1
|
Lisouskaya M, Antipova OA, Zhavoronok IP, Mikhalchuk A. Synthesis and physiological effects of new 4-aminophenol derivatives as paracetamol analogues. Bioorg Med Chem Lett 2025; 117:130080. [PMID: 39706497 DOI: 10.1016/j.bmcl.2024.130080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Paracetamol has antipyretic and analgesic properties and it is widely used for fever and pain. However, paracetamol is partially metabolized to N-acetyl-p-benzoquinoneimine, which in overdose leads to liver necrosis, urging for safer paracetamol analogues. As the latter, new para-aminophenol derivatives containing fragments of acetic acid, saturated fatty acids and monoethanolamine were synthesized. The obtained compounds at equimolar doses of paracetamol (0.5 mmol/kg) have been shown to have modulating effect on thermoregulatory (in experimental fever) and nociceptive (in experimental arthritis) reactions. The studied derivatives in rats with LPS-induced fever leveled the first phase of the febrile response and reduced the increase in core body temperature in the second phase by three times. The synthesized compounds in rats with zymosan-induced arthritis suppressed the nociceptive response in Randall-Selitto test and Hot plate test by 21-48 % and 8-42 %, respectively.
Collapse
Affiliation(s)
- Maryna Lisouskaya
- Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus, 5/2 Kuprevič St., Minsk 220084, the Republic of Belarus.
| | - Olga A Antipova
- Institute of Physiology of National Academy of Sciences of Belarus, 28 Akademičnaja St., Minsk 220012, the Republic of Belarus
| | - Irina P Zhavoronok
- Institute of Physiology of National Academy of Sciences of Belarus, 28 Akademičnaja St., Minsk 220012, the Republic of Belarus
| | - Alexander Mikhalchuk
- Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus, 5/2 Kuprevič St., Minsk 220084, the Republic of Belarus
| |
Collapse
|
2
|
da Silva NM, Lopes ICS, Galué-Parra AJ, Ferreira IM, de Sena CBC, da Silva EO, Macchi BDM, de Oliveira FR, do Nascimento JLM. Fatty Acid Amides Suppress Proliferation via Cannabinoid Receptors and Promote the Apoptosis of C6 Glioma Cells in Association with Akt Signaling Pathway Inhibition. Pharmaceuticals (Basel) 2024; 17:873. [PMID: 39065724 PMCID: PMC11280372 DOI: 10.3390/ph17070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
A glioma is a type of tumor that acts on the Central Nervous System (CNS) in a highly aggressive manner. Gliomas can occasionally be inaccurately diagnosed and treatments have low efficacy, meaning that patients exhibit a survival of less than one year after diagnosis. Due to factors such as intratumoral cell variability, inefficient chemotherapy drugs, adaptive resistance development to drugs and tumor recurrence after resection, the search continues for new drugs that can inhibit glioma cell growth. As such, analogues of endocannabinoids, such as fatty acid amides (FAAs), represent interesting alternatives for inhibiting tumor growth, since FAAs can modulate several metabolic pathways linked to cancer and, thus, may hold potential for managing glioblastoma. The aim of this study was to investigate the in vitro effects of two fatty ethanolamides (FAA1 and FAA2), synthetized via direct amidation from andiroba oil (Carapa guianensis Aublet), on C6 glioma cells. FAA1 and FAA2 reduced C6 cell viability, proliferation and migratory potential in a dose-dependent manner and were not toxic to normal retina glial cells. Both FAAs caused apoptotic cell death through the loss of mitochondrial integrity (ΔΨm), probably by activating cannabinoid receptors, and inhibiting the PI3K/Akt pathway. In conclusion, FAAs derived from natural products may have the potential to treat glioma-type brain cancer.
Collapse
Affiliation(s)
- Nágila Monteiro da Silva
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (N.M.d.S.); (I.C.S.L.); (E.O.d.S.)
- Laboratorio de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Izabella Carla Silva Lopes
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (N.M.d.S.); (I.C.S.L.); (E.O.d.S.)
- Laboratorio de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Adan Jesus Galué-Parra
- Laboratório de Biologia Estrutural, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil; (A.J.G.-P.); (C.B.C.d.S.)
| | - Irlon Maciel Ferreira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá, Macapá 68902-280, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Chubert Bernardo Castro de Sena
- Laboratório de Biologia Estrutural, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil; (A.J.G.-P.); (C.B.C.d.S.)
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
| | - Edilene Oliveira da Silva
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (N.M.d.S.); (I.C.S.L.); (E.O.d.S.)
- Laboratório de Biologia Estrutural, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil; (A.J.G.-P.); (C.B.C.d.S.)
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INCT-INBEB), Rio de Janeiro 21941-902, Brazil
| | - Barbarella de Matos Macchi
- Laboratorio de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Fábio Rodrigues de Oliveira
- Laboratório de Controle de Qualidade e Bromatologia, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil;
| | - José Luiz Martins do Nascimento
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (N.M.d.S.); (I.C.S.L.); (E.O.d.S.)
- Laboratorio de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| |
Collapse
|
3
|
McWhirter M, Bugarcic A, Steel A, Schloss J. Endocannabinoid levels in female-sexed individuals with diagnosed depression: a systematic review. BMC Womens Health 2024; 24:350. [PMID: 38886733 PMCID: PMC11181673 DOI: 10.1186/s12905-024-03168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly prevalent mental health disorder with females experiencing higher rates of depression (11.6%), anxiety (15.7%) and physiological distress (14.5%) than males. Recently, the Endocannabinoid system (ECS) has been proposed to be a key contributing factor in the pathogenesis and symptom severity of MDD due to its role in neurotransmitter production, inflammatory response and even regulation of the female reproductive cycle. This review critically evaluates evidence regarding ECS levels in female-sexed individuals with depressive disorders to further understand ECS role. MATERIALS AND METHODS A systematic literature review of available research published prior to April 2022 was identified using PubMed (U.S. National Library of Medicine), CINAHL (EBSCO), Web of Science, AMED and Scopus (Elsevier). Studies were included if they reported ECS analysis of female-sexed individuals with depression and were excluded if they did not differentiate results between sexes, assessed mental health conditions other than depression, tested efficacy of endocannabinoid/n-acylethanolamine/cannabis or marijuana administration and that were unable to be translated. Critical appraisal of each included study was undertaken using the Joanna Briggs Institute Critical Appraisal Tool for Systematic Reviews. RESULTS The 894 located citations were screened for duplicates (n = 357) and eligibility by title and abstract (n = 501). The full text of 33 studies were reviewed, and 7 studies were determined eligible for inclusion. These studies indicated that depressed female-sexed individuals have altered levels of ECS however no significant pattern was identified due to variability of study outcomes and measures, limiting overall interpretation. DISCUSSION This review suggests potential involvement of ECS in underlying mechanisms of MDD in female sexed-individuals, however no pattern was able to be determined. A major contributor to the inability to attain reliable and valid understanding of the ECS levels in female-sexed individuals with depression was the inconsistency of depression screening tools, inclusion criteria's and analysis methods used to measure eCBs. Future studies need to implement more standardised methodology to gain a deeper understanding of ECS in female-sexed individuals with depressive disorders. TRIAL REGISTRATION : This review was submitted to PROSPERO for approval in April 2022 (Registration #CRD42022324212).
Collapse
Affiliation(s)
- Meagan McWhirter
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore, NSW, 2480, Australia.
| | - Andrea Bugarcic
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Amie Steel
- ACCRIM, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Janet Schloss
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore, NSW, 2480, Australia
| |
Collapse
|
4
|
Joshi AR, Barvkar VT, Kashikar A, Gaikwad P, Ravikumar A. Dynamics of the lipid body lipidome in the oleaginous yeast Yarrowia sp. FEMS Yeast Res 2024; 24:foae021. [PMID: 39025792 PMCID: PMC11305267 DOI: 10.1093/femsyr/foae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024] Open
Abstract
Time-dependent changes in the lipid body (LB) lipidome of two oleaginous yeasts, Yarrowia lipolytica NCIM 3589 and Yarrowia bubula NCIM 3590 differing in growth temperature was investigated. LB size and lipid content were higher in Y. lipolytica based on microscopy, Feret, and integrated density analysis with lipid accumulation and mobilization occurring at 48 h in both strains. Variations in LB lipidome were reflected in interfacial tension (59.67 and 68.59 mN m-1) and phase transition temperatures (30°C-100°C and 60°C-100°C) for Y. lipolytica and Y. bubula, respectively. Liquid Chromatography-Mass Spectroscopy (LC-MS) analysis revealed neutral lipids (NLs), phospholipids, sphingolipids, sterols, and fatty acids as the major classes present in both strains while fatty acid amides were seen only in Y. lipolytica. Amongst the lipid classes, a few species were present in abundance with a number of lipids being less dominant. Permutational multivariate analysis of variance (PERMANOVA) and Analysis of covariance (ANOCOVA) analysis suggest 22 lipids belonging to NLs, fatty acid amides, and free fatty acids were found to be statistically different between the two strains. Analysis of the ratios between different lipid components suggest changes in LB size and mobilization as a function of time. The results indicate influence of temperature and strain variation on the dynamics of LB lipidome in Yarrowia species.
Collapse
Affiliation(s)
- Apoorva Ravindra Joshi
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Akanksha Kashikar
- Department of Statistics, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Prashant Gaikwad
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Ameeta Ravikumar
- Department of Biotechnology, Institution of Bioinformatics and Biotechnology, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| |
Collapse
|
5
|
Liu S, Silvano E, Li M, Mausz M, Rihtman B, Guillonneau R, Geiger O, Scanlan DJ, Chen Y. Aminolipids in bacterial membranes and the natural environment. THE ISME JOURNAL 2024; 18:wrae229. [PMID: 39520271 PMCID: PMC11631085 DOI: 10.1093/ismejo/wrae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Our comprehension of membrane function has predominantly advanced through research on glycerophospholipids, also known as phosphoglycerides, which are glycerol phosphate-based lipids found across all three domains of life. However, in bacteria, a perplexing group of lipids distinct from glycerol phosphate-based ones also exists. These are amino acid-containing lipids that form an amide bond between an amino acid and a fatty acid. Subsequently, a second fatty acid becomes linked, often via the 3-hydroxy group on the first fatty acid. These amide-linked aminolipids have, as of now, been exclusively identified in bacteria. Several hydrophilic head groups have been discovered in these aminolipids including ornithine, glutamine, glycine, lysine, and more recently, a sulfur-containing non-proteinogenic amino acid cysteinolic acid. Here, we aim to review current advances in the genetics, biochemistry and function of these aminolipids as well as giving an ecological perspective. We provide evidence for their potential significance in the ecophysiology of all major microbiomes, i.e. gut, soil, and aquatic as well as highlighting their important roles in influencing biological interactions.
