literature demonstrating interesting and varied effects of mTOR inhibitors. These include robust effects on a multitude of age-related parameters and pathologies, as well as several other processes not obviously linked to aging or age-related disease.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, 1959 NE Pacific Street, D-514, Seattle, WA 98195-7470, USA
- *Matt Kaeberlein:
| |
Collapse
|
44
|
Xuan W, Ding W, Hui HX, Zhang SQ. Synthesis and cytotoxic activity of diaryl urea derivatives with a 4-methylpiperazinylcarbonyl moiety. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0398-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Zhu W, Liu Y, Zhao Y, Wang H, Tan L, Fan W, Gong P. Synthesis and Biological Evaluation of Novel 6-Hydrazinyl-2,4-bismorpholino pyrimidine and 1,3,5-Triazine Derivatives as Potential Antitumor Agents. Arch Pharm (Weinheim) 2012; 345:812-21. [DOI: 10.1002/ardp.201200074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/04/2012] [Accepted: 05/11/2012] [Indexed: 11/09/2022]
|
46
|
Karlsson A, García-Echeverría C. Identification and Optimization of Dual PI3K/mTOR Inhibitors. DESIGNING MULTI-TARGET DRUGS 2012. [DOI: 10.1039/9781849734912-00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The constitutive activation of the PI3K/mTOR pathway in cancer cells has been validated by epidemiological and experimental studies as an essential step towards the initiation and maintenance of human tumors. A number of intracellular components of this pathway have been targeted for anti-cancer drug discovery activities leading to the current panoply of clinical trials of PI3K/mTOR pathway modulators. The progress in the identification and development of early polypharmacology-based inhibitors that concomitantly target PI3K and mTOR is presented and discussed in this chapter.
Collapse
|
47
|
Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci 2012; 13:1886-1918. [PMID: 22408430 PMCID: PMC3291999 DOI: 10.3390/ijms13021886] [Citation(s) in RCA: 587] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 01/20/2023] Open
Abstract
The conserved serine/threonine kinase mTOR (the mammalian target of rapamycin), a downstream effector of the PI3K/AKT pathway, forms two distinct multiprotein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to rapamycin, activates S6K1 and 4EBP1, which are involved in mRNA translation. It is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals, and essential signalling pathways, such as PI3K, MAPK and AMPK, in order to control cell growth, proliferation and survival. mTORC2 is considered resistant to rapamycin and is generally insensitive to nutrients and energy signals. It activates PKC-α and AKT and regulates the actin cytoskeleton. Deregulation of multiple elements of the mTOR pathway (PI3K amplification/mutation, PTEN loss of function, AKT overexpression, and S6K1, 4EBP1 and eIF4E overexpression) has been reported in many types of cancers, particularly in melanoma, where alterations in major components of the mTOR pathway were reported to have significant effects on tumour progression. Therefore, mTOR is an appealing therapeutic target and mTOR inhibitors, including the rapamycin analogues deforolimus, everolimus and temsirolimus, are submitted to clinical trials for treating multiple cancers, alone or in combination with inhibitors of other pathways. Importantly, temsirolimus and everolimus were recently approved by the FDA for the treatment of renal cell carcinoma, PNET and giant cell astrocytoma. Small molecules that inhibit mTOR kinase activity and dual PI3K-mTOR inhibitors are also being developed. In this review, we aim to survey relevant research, the molecular mechanisms of signalling, including upstream activation and downstream effectors, and the role of mTOR in cancer, mainly in melanoma.
Collapse
Affiliation(s)
- Helena Pópulo
- Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), University of Porto, 4200-465, Porto, Portugal; E-Mails: (H.P.); (J.M.L.)
- Medical Faculty, University of Porto, 4200-465 Porto, Portugal
| | - José Manuel Lopes
- Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), University of Porto, 4200-465, Porto, Portugal; E-Mails: (H.P.); (J.M.L.)
- Medical Faculty, University of Porto, 4200-465 Porto, Portugal
- Department of Pathology, Hospital São João, 4200-465 Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), University of Porto, 4200-465, Porto, Portugal; E-Mails: (H.P.); (J.M.L.)
- Medical Faculty, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
48
|
Wishka DG, Walker DP. Synthesis of (±)-6-oxa-3-azabicyclo[3.1.1]heptan-2-thione: a potential synthon for the preparation of novel heteroaryl-annulated bicyclic morpholines. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Dehnhardt CM, Venkatesan AM, Chen Z, Delos-Santos E, Ayral-Kaloustian S, Brooijmans N, Yu K, Hollander I, Feldberg L, Lucas J, Mallon R. Identification of 2-oxatriazines as highly potent pan-PI3K/mTOR dual inhibitors. Bioorg Med Chem Lett 2011; 21:4773-8. [PMID: 21763134 DOI: 10.1016/j.bmcl.2011.06.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/12/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
We recently described several highly potent, triazine (1) and triazolopyrimidine (2) scaffold-based, dual PI3K/mTOR-inhibitors (e.g., 1, PKI-587) that were efficacious in both in vitro and in vivo models. In order to further optimize these compounds we devised a novel series, the 2-oxatriazines, which also exhibited excellent potency and good metabolic stability. Some 2-oxatriazines showed promising in vivo biomarker suppression and induced apoptosis in the MDA-MB-361 breast cancer xenograft model.
Collapse
|
50
|
Shuttleworth SJ, Silva FA, Cecil ARL, Tomassi CD, Hill TJ, Raynaud FI, Clarke PA, Workman P. Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Curr Med Chem 2011; 18:2686-714. [PMID: 21649578 PMCID: PMC3228236 DOI: 10.2174/092986711796011229] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/13/2011] [Accepted: 05/15/2011] [Indexed: 01/01/2023]
Abstract
The phosphoinositide 3-kinases (PI3Ks) constitute an important family of lipid kinase enzymes that control a range of cellular processes through their regulation of a network of signal transduction pathways, and have emerged as important therapeutic targets in the context of cancer, inflammation and cardiovascular diseases. Since the mid-late 1990s, considerable progress has been made in the discovery and development of small molecule ATP-competitive PI3K inhibitors, a number of which have entered early phase human trials over recent years from which key clinical results are now being disclosed. This review summarizes progress made to date, primarily on the discovery and characterization of class I and dual class I/IV subtype inhibitors, together with advances that have been made in translational and clinical research, notably in cancer.
Collapse
Affiliation(s)
- S J Shuttleworth
- Karus Therapeutics Ltd., Southampton Science Park, Southampton, SO16 7NP, UK.
| | | | | | | | | | | | | | | |
Collapse
|