1
|
Rubina SR, Stalin PR, Meenatchi CS, Murugesan S, Kumar RR. Synthesis of epiminocyclohepta[b]pyrazolo[4,3-e]pyridines from tropinone: Fluorescent “Turn on–off” chemosensors for the sequential detection of Al3+, Cd2+ and Pb2+ in nanomolar concentration. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Nadur NF, de Azevedo LL, Caruso L, Graebin CS, Lacerda RB, Kümmerle AE. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure. Eur J Med Chem 2020; 212:113123. [PMID: 33412421 DOI: 10.1016/j.ejmech.2020.113123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes known to play a critical role in the indirect regulation of several intracellular metabolism pathways through the selective hydrolysis of the phosphodiester bonds of specific second messenger substrates such as cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate), influencing the hypertrophy, contractility, apoptosis and fibroses in the cardiovascular system. The expression and/or activity of multiple PDEs is altered during heart failure (HF), which leads to changes in levels of cyclic nucleotides and function of cardiac muscle. Within the cardiovascular system, PDEs 1-5, 8 and 9 are expressed and are interesting targets for the HF treatment. In this comprehensive review we will present a briefly description of the biochemical importance of each cardiovascular related PDE to the HF, and cover almost all the "long and winding road" of designing and discovering ligands, hits, lead compounds, clinical candidates and drugs as PDE inhibitors in the last decade.
Collapse
Affiliation(s)
- Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Luciana Luiz de Azevedo
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil.
| |
Collapse
|
3
|
Kopra K, Sharina I, Martin E, Härmä H. Homogeneous single-label cGMP detection platform for the functional study of nitric oxide-sensitive (soluble) guanylyl cyclases and cGMP-specific phosphodiesterases. Sci Rep 2020; 10:17469. [PMID: 33060787 PMCID: PMC7562898 DOI: 10.1038/s41598-020-74611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
Cardiovascular diseases are the number one death worldwide. Nitric oxide (NO)-NO-sensitive (soluble) guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway regulates diverse set of important physiological functions, including maintenance of cardiovascular homeostasis. Resting and activated sGC enzyme converts guanosine triphosphate to an important second messenger cGMP. In addition to traditional NO generators, a number of sGC activators and stimulators are currently in clinical trials aiming to support or increase sGC activity in various pathological conditions. cGMP-specific phosphodiesterases (PDEs), which degrade cGMP to guanosine monophosphate, play key role in controlling the cGMP level and the strength or length of the cGMP-dependent cellular signaling. Thus, PDE inhibitors also have clear clinical applications. Here, we introduce a homogeneous quenching resonance energy transfer (QRET) for cGMP to monitor both sGC and PDE activities using high throughput screening adoptable method. We demonstrate that using cGMP-specific antibody, sGC or PDE activity and the effect of small molecules modulating their function can be studied with sub-picomole cGMP sensitivity. The results further indicate that the method is suitable for monitoring enzyme reactions also in complex biological cellular homogenates and mixture.
Collapse
Affiliation(s)
- Kari Kopra
- Department of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500, Turku, Finland.