Collapse
Affiliation(s)
- Shengwei Liu
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mingyu Li
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michaela Mausz
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Richard Guillonneau
- Faculty of Science and Technology, Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos 62210, México
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yin Chen
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
6
|
Vered S, Beiser AS, Sulimani L, Sznitman S, Gonzales MM, Aparicio HJ, DeCarli C, Scott MR, Ghosh S, Lewitus GM, Meiri D, Seshadri S, Weinstein G. The association of circulating endocannabinoids with neuroimaging and blood biomarkers of neuro-injury. Alzheimers Res Ther 2023; 15:154. [PMID: 37700370 PMCID: PMC10496329 DOI: 10.1186/s13195-023-01301-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Preclinical studies highlight the importance of endogenous cannabinoids (endocannabinoids; eCBs) in neurodegeneration. Yet, prior observational studies focused on limited outcome measures and assessed only few eCB compounds while largely ignoring the complexity of the eCB system. We examined the associations of multiple circulating eCBs and eCB-like molecules with early markers of neurodegeneration and neuro-injury and tested for effect modification by sex. METHODS This exploratory cross-sectional study included a random sample of 237 dementia-free older participants from the Framingham Heart Study Offspring cohort who attended examination cycle 9 (2011-2014), were 65 years or older, and cognitively healthy. Forty-four eCB compounds were quantified in serum, via liquid chromatography high-resolution mass spectrometry. Linear regression models were used to examine the associations of eCB levels with brain MRI measures (i.e., total cerebral brain volume, gray matter volume, hippocampal volume, and white matter hyperintensities volume) and blood biomarkers of Alzheimer's disease and neuro-injury (i.e., total tau, neurofilament light, glial fibrillary acidic protein and Ubiquitin C-terminal hydrolase L1). All models were adjusted for potential confounders and effect modification by sex was examined. RESULTS Participants mean age was 73.3 ± 6.2 years, and 40% were men. After adjustment for potential confounders and correction for multiple comparisons, no statistically significant associations were observed between eCB levels and the study outcomes. However, we identified multiple sex-specific associations between eCB levels and the various study outcomes. For example, high linoleoyl ethanolamide (LEA) levels were related to decreased hippocampal volume among men and to increased hippocampal volume among women (β ± SE = - 0.12 ± 0.06, p = 0.034 and β ± SE = 0.08 ± 0.04, p = 0.026, respectively). CONCLUSIONS Circulating eCBs may play a role in neuro-injury and may explain sex differences in susceptibility to accelerated brain aging. Particularly, our results highlight the possible involvement of eCBs from the N-acyl amino acids and fatty acid ethanolamide classes and suggest specific novel fatty acid compounds that may be implicated in brain aging. Furthermore, investigation of the eCBs contribution to neurodegenerative disease such as Alzheimer's disease in humans is warranted, especially with prospective study designs and among diverse populations, including premenopausal women.
Collapse
Affiliation(s)
- Shiraz Vered
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel
| | - Alexa S Beiser
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Liron Sulimani
- The Kleifeld Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sharon Sznitman
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel
| | - Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Hugo J Aparicio
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Sacramento, CA, 95816, USA
| | - Matthew R Scott
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Saptaparni Ghosh
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Gil M Lewitus
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sudha Seshadri
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Galit Weinstein
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel.
| |
Collapse
|
7
|
Siani-Rose M, McKee R, Cox S, Goldstein B, Abrams D, Taylor M, Kurek I. The Potential of Salivary Lipid-Based Cannabis-Responsive Biomarkers to Evaluate Medical Cannabis Treatment in Children with Autism Spectrum Disorder. Cannabis Cannabinoid Res 2023; 8:642-656. [PMID: 35343818 DOI: 10.1089/can.2021.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental conditions affecting social communication and social interaction. Medical cannabis (MC) treatment shows promising results as an approach to reduce behavioral difficulties, as determined mainly by subjective observations. We have recently shown the potential of cannabis-responsive biomarkers detected in saliva of children with ASD to objectively quantify the impact of successful MC treatment using a metabolomics approach. Since the pathology of ASD is associated with abnormal lipid metabolism, we used lipidomics on the same samples to (1) expand the repertoire of cannabis-responsive biomarkers and (2) provide preliminary insight into the role of MC on lipid metabolism. Materials and Methods: Saliva samples collected from children with ASD (n=15) treated with MC (both before and at the time of maximal impact of treatment) and an age-matched group of typically developing (TD) children (n=9) were subjected to untargeted lipidomics. The study was observational. Each child from the ASD group was receiving a unique individualized MC treatment regimen using off-the-shelf products as permitted by California law under physician supervision for at least 1 year. Doses of tetrahydrocannabinol (THC) ranged from 0.05 to 50 mg and cannabidiol (CBD) from 7.5 to 200 mg per treatment. The ASD group was evaluated for signs of improvement using parental brief Likert scale surveys. Results: Twenty-two potential lipid-based cannabis-responsive biomarkers exhibiting a shift toward the TD physiological levels in children with ASD after MC treatment were identified. Members from all five lipid subclasses known to be present in saliva were characterized. Preliminary lipid association network analysis suggests involvement of two subnetworks previously linked to (1) inflammation and/or redox regulation and (2) oxidative stress. The significant changes in sphingomyelin in this study and in N-acetyl-aspartate (NAA) previously detected in the metabolomics analysis of the same saliva samples may indicate a role of MC in neuron function. Conclusions: Our findings suggest that lipid metabolites in saliva can potentially serve as cannabis-responsive biomarkers and objectively quantify the impact of MC treatment, and indicate a possible mechanism of action for MC. This preliminary study requires further investigation with a larger population and appropriate clinical trial monitoring.
Collapse
Affiliation(s)
| | - Robert McKee
- Cannformatics, Inc., San Francisco, California, USA
| | - Stephany Cox
- Cannformatics, Inc., San Francisco, California, USA
| | | | | | | | - Itzhak Kurek
- Cannformatics, Inc., San Francisco, California, USA
| |
Collapse
|
8
|
Richter H, Gover O, Schwartz B. Anti-Inflammatory Activity of Black Soldier Fly Oil Associated with Modulation of TLR Signaling: A Metabolomic Approach. Int J Mol Sci 2023; 24:10634. [PMID: 37445812 DOI: 10.3390/ijms241310634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary intervention in the treatment of ulcerative colitis involves, among other things, modifications in fatty acid content and/or profile. For example, replacing saturated long chain fatty acids with medium chain fatty acids (MCFAs) has been reported to ameliorate inflammation. The Black Soldier Fly Larvae's (BSFL) oil is considered a sustainable dietary ingredient rich in the MCFA C12:0; however, its effect on inflammatory-related conditions has not been studied until now. Thus, the present study aimed to investigate the anti-inflammatory activity of BSFL oil in comparison to C12:0 using TLR4- or TLR2-activated THP-1 and J774A.1 cell lines and to assess its putative protective effect against dextran sulfate sodium (DSS)-induced acute colitis in mice. BSFL oil and C12:0 suppressed proinflammatory cytokines release in LPS-stimulated macrophages; however, only BSFL oil exerted anti-inflammatory activity in Pam3CSK4-stimulated macrophages. Transcriptome analysis provided insight into the possible role of BSFL oil in immunometabolism switch, involving mTOR signaling and an increase in PPAR target genes promoting fatty acid oxidation, exhibiting a discrepant mode of action compared to C12:0 treatment, which mainly affected cholesterol biosynthesis pathways. Additionally, we identified anti-inflammatory eicosanoids, oxylipins, and isoprenoids in the BSFL oil that may contribute to an orchestrated anti-inflammatory response. In vivo, a BSFL oil-enriched diet (20%) ameliorated the clinical signs of colitis, as indicated by improved body weight recovery, reduced colon shortening, reduced splenomegaly, and an earlier phase of secretory IgA response. These results indicate the novel beneficial use of BSFL oil as a modulator of inflammation.
Collapse
Affiliation(s)
- Hadas Richter
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Ofer Gover
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| |
Collapse
|
9
|
Wei Y, Zhang Z, Zhang Y, Li J, Ruan X, Wan Q, Yin T, Zou Y, Chen S, Zhang Y. Nontargeted metabolomics analysis of follicular fluid in patients with endometriosis provides a new direction for the study of oocyte quality. MedComm (Beijing) 2023; 4:e302. [PMID: 37265938 PMCID: PMC10229744 DOI: 10.1002/mco2.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
Endometriosis is a common, estrogen-dependent chronic gynecological disease that endangers the reproductive system and systemic metabolism of patients. We aimed to investigate the differences in metabolic profiles in the follicular fluid between infertile patients with endometriosis and controls. A total of 25 infertile patients with endometriosis and 25 infertile controls who were similar in age, BMI, fertilization method and ovulation induction treatment were recruited in this study. Metabolomics analysis of follicular fluid was performed by two methods of high-performance liquid chromatography tandem mass spectrometry. There were 36 upregulated and 17 downregulated metabolites in the follicular fluid of patients in the endometriosis group. KEGG pathway analysis revealed that these metabolites were enriched in phenylalanine, tyrosine and tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine metabolism and pyrimidine metabolism pathways. A biomarker panel consisting of 20 metabolites was constructed by random forest, with an accuracy of 0.946 and an AUC of 0.988. This study characterizes differences in follicular fluid metabolites and associated pathway profiles in infertile patients with endometriosis. These findings can provide a better comprehensive understanding of the disease and a new direction for the study of oocyte quality, as well as potential metabolic markers for the prognosis of endometriosis.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Zhourui Zhang
- The Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Yaoyao Zhang
- Department of Obstetrics and GynecologyKey Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduSichuanChina
| | - Jianan Li
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xianqin Ruan
- The Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Qiongqiong Wan
- The Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Tailang Yin
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yujie Zou
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Suming Chen
- The Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Yan Zhang
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
10
|
Hsiao YC, Matulewicz RS, Sherman SE, Jaspers I, Weitzman ML, Gordon T, Liu CW, Yang Y, Lu K, Bjurlin MA. Untargeted Metabolomics to Characterize the Urinary Chemical Landscape of E-Cigarette Users. Chem Res Toxicol 2023; 36:630-642. [PMID: 36912507 PMCID: PMC10371198 DOI: 10.1021/acs.chemrestox.2c00346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The health and safety of using e-cigarette products (vaping) have been challenging to assess and further regulate due to their complexity. Inhaled e-cigarette aerosols contain chemicals with under-recognized toxicological profiles, which could influence endogenous processes once inhaled. We urgently need more understanding on the metabolic effects of e-cigarette exposure and how they compare to combustible cigarettes. To date, the metabolic landscape of inhaled e-cigarette aerosols, including chemicals originated from vaping and perturbed endogenous metabolites in vapers, is poorly characterized. To better understand the metabolic landscape and potential health consequences of vaping, we applied liquid chromatography-mass spectrometry (LC-MS) based nontargeted metabolomics to analyze compounds in the urine of vapers, cigarette smokers, and nonusers. Urine from vapers (n = 34), smokers (n = 38), and nonusers (n = 45) was collected for verified LC-HRMS nontargeted chemical analysis. The altered features (839, 396, and 426 when compared smoker and control, vaper and control, and smoker and vaper, respectively) among exposure groups were deciphered for their structural identities, chemical similarities, and biochemical relationships. Chemicals originating from e-cigarettes and altered endogenous metabolites were characterized. There were similar levels of nicotine biomarkers of exposure among vapers and smokers. Vapers had higher urinary levels of diethyl phthalate and flavoring agents (e.g., delta-decalactone). The metabolic profiles featured clusters of acylcarnitines and fatty acid derivatives. More consistent trends of elevated acylcarnitines and acylglycines in vapers were observed, which may suggest higher lipid peroxidation. Our approach in monitoring shifts of the urinary chemical landscape captured distinctive alterations resulting from vaping. Our results suggest similar nicotine metabolites in vapers and cigarette smokers. Acylcarnitines are biomarkers of inflammatory status and fatty acid oxidation, which were dysregulated in vapers. With higher lipid peroxidation, radical-forming flavoring, and higher level of specific nitrosamine, we observed a trend of elevated cancer-related biomarkers in vapers as well. Together, these data present a comprehensive profiling of urinary biochemicals that were dysregulated due to vaping.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - Richard S. Matulewicz
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Scott E. Sherman
- Section on Tobacco, Alcohol and Drug Use, Department of Population Health, NYU School of Medicine, New York, NY 07920
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael L. Weitzman
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - Marc A. Bjurlin
- Department of Urology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
11
|
Hassan HA, Ayoub IM, Ragab TIM, Afifi SM, El-Gendy AENG, Farrag ARH, Abd-ELGawad AM, Farag M, Elshamy A, Ammar NM. Metabolomics approach of Symphyotrichum squamatum ethanol extract and its nano-Ag formulation protective effect on gastric ulcer via bio-chemical and pathological analyses. Biomarkers 2023; 28:190-205. [PMID: 36484430 DOI: 10.1080/1354750x.2022.2157488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ContextGastric ulcer (GU) a widely distributed ailment is associated with many causes, including alcohol consumption.Materials and MethodsChemical profiling of Symphyotrichum squamatum ethanol extract (SSEE) was established via ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-qTOF-MS) and employed in a silver nano-formulation (SSEE-N-Ag). SSEE and SSEE-N-Ag antiulcer activities were estimated against ethanol-induced rats by biochemical, histological, and metabolomics assessments. Reduced glutathione, total antioxidant capacity and prostaglandin E2 levels and gastric mucosa histopathological examination were analysed. The rats' metabolome changing alongside action pathways were elucidated via metabolite profile coupled to multivariate data analysis.ResultsUPLC-MS profiling of SSEE identified 75 components belonging to various classes. Compared with control, EtOH-treated rats showed decreased of tissue GSH, TAC and PGE2 by 62.32%, 51.85% and 47.03% respectively. SSEE and SSEE-N-Ag administration mitigated biochemical and histopathological alterations. Serum metabolomics analysis revealed for changes in several low molecular weight metabolites with ulcer development. These metabolites levels were restored to normal post-administration of SSEE-N-Ag. SSEE-N-Ag as mediated via modulating numerous metabolic pathways such as lipids, pyrimidine, energy metabolism and phosphatidylinositol signalling. This study provides novel insight for metabolic mechanisms underlying gastric ulcer relieving effect.ConclusionPresent results revealed potential antiulcer effect of SSEE and SSEE-N-Ag by decreasing ulcer-associated syndromes, supporting their anti-ulcerogenic action.
Collapse
Affiliation(s)
- Heba A Hassan
- Therapeutic Chemistry Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza, Egypt
| | - Iriny M Ayoub
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Sherif M Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | | | | | - Ahmed M Abd-ELGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdelsamed Elshamy
- Department of Natural Compounds Chemistry, National Research Center, Giza, Egypt
| | - Naglaa M Ammar
- Therapeutic Chemistry Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
12
|
Zhu Y, Xie Q, Ye J, Wang R, Yin X, Xie W, Li D. Metabolic Mechanism of Bacillus sp. LM24 under Abamectin Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3068. [PMID: 36833759 PMCID: PMC9965259 DOI: 10.3390/ijerph20043068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Abamectin (ABM) has been recently widely used in aquaculture. However, few studies have examined its metabolic mechanism and ecotoxicity in microorganisms. This study investigated the molecular metabolic mechanism and ecotoxicity of Bacillus sp. LM24 (B. sp LM24) under ABM stress using intracellular metabolomics. The differential metabolites most affected by the bacteria were lipids and lipid metabolites. The main significant metabolic pathways of B. sp LM24 in response to ABM stress were glycerolipid; glycine, serine, and threonine; and glycerophospholipid, and sphingolipid. The bacteria improved cell membrane fluidity and maintained cellular activity by enhancing the interconversion pathway of certain phospholipids and sn-3-phosphoglycerol. It obtained more extracellular oxygen and nutrients to adjust the lipid metabolism pathway, mitigate the impact of sugar metabolism, produce acetyl coenzyme A to enter the tricarboxylic acid (TCA) cycle, maintain sufficient anabolic energy, and use some amino acid precursors produced during the TCA cycle to express ABM efflux protein and degradative enzymes. It produced antioxidants, including hydroxyanigorufone, D-erythroascorbic acid 1'-a-D-xylopyranoside, and 3-methylcyclopentadecanone, to alleviate ABM-induced cellular and oxidative damage. However, prolonged stress can cause metabolic disturbances in the metabolic pathways of glycine, serine, threonine, and sphingolipid; reduce acetylcholine production; and increase quinolinic acid synthesis.
Collapse
Affiliation(s)
- Yueping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qilai Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Pural Pullution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ruzhen Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xudong Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
13
|
Simard M, Morin S, Ridha Z, Pouliot R. Current knowledge of the implication of lipid mediators in psoriasis. Front Immunol 2022; 13:961107. [PMID: 36091036 PMCID: PMC9459139 DOI: 10.3389/fimmu.2022.961107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The skin is an organ involved in several biological processes essential to the proper functioning of the organism. One of these essential biological functions of the skin is its barrier function, mediated notably by the lipids of the stratum corneum, and which prevents both penetration from external aggression, and transepidermal water loss. Bioactive lipid mediators derived from polyunsaturated fatty acids (PUFAs) constitute a complex bioactive lipid network greatly involved in skin homeostasis. Bioactive lipid mediators derived from n-3 and n-6 PUFAs have well-documented anti- and pro-inflammatory properties and are recognized as playing numerous and complex roles in the behavior of diverse skin diseases, including psoriasis. Psoriasis is an inflammatory autoimmune disease with many comorbidities and is associated with enhanced levels of pro-inflammatory lipid mediators. Studies have shown that a high intake of n-3 PUFAs can influence the development and progression of psoriasis, mainly by reducing the severity and frequency of psoriatic plaques. Herein, we provide an overview of the differential effects of n-3 and n-6 PUFA lipid mediators, including prostanoids, hydroxy-fatty acids, leukotrienes, specialized pro-resolving mediators, N-acylethanolamines, monoacylglycerols and endocannabinoids. This review summarizes current findings on lipid mediators playing a role in the skin and their potential as therapeutic targets for psoriatic patients.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Zainab Ridha
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- *Correspondence: Roxane Pouliot,
| |
Collapse
|
14
|
Panebianco C, Villani A, Pisati F, Orsenigo F, Ulaszewska M, Latiano TP, Potenza A, Andolfo A, Terracciano F, Tripodo C, Perri F, Pazienza V. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models. Biomed Pharmacother 2022; 151:113163. [PMID: 35617803 DOI: 10.1016/j.biopha.2022.113163] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer. The characteristic excessive stromatogenesis accompanying the growth of this tumor is believed to contribute to chemoresistance which, together with drug toxicity, results in poor clinical outcome. An increasing number of studies are showing that gut microbiota and their metabolites are implicated in cancer pathogenesis, progression and response to therapies. In this study we tested butyrate, a product of dietary fibers' bacterial fermentation, whose anticancer and anti-inflammatory functions are known. We provided in vitro evidence that, beside slowing proliferation, butyrate enhanced gemcitabine effectiveness against two human pancreatic cancer cell lines, mainly inducing apoptosis. In addition, we observed that, when administered to a PDAC mouse model, alone or combined with gemcitabine treatment, butyrate markedly reduced the cancer-associated stromatogenesis, preserved intestinal mucosa integrity and affected fecal microbiota composition by increasing short chain fatty acids producing bacteria and decreasing some pro-inflammatory microorganisms. Furthermore, a biochemical serum analysis showed butyrate to ameliorate some markers of kidney and liver damage, whereas a metabolomics approach revealed a deep modification of lipid metabolism, which may affect tumor progression or response to therapy. Such results support that butyrate supplementation, in addition to conventional therapies, can interfere with pancreatic cancer biology and response to treatment and can alleviate some damages associated to cancer itself or to chemotherapy.
Collapse
Affiliation(s)
- Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Annacandida Villani
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech S.C.a.R.L, Via Adamello, 16, 20139 Milan, MI, Italy
| | | | - Marynka Ulaszewska
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Tiziana Pia Latiano
- Oncology Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Fulvia Terracciano
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Claudio Tripodo
- Histopathology Unit, Cogentech S.C.a.R.L, Via Adamello, 16, 20139 Milan, MI, Italy; Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
15
|
de Oliveira FR, da Silva NM, Hamoy M, Crespo-López ME, Ferreira IM, da Silva EO, de Matos Macchi B, do Nascimento JLM. The GABAergic System and Endocannabinoids in Epilepsy and Seizures: What Can We Expect from Plant Oils? Molecules 2022; 27:molecules27113595. [PMID: 35684543 PMCID: PMC9182121 DOI: 10.3390/molecules27113595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Seizures and epilepsy are some of the most common serious neurological disorders, with approximately 80% of patients living in developing/underdeveloped countries. However, about one in three patients do not respond to currently available pharmacological treatments, indicating the need for research into new anticonvulsant drugs (ACDs). The GABAergic system is the main inhibitory system of the brain and has a central role in seizures and the screening of new ACD candidates. It has been demonstrated that the action of agents on endocannabinoid receptors modulates the balance between excitatory and inhibitory neurotransmitters; however, studies on the anticonvulsant properties of endocannabinoids from plant oils are relatively scarce. The Amazon region is an important source of plant oils that can be used for the synthesis of new fatty acid amides, which are compounds analogous to endocannabinoids. The synthesis of such compounds represents an important approach for the development of new anticonvulsant therapies.
Collapse
Affiliation(s)
- Fábio Rodrigues de Oliveira
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratório de Controle de Qualidade e Bromatologia, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Nágila Monteiro da Silva
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Moisés Hamoy
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Maria Elena Crespo-López
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Irlon Maciel Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil;
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Edilene Oliveira da Silva
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratorio de Biologia Estrutural, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INCT-INBEB), Rio de Janeiro 21941-590, Brazil
| | - Barbarella de Matos Macchi
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - José Luiz Martins do Nascimento
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
- Correspondence:
| |
Collapse
|
16
|
Coccurello R, Marrone MC, Maccarrone M. The Endocannabinoids-Microbiota Partnership in Gut-Brain Axis Homeostasis: Implications for Autism Spectrum Disorders. Front Pharmacol 2022; 13:869606. [PMID: 35721203 PMCID: PMC9204215 DOI: 10.3389/fphar.2022.869606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The latest years have witnessed a growing interest towards the relationship between neuropsychiatric disease in children with autism spectrum disorders (ASD) and severe alterations in gut microbiota composition. In parallel, an increasing literature has focused the attention towards the association between derangement of the endocannabinoids machinery and some mechanisms and symptoms identified in ASD pathophysiology, such as alteration of neural development, immune system dysfunction, defective social interaction and stereotypic behavior. In this narrative review, we put together the vast ground of endocannabinoids and their partnership with gut microbiota, pursuing the hypothesis that the crosstalk between these two complex homeostatic systems (bioactive lipid mediators, receptors, biosynthetic and hydrolytic enzymes and the entire bacterial gut ecosystem, signaling molecules, metabolites and short chain fatty acids) may disclose new ideas and functional connections for the development of synergic treatments combining “gut-therapy,” nutritional intervention and pharmacological approaches. The two separate domains of the literature have been examined looking for all the plausible (and so far known) overlapping points, describing the mutual changes induced by acting either on the endocannabinoid system or on gut bacteria population and their relevance for the understanding of ASD pathophysiology. Both human pathology and symptoms relief in ASD subjects, as well as multiple ASD-like animal models, have been taken into consideration in order to provide evidence of the relevance of the endocannabinoids-microbiota crosstalk in this major neurodevelopmental disorder.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute for Complex Systems (ISC), National Council of Research (CNR), Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| | - Maria Cristina Marrone
- Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| |
Collapse
|
17
|
Ammar NM, Hassan H, Ahmed R, El Gendy AEN, Abd-ElGawad A, Farrag AR, Farag AR, Elshamy A, Afifi S. Gastro-protective effect of Artemisia sieberi essential oil against ethanol-induced ulcer in rats as revealed via biochemical, histopathological and metabolomics analysis. Biomarkers 2022; 27:247-257. [PMID: 34978233 DOI: 10.1080/1354750x.2021.2025428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT Gastric ulcer is regarded as one of the main clinical ailments with high morbidity and mortality rates. MATERIALS AND METHODS Gastro-protective effect of Artemisia sieberi essential oil (AS-EO) in ethanol-induced rats was evaluated via biochemical, histopathological and large-scale metabolomics analyses. Glutathione (GSH), total antioxidant capacity (TAC), prostaglandin (PGE2) and tumor necrosis factor α (TNF-α) alongside with histopathological examination of gastric mucosa were analyzed. Metabolites profiling coupled to Global Natural Products Social molecular networking platform (GNPS) and multivariate data analyses to reveal for changes in rats metabolome with treatments and involved action mechanisms. RESULTS Pretreatment with 100 and 200 mg/kg of AS-EO in EtOH-treated rats restored all parameters towards normal status compared to disease model. AS-EO alleviated the histological and pathological damage of gastric tissue caused by ethanol. Metabolites profiling revealed an increase in uracil, cholesterol and fatty acids/fatty acyl amides levels in ulcer rats and restored to normal levels post AS-EO intervention. These results indicated the efficacy of AS-EO in a dose-dependent manner, and to exert protective effects in ulcer rat model by targeting several metabolic pathways viz. lipid, energy, and nucleotide metabolisms. CONCLUSION AS-EO adds to the known uses of genus Artemisia as anti-ulcerogenic agent by attenuating oxidative stress and inflammatory responses associated with an ulcer. Several novel biomarkers for ulcer progression in rats were identified and have yet to be confirmed in human models.
Collapse
Affiliation(s)
- Naglaa M Ammar
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Heba Hassan
- Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Rania Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Abd El-Nasser El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, Cairo, Egypt
| | - Ahmed Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Abdel Razik Farrag
- Department of Pathology, National Research Centre, 33 El Bohouth St. Dokki, Giza 12622, Egypt
| | - Abdel Razik Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo P.B. 11562, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Abdelsamed Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Sherif Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| |
Collapse
|
18
|
Zhang D, Lu M, Chen C, Xu Y, Peng T. Fatty Acyl Sulfonyl Fluoride as an Activity-Based Probe for Profiling Fatty Acid-Associated Proteins in Living Cells. Chembiochem 2021; 23:e202100628. [PMID: 34918441 DOI: 10.1002/cbic.202100628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Fatty acids play fundamental structural, metabolic, functional, and signaling roles in all biological systems. Altered fatty acid levels and metabolism have been associated with many pathological conditions. Chemical probes have greatly facilitated biological studies on fatty acids. Herein, we report the development and characterization of an alkynyl-functionalized long-chain fatty acid-based sulfonyl fluoride probe for covalent labelling, enrichment, and identification of fatty acid-associated proteins in living cells. Our quantitative chemical proteomics show that this sulfonyl fluoride probe targets diverse classes of fatty acid-associated proteins including many metabolic serine hydrolases that are known to be involved in fatty acid metabolism and modification. We further validate that the probe covalently modifies the catalytically or functionally essential serine or tyrosine residues of its target proteins and enables evaluation of their inhibitors. The sulfonyl fluoride-based chemical probe thus represents a new tool for profiling the expression and activity of fatty acid-associated proteins in living cells.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Minghao Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chengjie Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| |
Collapse
|
19
|
André R, Guedes R, López J, Serralheiro ML. Untargeted metabolomic study of HepG2 cells under the effect of Fucus vesiculosus aqueous extract. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9197. [PMID: 34515383 DOI: 10.1002/rcm.9197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Fucus vesiculosus has been described with potential to develop functional foods containing bioactive compounds against various diseases. However, more studies are needed to better understand its functioning and its previously reported bioactivities, mainly at the molecular level. METHODS An untargeted metabolomic study was performed to analyse HepG2 cells exposed to F. vesiculosus aqueous extract, rich in phlorotannins and peptides, during 24 h. This study was carried out using liquid chromatography combined with high-resolution tandem mass spectrometry. RESULTS This metabolomic study showed significant changes in HepG2 metabolites in the presence of the extract, standing out being the increased intensity of various fatty acid amides (oleamide, (Z)-eicos-11-enamide, linoleamide, palmitamide, dodecanamide and stearamide). This group of metabolites is reported in the literature with anticancer and hypocholesterolemic activity, bioactivities also described for F. vesiculosus. The extract induced, likewise, the expression of glutathione indicating its antioxidant effect. CONCLUSIONS This study demonstrated the potential of the compounds present in the F. vesiculosus aqueous extract for the development of natural drugs, nutraceuticals or dietary supplements, justified at the molecular level by changes in cell metabolites related to anticancer and hypocholesterolemic activity. The results here described, using an untargeted metabolomic approach, may contribute to a better understanding of algal behaviour, when used as food, in health-promoting effects.
Collapse
Affiliation(s)
- Rebeca André
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Campo Grande, Lisbon, Portugal
| | - Rita Guedes
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Campo Grande, Lisbon, Portugal
| | - Javier López
- Parque Empresarial Rivas Futura, Bruker Española SA, Rivas Vaciamadrid, Madrid, Spain
| | - Maria Luísa Serralheiro
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Campo Grande, Lisbon, Portugal
- Faculty of Sciences, Departamento de Química e Bioquímica, University of Lisbon, Campo Grande, Lisbon, Portugal
| |
Collapse
|
20
|
Tsochatzis ED, Berggreen IE, Nørgaard JV, Theodoridis G, Dalsgaard TK. Biodegradation of expanded polystyrene by mealworm larvae under different feeding strategies evaluated by metabolic profiling using GC-TOF-MS. CHEMOSPHERE 2021; 281:130840. [PMID: 34023760 DOI: 10.1016/j.chemosphere.2021.130840] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The present study investigated the biodegradation of polystyrene (PS) plastic by mealworm (Tenebrio molitor) on different diets followed by untargeted screening of larvae gut intestine tissue and frass (manure and feed residuals) to investigate the existence of polymer-generated organic residues. Three different diets, consisting of PS, rolled barley and water were tested. PS degradation rates ranged from 16% to 23% within 15 days, with no statistical differences in survival rates. The larvae fed with ad libitum barley:PS (20:1 w/w) and water had the highest growth rate, while higher PS consumption was observed for barley:PS of 4:1 w/w. A GC-TOF-MS analysis revealed no contaminating substances in the gut intestine tissue, nor styrene or PS oligomers, whilst several bioactive compounds and traces of alkanes, mostly with small carbon chains, were present. Metabolomics analysis on the collected frass, either on the lipophilic (CHCl3) or the polar fraction (MeOH-H2O) was performed. Styrene and PS oligomers (dimers, trimers) were identified, though in a relatively low total amount, up to a total of 346.0 ng/mg 2,4 di-tert butylphenol was identified in both frass and tissue, coming from the PS polymer (Non-intentionally added substances; NIAS). Finally, in the polar fraction of frass, bioactive molecules (fatty acids, amides) were identified, together with several hydrocarbons, mostly with longer carbon chains. The formation of these substances indicated enzymatic and biochemical activity in the larvae-gut intestine. It was shown that degrading and contaminating organic compounds occur at low levels, in both gut intestine and frass, during bio-degradation of PS.
Collapse
Affiliation(s)
- E D Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CiFOOD, Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark.
| | - I E Berggreen
- Aarhus University, Department of Animal Science, Blichers Alle 20, 8830, Tjele, Denmark
| | - J V Nørgaard
- Aarhus University, Department of Animal Science, Blichers Alle 20, 8830, Tjele, Denmark
| | - G Theodoridis
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - T K Dalsgaard
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CiFOOD, Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CBIO, Centre for Circular Bioeconomy, Aarhus University, Blichers Allé 20, 8800, Tjele, Denmark
| |
Collapse
|
21
|
Subramaniyan SB, Megarajan S, Dharshini KS, Veerappan A. Artocarpus integrifolia seed lectin enhances membrane damage, oxidative stress and biofilm inhibition activity of silver nanoparticles against Staphylococcus aureus. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Wang X, Wang X, Xie D. A novel method for oil deacidification: Chemical amidation with ethanolamine catalyzed by calcium oxide. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Rahman SMK, Uyama T, Hussain Z, Ueda N. Roles of Endocannabinoids and Endocannabinoid-like Molecules in Energy Homeostasis and Metabolic Regulation: A Nutritional Perspective. Annu Rev Nutr 2021; 41:177-202. [PMID: 34115519 DOI: 10.1146/annurev-nutr-043020-090216] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endocannabinoid system is involved in signal transduction in mammals. It comprises principally G protein-coupled cannabinoid receptors and their endogenous agonists, called endocannabinoids, as well as the enzymes and transporters responsible for the metabolism of endocannabinoids. Two arachidonic acid-containing lipid molecules, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, function as endocannabinoids. N-acylethanolamines and monoacylglycerols, in which the arachidonic acid chain is replaced with a saturated or monounsaturated fatty acid, are not directly involved in the endocannabinoid system but exhibit agonistic activities for other receptors. These endocannabinoid-like molecules include palmitoylethanolamide, oleoylethanolamide (OEA), and 2-oleoylglycerol. Endocannabinoids stimulate feeding behavior and the anabolism of lipids and glucose, while OEA suppresses appetite. Both central and peripheral systems are included in these nutritional and metabolic contexts. Therefore, they have potential in the treatment and prevention of obesity. We outline the structure, metabolism, and biological activities of endocannabinoids and related molecules, and focus on their involvement in energy homeostasis and metabolic regulation. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- S M Khaledur Rahman
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Pharmaceutical Sciences, School of Pharmacy, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| |
Collapse
|
24
|
Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. Nat Microbiol 2021; 6:792-805. [PMID: 33846627 DOI: 10.1038/s41564-021-00887-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/01/2021] [Indexed: 02/01/2023]
Abstract
Human physiology is regulated by endogenous signalling compounds, including fatty acid amides (FAAs), chemical mimics of which are made by bacteria. The molecules produced by human-associated microbes are difficult to identify because they may only be made in a local niche or they require a substrate sourced from the host, diet or other microbes. We identified a set of uncharacterized gene clusters in metagenomics data from the human gut microbiome. These clusters were discovered to make FAAs by fusing exogenous fatty acids with amines. Using an in vitro assay, we tested their ability to incorporate 25 fatty acids and 53 amines known to be present in the human gut, from which the production of six FAAs was deduced (oleoyl dopamine, oleoyl tyramine, lauroyl tryptamine, oleoyl aminovaleric acid, α-linolenoyl phenylethylamine and caproyl tryptamine). These molecules were screened against panels of human G-protein-coupled receptors to deduce their putative human targets. Lauroyl tryptamine is found to be an antagonist to the immunomodulatory receptor EBI2 against its native oxysterol ligand (0.98 μM half-maximal inhibitory concentration), is produced in culture by Eubacterium rectale and is present in human faecal samples. FAAs produced by Clostridia may serve as a mechanism to modulate their host by mimicking human signalling molecules.
Collapse
|
25
|
Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell 2021; 56:1394-1407. [PMID: 33891896 DOI: 10.1016/j.devcel.2021.03.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Lipids play crucial roles in regulating aging and longevity. In the past few decades, a series of genetic pathways have been discovered to regulate lifespan in model organisms. Interestingly, many of these regulatory pathways are linked to lipid metabolism and lipid signaling. Lipid metabolic enzymes undergo significant changes during aging and are regulated by different longevity pathways. Lipids also actively modulate lifespan and health span as signaling molecules. In this review, we summarize recent insights into the roles of lipid metabolism and lipid signaling in aging and discuss lipid-related interventions in promoting longevity.
Collapse
Affiliation(s)
- Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathon Duffy
- Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Molecular Mechanism of Cannabinoids in Cancer Progression. Int J Mol Sci 2021; 22:ijms22073680. [PMID: 33916164 PMCID: PMC8037087 DOI: 10.3390/ijms22073680] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cannabinoids are a family of heterogeneous compounds that mostly interact with receptors eliciting several physiological effects both in the central and peripheral nervous systems and in peripheral organs. They exert anticancer action by modulating signaling pathways involved in cancer progression; furthermore, the effects induced by their use depend on both the type of tumor and their action on the components of the endocannabinoid system. This review will explore the mechanism of action of the cannabinoids in signaling pathways involved in cancer proliferation, neovascularisation, migration, invasion, metastasis, and tumor angiogenesis.
Collapse
|
27
|
Riquelme-Sandoval A, de Sá-Ferreira CO, Miyakoshi LM, Hedin-Pereira C. New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Front Pharmacol 2020; 11:596572. [PMID: 33362550 PMCID: PMC7759141 DOI: 10.3389/fphar.2020.596572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
Classically, the endocannabinoid system (ECS) consists of endogenous lipids, of which the best known are anandamide (AEA) and 2 arachidonoylglycerol (2-AG), their enzyme machinery for synthesis and degradation and their specific receptors, cannabinoid receptor one (CB1) and cannabinoid receptor two (CB2). However, endocannabinoids also bind to other groups of receptors. Furthermore, another group of lipids are considered to be endocannabinoids, such as the fatty acid ethanolamides, the fatty acid primary amides and the monoacylglycerol related molecules. Recently, it has been shown that the hemopressin peptide family, derived from α and β chains of hemoglobins, is a new family of cannabinoids. Some studies indicate that hemopressin peptides are expressed in the central nervous system and peripheral tissues and act as ligands of these receptors, thus suggesting that they play a physiological role. In this review, we examine new evidence on lipid endocannabinoids, cannabinoid receptors and the modulation of their signaling pathways. We focus our discussion on the current knowledge of the pharmacological effects, the biosynthesis of the peptide cannabinoids and the new insights on the activation and modulation of cannabinoid receptors by these peptides. The novel peptide compounds derived from hemoglobin chains and their non-classical activation of cannabinoid receptors are only starting to be uncovered. It will be exciting to follow the ensuing discoveries, not only in reference to what is already known of the classical lipid endocannabinoids revealing more complex aspects of endocannabinoid system, but also as to its possibilities as a future therapeutic tool.
Collapse
Affiliation(s)
- Agustín Riquelme-Sandoval
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio O de Sá-Ferreira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leo M Miyakoshi
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,VPPCB-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Blaszczyk A, Matysiak S, Kula J, Szostakiewicz K, Karkusiewicz Z. Cytotoxic and genotoxic effects of (R)- and (S)-ricinoleic acid derivatives. Chirality 2020; 32:998-1007. [PMID: 32250002 DOI: 10.1002/chir.23226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023]
Abstract
(R)-ricinoleic acid is the main component of castor oil from Ricinus communis L. Due to the presence of the hydroxyl group in homoallylic position and asymmetrically substituted carbon atom, it may undergo a number of chemical and biochemical transformations resulting in the products with some specific bioactivities. Conversion of (R)-ricinoleic acid into its (S)-enantiomer enables synthesis of both (R)- and (S)-ricinoleic acid derivatives and comparison of their biological activities. In the present research, (R)- and (S)-ricinoleic acid amides synthesized from methyl ricinoleates and ethanolamine or pyrrolidine as well as acetate derivatives of ethanolamine amides were studied to demonstrate their biological activities using HT29 cancer cells. Double staining of cells with fluorochromes (Hoechst 33258/propidium iodide) as well as 2,'7'-dichlorodihydrofluorescein (DCF) and comet assays were performed. Both the tested amides and acetates caused DNA damage and induced apoptotic and necrotic cell death. In the case of (R)- and (S)-enantiomers of one of the tested acetates, significant difference in the ability to induce DNA damage was observed, which showed the impact of the stereogenic center on the activities of these compounds.
Collapse
Affiliation(s)
- Alina Blaszczyk
- Laboratory of Cytogenetics, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sylwia Matysiak
- Faculty of Biotechnology and Food Sciences, Institute of General Food Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jozef Kula
- Faculty of Biotechnology and Food Sciences, Institute of General Food Chemistry, Lodz University of Technology, Lodz, Poland
| | - Katarzyna Szostakiewicz
- Laboratory of Cytogenetics, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Zaneta Karkusiewicz
- Laboratory of Cytogenetics, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
29
|
STENSSON NICLAS, GERDLE BJÖRN, ERNBERG MALIN, MANNERKORPI KAISA, KOSEK EVA, GHAFOURI BIJAR. Increased Anandamide and Decreased Pain and Depression after Exercise in Fibromyalgia. Med Sci Sports Exerc 2020; 52:1617-1628. [DOI: 10.1249/mss.0000000000002293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
n-3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer. Int J Mol Sci 2020; 21:ijms21072279. [PMID: 32224850 PMCID: PMC7178041 DOI: 10.3390/ijms21072279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Over the last decades a renewed interest in n−3 very long polyunsaturated fatty acids (PUFAs), derived mainly from fish oils in the human diet, has been observed because of their potential effects against cancer diseases, including breast carcinoma. These n−3 PUFAs mainly consist of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that, alone or in combination with anticancer agents, induce cell cycle arrest, autophagy, apoptosis, and tumor growth inhibition. A large number of molecular targets of n−3 PUFAs have been identified and multiple mechanisms appear to underlie their antineoplastic activities. Evidence exists that EPA and DHA also elicit anticancer effects by the conversion to their corresponding ethanolamide derivatives in cancer cells, by binding and activation of different receptors and distinct signaling pathways. Other conjugates with serotonin or dopamine have been found to exert anti-inflammatory activities in breast tumor microenvironment, indicating the importance of these compounds as modulators of tumor epithelial/stroma interplay. The objective of this review is to provide a general overview and an update of the current n−3 PUFA derivative research and to highlight intriguing aspects of the potential therapeutic benefits of these low-toxicity compounds in breast cancer treatment and care.
Collapse
|
31
|
Rodrigues de Oliveira F, Eleuterio Rodrigues K, Hamoy M, Rodrigues Sarquis Í, Otake Hamoy A, Elena Crespo Lopez M, Maciel Ferreira I, de Matos Macchi B, Luiz Martins do Nascimento J. Fatty Acid Amides Synthesized from Andiroba Oil ( Carapa guianensis Aublet.) Exhibit Anticonvulsant Action with Modulation on GABA-A Receptor in Mice: A Putative Therapeutic Option. Pharmaceuticals (Basel) 2020; 13:ph13030043. [PMID: 32164340 PMCID: PMC7151664 DOI: 10.3390/ph13030043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a chronic neurological disease characterized by excessive neuronal activity leading to seizure; about 30% of affected patients suffer from the refractory and pharmacoresistant form of the disease. The anticonvulsant drugs currently used for seizure control are associated with adverse reactions, making it important to search for more effective drugs with fewer adverse reactions. There is increasing evidence that endocannabinoids can pharmacologically modulate action against seizure and antiepileptic disorders. Therefore, the objective of this study is to investigate the anticonvulsant effects of fatty acid amides (FAAs) in a pentylenetetrazole (PTZ)-induced seizure model in mice. FAAs (FAA1 and FAA2) are obtained from Carapa guianensis oil by biocatalysis and are characterized by Fourier Transform Infrared Analysis (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS). Only FAA1 is effective in controlling the increased latency time of the first myoclonic jerk and in significantly decreasing the total duration of tonic-clonic seizures relative to the pentylenetetrazol model. Also, electrocortical alterations produced by pentylenetetrazol are reduced when treated by FAA1 that subsequently decreased wave amplitude and energy in Beta rhythm. The anticonvulsant effects of FAA1 are reversed by flumazenil, a benzodiazepine antagonist on Gamma-Aminobutyric Acid-A (GABA-A) receptors, indicating a mode of action via the benzodiazepine site of these receptors. To conclude, the FAA obtained from C. guianensis oil is promising against PTZ-induced seizures.
Collapse
Affiliation(s)
- Fábio Rodrigues de Oliveira
- Programa de Pós graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.)
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Laboratório de Controle de Qualidade e Bromatologia, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Keuri Eleuterio Rodrigues
- Programa de Pós graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.)
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Moisés Hamoy
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Ícaro Rodrigues Sarquis
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá, Macapá 68902-280, Brazil
- Programa de Pós graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Akira Otake Hamoy
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Maria Elena Crespo Lopez
- Programa de Pós graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.)
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Irlon Maciel Ferreira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá, Macapá 68902-280, Brazil
- Programa de Pós graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Barbarella de Matos Macchi
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - José Luiz Martins do Nascimento
- Programa de Pós graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.)
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Programa de Pós graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro, RJ 21040-900, Brazil
- Correspondence: or
| |
Collapse
|
32
|
Jehl F, Désert C, Klopp C, Brenet M, Rau A, Leroux S, Boutin M, Lagoutte L, Muret K, Blum Y, Esquerré D, Gourichon D, Burlot T, Collin A, Pitel F, Benani A, Zerjal T, Lagarrigue S. Chicken adaptive response to low energy diet: main role of the hypothalamic lipid metabolism revealed by a phenotypic and multi-tissue transcriptomic approach. BMC Genomics 2019; 20:1033. [PMID: 31888468 PMCID: PMC6937963 DOI: 10.1186/s12864-019-6384-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Production conditions of layer chicken can vary in terms of temperature or diet energy content compared to the controlled environment where pure-bred selection is undertaken. The aim of this study was to better understand the long-term effects of a 15%-energy depleted diet on egg-production, energy homeostasis and metabolism via a multi-tissue transcriptomic analysis. Study was designed to compare effects of the nutritional intervention in two layer chicken lines divergently selected for residual feed intake. Results Chicken adapted to the diet in terms of production by significantly increasing their feed intake and decreasing their body weight and body fat composition, while their egg production was unchanged. No significant interaction was observed between diet and line for the production traits. The low energy diet had no effect on adipose tissue and liver transcriptomes. By contrast, the nutritional challenge affected the blood transcriptome and, more severely, the hypothalamus transcriptome which displayed 2700 differentially expressed genes. In this tissue, the low-energy diet lead to an over-expression of genes related to endocannabinoid signaling (CN1R, NAPE-PLD) and to the complement system, a part of the immune system, both known to regulate feed intake. Both mechanisms are associated to genes related polyunsaturated fatty acids synthesis (FADS1, ELOVL5 and FADS2), like the arachidonic acid, a precursor of anandamide, a key endocannabinoid, and of prostaglandins, that mediate the regulatory effects of the complement system. A possible regulatory role of NR1H3 (alias LXRα) has been associated to these transcriptional changes. The low-energy diet further affected brain plasticity-related genes involved in the cholesterol synthesis and in the synaptic activity, revealing a link between nutrition and brain plasticity. It upregulated genes related to protein synthesis, mitochondrial oxidative phosphorylation and fatty acid oxidation in the hypothalamus, suggesting reorganization in nutrient utilization and biological synthesis in this brain area. Conclusions We observed a complex transcriptome modulation in the hypothalamus of chicken in response to low-energy diet suggesting numerous changes in synaptic plasticity, endocannabinoid regulation, neurotransmission, lipid metabolism, mitochondrial activity and protein synthesis. This global transcriptomic reprogramming could explain the adaptive behavioral response (i.e. increase of feed intake) of the animals to the low-energy content of the diet.
Collapse
Affiliation(s)
- F Jehl
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - C Désert
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - C Klopp
- SIGENAE Plateform, INRA, 31326, Castanet-Tolosan, France
| | - M Brenet
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - A Rau
- GABI UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - S Leroux
- GenPhySE UMR 1388, INRA, INPT, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - M Boutin
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - L Lagoutte
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - K Muret
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - Y Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013, Paris, France
| | - D Esquerré
- GENOTOUL Plateform, INRA, 31326, Castanet-Tolosan, France
| | | | - T Burlot
- NOVOGEN, Mauguérand, 22800, Le Foeil, France
| | - A Collin
- BOA UMR, INRA, Université de Tours, 37380, Nouzilly, France
| | - F Pitel
- GenPhySE UMR 1388, INRA, INPT, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - A Benani
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - T Zerjal
- SIGENAE Plateform, INRA, 31326, Castanet-Tolosan, France.
| | - S Lagarrigue
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France.
| |
Collapse
|
33
|
Determination of anandamide in cerebrospinal fluid samples by disposable pipette extraction and ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1130-1131:121809. [PMID: 31669634 DOI: 10.1016/j.jchromb.2019.121809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 11/21/2022]
Abstract
This work describes the development and validation of an ultra-high performance liquid chromatography tandem mass spectrometry method that uses disposable pipette extraction (DPX-UHPLC-MS/MS) to determine the endocannabinoid anandamide (AEA) in cerebrospinal fluid samples (CSF). The DPX parameters sorption equilibrium time, sample volume, number of draw-eject cycles, washing solvent volume, and elution solvent volume were optimized by design of experiments (DOE) techniques. The simple DPX protocol proposed herein required a reduced amount of CSF sample and organic solvent. The DPX-UHPLC-MS/MS method presented linear range from 0.10 ng mL-1 (LLOQ) to 3.0 ng mL-1, inter- and intra-assay accuracy with EPR values varying from -8.2% to 9.6%, inter- and intra-assay precision with CV values ranging from 1.3% to 14.8% (except for the LLOQ), and no significant matrix effect. The innovative DPX-UHPLC-MS/MS method was successfully applied to determine AEA in CSF samples from Parkinson's disease (PD) patients and should therefore be used in clinical studies.
Collapse
|
34
|
Khaled SE, Hashem FAM, Shabana MH, Hammam AMM, Madboli ANA, Al-Mahdy DA, Farag MA. A biochemometric approach for the assessment of Phyllanthus emblica female fertility effects as determined via UPLC-ESI-qTOF-MS and GC-MS. Food Funct 2019; 10:4620-4635. [PMID: 31290504 DOI: 10.1039/c9fo00767a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phyllanthus emblica L. fruits have long been used in Ayurvedic medicine for their many health benefits. In this study, we present P. emblica fruit crude extract and fractions' effects on the female reproductive system by assessing its estrogenic and gonadotropic activities. Results revealed that the non-polar petroleum ether and chloroform fractions exhibited the strongest estrogenic and follicle-stimulating hormone-like [FSH] activity, while the n-butanol fraction exhibited a significant luteinizing hormone-like [LH] activity. The ethyl acetate fraction showed neither estrogenic nor gonadotropic activities and in contrast it may impair female fertility suggesting that different metabolite classes contribute to the plant's overall effect on female fertility. To pinpoint active agents in these fractions, UPLC/ESI-qTOF-MS- was employed for secondary metabolite profiling with 100 metabolites annotated including ellagitannins, gallic acid derivatives, terpeneoids, sterols, phthalates and fatty acids. Correlation between extracts/fraction bioassays and UPLC/MS data was attempted using orthogonal partial least squares-discriminant analysis (OPLS-DA) revealing that guaiane-type sesquiterpenes, phthalates, diterpenes and oxygenated fatty acids showed positive correlation with estrogenic and gonadotropic activities. In contrast, mucic acid gallates, gallic acid derivatives and ellagitannins correlated negatively. GC/MS analysis of the non-polar bioactive fractions viz. petroleum ether and chloroform was also attempted which revealed its enrichment in fatty acids/fatty acyl esters (34%) and phenolic compounds (19.6%). This study provides the first report on the estrogenic and gonadotropic activities of P. emblica fruits in relation to their metabolite fingerprint.
Collapse
Affiliation(s)
- Sally E Khaled
- Department of Pharmacognosy, National Research Centre, Dokki, Egypt
| | | | | | | | | | | | | |
Collapse
|
35
|
Marcocci L, Suzuki YJ. Metabolomics Studies to Assess Biological Functions of Vitamin E Nicotinate. Antioxidants (Basel) 2019; 8:E127. [PMID: 31083512 PMCID: PMC6562962 DOI: 10.3390/antiox8050127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
Vitamin E nicotinate (tocopherol nicotinate, tocopheryl nicotinate; TN) is an ester of two vitamins, tocopherol (vitamin E) and niacin (vitamin B3), in which niacin is linked to the hydroxyl group of active vitamin E. This vitamin E ester can be chemically synthesized and is used for supplementation. However, whether TN is formed in the biological system was unclear. Our laboratory previously detected TN in rat heart tissues, and its level was 30-fold lower in a failing heart (Wang et al., PLoS ONE 2017, 12, e0176887). The rat diet used in these experiments contained vitamin E acetate (tocopherol acetate; TA) and niacin separately, but not in the form of TN. Since only TN, but not other forms of vitamin E, was decreased in heart failure, the TN structure may elicit biologic functions independent of serving as a source of active vitamin E antioxidant. To test this hypothesis, the present study performed metabolomics to compare effects of TN on cultured cells to those of TA plus niacin added separately (TA + N). Human vascular smooth muscle cells were treated with TN or with TA + N (100 μM) for 10 min. Metabolite profiles showed that TN and TA + N influenced the cells differentially. TN effectively upregulated various primary fatty acid amides including arachidonoylethanoamine (anandamide/virodhamine) and palmitamide. TN also activated mitogen-activated protein kinases. These results suggest a new biological function of TN to elicit cell signaling.
Collapse
Affiliation(s)
- Lucia Marcocci
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
36
|
Otrubova K, Chatterjee S, Ghimire S, Cravatt BF, Boger DL. N-Acyl pyrazoles: Effective and tunable inhibitors of serine hydrolases. Bioorg Med Chem 2019; 27:1693-1703. [PMID: 30879861 DOI: 10.1016/j.bmc.2019.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 11/24/2022]
Abstract
A series of N-acyl pyrazoles was examined as candidate serine hydrolase inhibitors in which the active site acylating reactivity and the leaving group ability of the pyrazole could be tuned not only through the nature of the acyl group (reactivity: amide > carbamate > urea), but also through pyrazole C4 substitution with electron-withdrawing or electron-donating substituents. Their impact on enzyme inhibitory activity displayed pronounced effects with the activity improving substantially as one alters both the nature of the reacting carbonyl group (urea > carbamate > amide) and the pyrazole C4 substituent (CN > H > Me). It was further demonstrated that the acyl chain of the N-acyl pyrazole ureas can be used to tailor the potency and selectivity of the inhibitor class to a targeted serine hydrolase. Thus, elaboration of the acyl chain of pyrazole-based ureas provided remarkably potent, irreversible inhibitors of fatty acid amide hydrolase (FAAH, apparent Ki = 100-200 pM), dual inhibitors of FAAH and monoacylglycerol hydrolase (MGLL), or selective inhibitors of MGLL (IC50 = 10-20 nM) while simultaneously minimizing off-target activity (e.g., ABHD6 and KIAA1363).
Collapse
Affiliation(s)
- Katerina Otrubova
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shreyosree Chatterjee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Srijana Ghimire
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Castillo-Peinado L, López-Bascón M, Mena-Bravo A, Luque de Castro M, Priego-Capote F. Determination of primary fatty acid amides in different biological fluids by LC–MS/MS in MRM mode with synthetic deuterated standards: Influence of biofluid matrix on sample preparation. Talanta 2019; 193:29-36. [DOI: 10.1016/j.talanta.2018.09.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
|
38
|
Hiesinger K, Wagner KM, Hammock BD, Proschak E, Hwang SH. Development of multitarget agents possessing soluble epoxide hydrolase inhibitory activity. Prostaglandins Other Lipid Mediat 2019; 140:31-39. [PMID: 30593866 PMCID: PMC6345559 DOI: 10.1016/j.prostaglandins.2018.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/27/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
Over the last two decades polypharmacology has emerged as a new paradigm in drug discovery, even though developing drugs with high potency and selectivity toward a single biological target is still a major strategy. Often, targeting only a single enzyme or receptor shows lack of efficacy. High levels of inhibitor of a single target also can lead to adverse side effects. A second target may offer additive or synergistic effects to affecting the first target thereby reducing on- and off-target side effects. Therefore, drugs that inhibit multiple targets may offer a great potential for increased efficacy and reduced the adverse effects. In this review we summarize recent findings of rationally designed multitarget compounds that are aimed to improve efficacy and safety profiles compared to those that target a single enzyme or receptor. We focus on dual inhibitors/modulators that target the soluble epoxide hydrolase (sEH) as a common part of their design to take advantage of the beneficial effects of sEH inhibition.
Collapse
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60439, Frankfurt am Main, Germany
| | - Karen M Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60439, Frankfurt am Main, Germany
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
39
|
Chanda D, Neumann D, Glatz JFC. The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target. Prostaglandins Leukot Essent Fatty Acids 2019; 140:51-56. [PMID: 30553404 DOI: 10.1016/j.plefa.2018.11.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
The endocannabinoids anandamide (AEA) and 2-arachidonoylglyerol (2-AG) are endogenous lipid mediators that exert protective roles in pathophysiological conditions, including cardiovascular diseases. In this brief review, we provide a conceptual framework linking endocannabinoid signaling to the control of the cellular and molecular hallmarks, and categorize the key components of endocannabinoid signaling that may serve as targets for novel therapeutics. The emerging picture not only reinforces endocannabinoids as potent regulators of cellular metabolism but also reveals that endocannabinoid signaling is mechanistically more complex and diverse than originally thought.
Collapse
MESH Headings
- Amidohydrolases/antagonists & inhibitors
- Animals
- Arachidonic Acids/metabolism
- Autocrine Communication
- Cells/metabolism
- Dronabinol/pharmacology
- Endocannabinoids/metabolism
- Glycerides/metabolism
- Humans
- Mice
- Molecular Targeted Therapy
- Paracrine Communication
- Polyunsaturated Alkamides/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Swine
Collapse
Affiliation(s)
- Dipanjan Chanda
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands; Current affiliation: Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Daegu, Republic of Korea
| | - Dietbert Neumann
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands; Current affiliation: Department of Pathology, CARIM, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
40
|
Hubbard AH, Zhang X, Jastrebski S, Lamont SJ, Singh A, Schmidt CJ. Identifying mechanisms of regulation to model carbon flux during heat stress and generate testable hypotheses. PLoS One 2018; 13:e0205824. [PMID: 30365526 PMCID: PMC6203350 DOI: 10.1371/journal.pone.0205824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
Understanding biological response to stimuli requires identifying mechanisms that coordinate changes across pathways. One of the promises of multi-omics studies is achieving this level of insight by simultaneously identifying different levels of regulation. However, computational approaches to integrate multiple types of data are lacking. An effective systems biology approach would be one that uses statistical methods to detect signatures of relevant network motifs and then builds metabolic circuits from these components to model shifting regulatory dynamics. For example, transcriptome and metabolome data complement one another in terms of their ability to describe shifts in physiology. Here, we extend a previously described linear-modeling based method used to identify single nucleotide polymorphisms (SNPs) associated with metabolic changes. We apply this strategy to link changes in sulfur, amino acid and lipid production under heat stress by relating ratios of compounds to potential precursors and regulators. This approach provides integration of multi-omics data to link previously described, discrete units of regulation into functional pathways and identifies novel biology relevant to the heat stress response, in addition to generating hypotheses.
Collapse
Affiliation(s)
- Allen H. Hubbard
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Xiaoke Zhang
- Department of Statistics, George Washington University, Washington, District of Columbia, Unites States of America
| | - Sara Jastrebski
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Abhyudai Singh
- Department of Electrical Engineering and Computer Science, University of Delaware, Newark, Delaware, United States of America
| | - Carl J. Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
41
|
Kim M, Kim M, Kang M, Yoo HJ, Kim MS, Ahn YT, Sim JH, Jee SH, Lee JH. Effects of weight loss using supplementation with Lactobacillus strains on body fat and medium-chain acylcarnitines in overweight individuals. Food Funct 2018; 8:250-261. [PMID: 28001147 DOI: 10.1039/c6fo00993j] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our previous study showed that supplementation with a combination of Lactobacillus curvatus (L. curvatus) HY7601 and Lactobacillus plantarum (L. plantarum) KY1032 reduced the body weight, body fat percentage, body fat mass and L1 subcutaneous fat area in overweight subjects. We aimed to evaluate whether the changes in adiposity after supplementation with Lactobacillus strains were associated with metabolic intermediates. A randomized, double-blind, placebo-controlled study was conducted on 66 non-diabetic and overweight individuals. Over a 12-week period, the probiotic group consumed 2 g of probiotic powder, whereas the placebo group consumed the same product without the probiotics. To investigate metabolic alterations, we performed plasma metabolomics using ultra-performance liquid chromatography and mass spectrometry (UPLC-LTQ/Orbitrap MS). Probiotic supplementation significantly increased the levels of octenoylcarnitine (C8:1), tetradecenoylcarnitine (C14:1), decanoylcarnitine (C10) and dodecenoylcarnitine (C12:1) compared with the levels from placebo supplementation. In the probiotic group, the changes in the body weight, body fat percentage, body fat mass and L1 subcutaneous fat area were negatively associated with changes in the levels of C8:1, C14:1, C10 and C12:1 acylcarnitines. In overweight individuals, probiotic-induced weight loss and adiposity reduction from the probiotic supplementation were associated with an increase in medium-chain acylcarnitines.
Collapse
Affiliation(s)
- Minkyung Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Minjoo Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Miso Kang
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea. and Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hye Jin Yoo
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea. and Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Min Sun Kim
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea. and Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | | | - Jae-Hun Sim
- Korea Yakult Co., Ltd, Yongin, Gyeonggi, Korea
| | - Sun Ha Jee
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Jong Ho Lee
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea and National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea. and Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
42
|
Laleh P, Yaser K, Abolfazl B, Shahriar A, Mohammad AJ, Nazila F, Alireza O. Oleoylethanolamide increases the expression of PPAR-Α and reduces appetite and body weight in obese people: A clinical trial. Appetite 2018; 128:44-49. [PMID: 29787831 DOI: 10.1016/j.appet.2018.05.129] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022]
Abstract
Obesity is a crucial public health problem worldwide and is considered as the main cause of many chronic diseases. The present study evaluated the effects of Oleoylethanolamide (OEA) supplementation on proximal proliferator-activated receptor-α (PPAR-α) gene expression, appetite sensations, and anthropometric measurements in obese people. This randomized, double-blind, placebo-controlled clinical trial was carried out on 60 healthy obese people in Tabriz, Iran, in 2016. The eligible subjects were divided into an intervention group (who received two 125 mg OEA capsules daily) and a placebo group (who received the same amount of starches) and treated for 60 days. Anthropometric measurements and body composition were assessed in a fasting state at baseline and at the end of the study. The visual analogue scales (VAS) were used to assess appetite sensations. Quantitative real-time PCR analysis targeting the 16S rRNA gene of PPAR-α was done. Analysis was done on 56 participants who continued intervention until the end of the study. A significant increase in PPAR-α gene expression was observed in the intervention group (p < 0.001). Weight, body mass index, waist circumference, and fat percent decreased significantly at the end of the study in the intervention group (all p < 0.01). Hunger, the desire to eat, and cravings for sweet foods decreased significantly and fullness increased significantly by the end of study in the intervention group at the end of study (all p < 0.01). The fullness item increased significantly by the end of study in the intervention group (p < 0.001). Use of OEA as a complementary approach could be effective in suppressing appetite and modulating energy balance in obese people.
Collapse
Affiliation(s)
- Payahoo Laleh
- Talented Student Center, Student Research Committee, Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khajebishak Yaser
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Barzegari Abolfazl
- Student Research Committee, School of Advanced Biomedical Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | - Alipour Shahriar
- Connective Tissue Disease Research Center, Department of Molecular Medicine, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghari Jafarabadi Mohammad
- Road Traffic Injury Research Center, Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farrin Nazila
- Nutrition Research Center, Faculty of Nutrition and Food Science, Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ostadrahimi Alireza
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Grygorenko OO, Biitseva AV, Zhersh S. Amino sulfonic acids, peptidosulfonamides and other related compounds. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Gouveia-Figueira S, Karimpour M, Bosson JA, Blomberg A, Unosson J, Sehlstedt M, Pourazar J, Sandström T, Behndig AF, Nording ML. Mass spectrometry profiling reveals altered plasma levels of monohydroxy fatty acids and related lipids in healthy humans after controlled exposure to biodiesel exhaust. Anal Chim Acta 2018; 1018:62-69. [PMID: 29605135 DOI: 10.1016/j.aca.2018.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 11/26/2022]
Abstract
Experimental human exposure studies are an effective tool to study adverse health effects from acute inhalation of particulate matter and other constituents of air pollution. In this randomized and double-blinded crossover study, we investigated the systemic effect on bioactive lipid metabolite levels after controlled biodiesel exhaust exposure of healthy humans and compared it to filtered air at a separate exposure occasion. Eicosanoids and other oxylipins, as well as endocannabinoids and related lipids, were quantified in plasma from 14 healthy volunteers at baseline and at three subsequent time points (2, 6, and 24 h) after 1 h exposure sessions. Protocols based on liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) methods were developed to detect temporal changes in circulating levels after biodiesel exhaust exposure. The exhaust was generated by a diesel engine fed with an undiluted rapeseed methyl ester fuel. Among the 51 analyzed lipid metabolites, PGF2α, 9,10-DiHOME, 9-HODE, 5-HETE, 11-HETE, 12-HETE, and DEA displayed significant responsiveness to the biodiesel exhaust exposure as opposed to filtered air. Of these, 9-HODE and 5-HETE at 24 h survived the 10% false discovery rate cutoff (p < 0.003). Hence, the majority of the responsive lipid metabolites were monohydroxy fatty acids. We conclude that it is possible to detect alterations in circulating bioactive lipid metabolites in response to biodiesel exhaust exposure using LC-MS/MS, with emphasis on metabolites with inflammation related properties and implications on cardiovascular health and disease. These observations aid future investigations on air pollution effects, especially with regard to cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Jenny A Bosson
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Jon Unosson
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Maria Sehlstedt
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Annelie F Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Malin L Nording
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
45
|
Matysiak S, Zabielska J, Kula J, Kunicka-Styczyńska A. Synthesis of (R)- and (S)-Ricinoleic Acid Amides and Evaluation of Their Antimicrobial Activity. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sylwia Matysiak
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences; Lodz University of Technology, Stefanowskiego 4/10; 90-924 Łódź Poland
| | - Julia Zabielska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences; Lodz University of Technology, Wólczańska 171/173; 90-924 Łódź Poland
| | - Józef Kula
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences; Lodz University of Technology, Stefanowskiego 4/10; 90-924 Łódź Poland
| | - Alina Kunicka-Styczyńska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences; Lodz University of Technology, Wólczańska 171/173; 90-924 Łódź Poland
| |
Collapse
|
46
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
47
|
A plasma metabonomic analysis on potential biomarker in pyrexia induced by three methods using ultra high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1063:214-225. [PMID: 28886580 DOI: 10.1016/j.jchromb.2017.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/09/2017] [Accepted: 08/19/2017] [Indexed: 01/09/2023]
Abstract
Pyrexia usually is a systemic pathological process that can lead to metabolic disorders. Metabonomics as a powerful tool not only can reveal the pathological mechanisms, but also can give insight into the progression of pyrexia from another angle. Thus, an ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) metabonomic approach was employed for the first time to investigate the plasma biochemical characteristics of pyrexia induced by three methods and to reveal subtle metabolic changes under the condition of pyrexia so as to explore its mechanism. The acquired metabolic data of the models were subjected to principal component analysis (PCA) for allowing the clear separation of the pyrexia rats from the control rats. Variable importance for project values (VIP) and Student's t-test were used to screen the significant metabolic changes caused by pyrexia. Fifty-two endogenous metabolites were identified and putatively identified as potential biomarkers primarily associated with phospholipid metabolism, sphingolipid metabolism, fatty acid oxidation metabolism, fatty acid amides metabolism and amino acid metabolism, and related to bile acid biosynthesis and glycerolipid catabolism. LysoPC (14:0), LysoPC (18:3), LysoPC (20:4), LysoPC (16:0), phytosphingosine, Cer (d18:0/12:0), N-[(4E,8E)-1,3-dihydroxyoctadeca-4,8-dien-2-yl]hexadecanamide, oleamide, fatty acid amide C22:1, tryptophan, acetylcarnitine, palmitoylcarnitine and stearoylcarnitine were considered as common potential biomarkers of pyrexia rats induced by three methods: Our results revealed that the UHPLC-FT-ICR-MS-based metabolomic method is helpful for finding new potential metabolic markers for pyrexia detection and offers a good perspective in pyrexia research.
Collapse
|
48
|
Matysiak S, Chmiel A, Skolimowski J, Kula J, Pasternak B, Blaszczyk A. Synthesis and cytotoxicity of (R)- and (S)-ricinoleic acid amides and their acetates. Chirality 2017; 29:616-622. [DOI: 10.1002/chir.22733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sylwia Matysiak
- Institute of General Food Chemistry; Lodz University of Technology, Faculty of Biotechnology and Food Sciences; Lodz Poland
| | - Agnieszka Chmiel
- Department of General Genetics, Molecular Biology and Plant Biotechnology, Laboratory of Cytogenetics; University of Lodz, Faculty of Biology and Environmental Protection; Lodz Poland
| | - Janusz Skolimowski
- Department of Analytical Biochemistry, University of Rzeszow, Faculty of Biology and Agriculture; Rzeszow Poland
| | - Jozef Kula
- Institute of General Food Chemistry; Lodz University of Technology, Faculty of Biotechnology and Food Sciences; Lodz Poland
| | - Beata Pasternak
- Department of Organic Chemistry; University of Lodz, Faculty of Chemistry; Lodz Poland
| | - Alina Blaszczyk
- Department of General Genetics, Molecular Biology and Plant Biotechnology, Laboratory of Cytogenetics; University of Lodz, Faculty of Biology and Environmental Protection; Lodz Poland
| |
Collapse
|
49
|
Abdullah M, Kornegay JN, Honcoop A, Parry TL, Balog-Alvarez CJ, O'Neal SK, Bain JR, Muehlbauer MJ, Newgard CB, Patterson C, Willis MS. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In Vivo. Metabolites 2017; 7:E38. [PMID: 28758940 PMCID: PMC5618323 DOI: 10.3390/metabo7030038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Like Duchenne muscular dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog model of DMD is characterized by muscle necrosis, progressive paralysis, and pseudohypertrophy in specific skeletal muscles. This severe GRMD phenotype includes moderate atrophy of the biceps femoris (BF) as compared to unaffected normal dogs, while the long digital extensor (LDE), which functions to flex the tibiotarsal joint and serves as a digital extensor, undergoes the most pronounced atrophy. A recent microarray analysis of GRMD identified alterations in genes associated with lipid metabolism and energy production. METHODS We, therefore, undertook a non-targeted metabolomics analysis of the milder/earlier stage disease GRMD BF muscle versus the more severe/chronic LDE using GC-MS to identify underlying metabolic defects specific for affected GRMD skeletal muscle. RESULTS Untargeted metabolomics analysis of moderately-affected GRMD muscle (BF) identified eight significantly altered metabolites, including significantly decreased stearamide (0.23-fold of controls, p = 2.89 × 10-3), carnosine (0.40-fold of controls, p = 1.88 × 10-2), fumaric acid (0.40-fold of controls, p = 7.40 × 10-4), lactamide (0.33-fold of controls, p = 4.84 × 10-2), myoinositol-2-phosphate (0.45-fold of controls, p = 3.66 × 10-2), and significantly increased oleic acid (1.77-fold of controls, p = 9.27 × 10-2), glutamic acid (2.48-fold of controls, p = 2.63 × 10-2), and proline (1.73-fold of controls, p = 3.01 × 10-2). Pathway enrichment analysis identified significant enrichment for arginine/proline metabolism (p = 5.88 × 10-4, FDR 4.7 × 10-2), where alterations in L-glutamic acid, proline, and carnosine were found. Additionally, multiple Krebs cycle intermediates were significantly decreased (e.g., malic acid, fumaric acid, citric/isocitric acid, and succinic acid), suggesting that altered energy metabolism may be underlying the observed GRMD BF muscle dysfunction. In contrast, two pathways, inosine-5'-monophosphate (VIP Score 3.91) and 3-phosphoglyceric acid (VIP Score 3.08) mainly contributed to the LDE signature, with two metabolites (phosphoglyceric acid and inosine-5'-monophosphate) being significantly decreased. When the BF and LDE were compared, the most significant metabolite was phosphoric acid, which was significantly less in the GRMD BF compared to control and GRMD LDE groups. CONCLUSIONS The identification of elevated BF oleic acid (a long-chain fatty acid) is consistent with recent microarray studies identifying altered lipid metabolism genes, while alterations in arginine and proline metabolism are consistent with recent studies identifying elevated L-arginine in DMD patient sera as a biomarker of disease. Together, these studies demonstrate muscle-specific alterations in GRMD-affected muscle, which illustrate previously unidentified metabolic changes.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Department of Biochemistry, QuaidiAzam University, 45320 Islamabad, Pakistan.
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Aubree Honcoop
- Toxicology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Traci L Parry
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
| | - Cynthia J Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Sara K O'Neal
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27703, USA.
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27703, USA.
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA.
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
50
|
Abstract
Classifications and characterizations of specific proteins, such as enzymes, not only allow us to understand biosynthetic and metabolic pathways but they also help to drive our understanding of protein structure and function. How those characterizations are evaluated, however, may change our interpretations and lead us into broader and novel directions in research. Here, we will make the argument that using lipidomics as a tool for characterizing enzymatic function over more traditional toolkit options allows for these types of revelations. Using lipidomics techniques on specific brain regions with a series of enzyme knockout and disease models, we have generated a novel set of analyses from which to view protein function. Through these data, we have demonstrated that NAPE-PLD, MAG lipase, and FAAH all have broader roles throughout the brain than previously thought. Much like the data on how the extinction of specific species within an ecosystem has unpredicted outcomes, so too does the elimination of these enzymes affect the brain lipidome. From a purely biochemical standpoint, it is a fascinating story of how one change in a system can have exponential effects; however, from a drug-target standpoint, it may prove to be a cautionary tale.
Collapse
|