| | - Iraida Sharina
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School At Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Emil Martin
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School At Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Harri Härmä
- Department of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500, Turku, Finland
| |
Collapse
|
4
|
Ahinko M, Niinivehmas S, Jokinen E, Pentikäinen OT. Suitability ofMMGBSAfor the selection of correct ligand binding modes from docking results. Chem Biol Drug Des 2018; 93:522-538. [DOI: 10.1111/cbdd.13446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Mira Ahinko
- Department of Biological and Environmental Science & Nanoscience CenterUniversity of Jyvaskyla, MedChem.fi Jyvaskyla Finland
| | - Sanna Niinivehmas
- Department of Biological and Environmental Science & Nanoscience CenterUniversity of Jyvaskyla, MedChem.fi Jyvaskyla Finland
- Institute of Biomedicine, Integrative Physiology and PharmacologyUniversity of Turku, MedChem.fi Turku Finland
| | - Elmeri Jokinen
- Institute of Biomedicine, Integrative Physiology and PharmacologyUniversity of Turku, MedChem.fi Turku Finland
| | - Olli T. Pentikäinen
- Department of Biological and Environmental Science & Nanoscience CenterUniversity of Jyvaskyla, MedChem.fi Jyvaskyla Finland
- Institute of Biomedicine, Integrative Physiology and PharmacologyUniversity of Turku, MedChem.fi Turku Finland
| |
Collapse
|
5
|
Muñoz-Gutiérrez C, Cáceres-Rojas D, Adasme-Carreño F, Palomo I, Fuentes E, Caballero J. Docking and quantitative structure-activity relationship of bi-cyclic heteroaromatic pyridazinone and pyrazolone derivatives as phosphodiesterase 3A (PDE3A) inhibitors. PLoS One 2017; 12:e0189213. [PMID: 29216268 PMCID: PMC5720733 DOI: 10.1371/journal.pone.0189213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
PDE3s belong to the phosphodiesterases family, where the PDE3A isoform is the major subtype in platelets involved in the cAMP regulation pathway of platelet aggregation. PDE3A inhibitors have been designed as potential antiplatelet agents. In this work, a homology model of PDE3A was developed and used to obtain the binding modes of bicyclic heteroaromatic pyridazinones and pyrazolones. Most of the studied compounds adopted similar orientations within the PDE3A active site, establishing hydrogen bonds with catalytic amino acids. Besides, the structure-activity relationship of the studied inhibitors was described by using a field-based 3D-QSAR method. Different structure alignment strategies were employed, including template-based and docking-based alignments. Adequate correlation models were obtained according to internal and external validations. In general, QSAR models revealed that steric and hydrophobic fields describe the different inhibitory activities of the compounds, where the hydrogen bond donor and acceptor fields have minor contributions. It should be stressed that structural elements of PDE3A inhibitors are reported here, through descriptions of their binding interactions and their differential affinities. In this sense, the present results could be useful in the future design of more specific and potent PDE3A inhibitors that may be used for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Camila Muñoz-Gutiérrez
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Daniela Cáceres-Rojas
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | | | - Iván Palomo
- Platelet Research Laboratory, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes
- Platelet Research Laboratory, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
- Núcleo Científico Multidisciplinario, Universidad de Talca, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
- * E-mail:
| |
Collapse
|
6
|
Pyridazinone: an attractive lead for anti-inflammatory and analgesic drug discovery. Future Med Chem 2017; 9:95-127. [DOI: 10.4155/fmc-2016-0194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In spite of the availability of a large number of anti-inflammatory and analgesic agents, fighting pain and inflammation remains a common problem. The current review article discusses the need of novel therapeutic targets for risk-free anti-inflammatory and analgesic therapy and summarizes some new agents in various stages of drug discovery pipeline. Pyridazin-3(2H)-ones are nitrogen-rich heterocyclic compounds of considerable medicinal interest due to their diverse biological activities. The current review article focuses on progressive development of this attractive scaffold for the design and synthesis of new pyridazinone-based anti-inflammatory and analgesic agents. Mechanistic insights into the anti-inflammatory and analgesic properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.
Collapse
|
7
|
Nagy L, Pollesello P, Haikala H, Végh Á, Sorsa T, Levijoki J, Szilágyi S, Édes I, Tóth A, Papp Z, Papp JG. ORM-3819 promotes cardiac contractility through Ca(2+) sensitization in combination with selective PDE III inhibition, a novel approach to inotropy. Eur J Pharmacol 2016; 775:120-9. [PMID: 26872993 DOI: 10.1016/j.ejphar.2016.02.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
This study is the first pharmacological characterization of the novel chemical entity, ORM-3819 (L-6-{4-[N'-(4-Hydroxi-3-methoxy-2-nitro-benzylidene)-hydrazino]-phenyl}-5-methyl-4,5-dihydro-2H-pyridazin-3-one), focusing primarily on its cardiotonic effects. ORM-3819 binding to cardiac troponin C (cTnC) was confirmed by nuclear magnetic resonance spectroscopy, and a selective inhibition of the phosphodiesterase III (PDE III) isozyme (IC50=3.88±0.3 nM) was revealed during in vitro enzyme assays. The Ca(2+)-sensitizing effect of ORM-3819 was demonstrated in vitro in permeabilized myocyte-sized preparations from left ventricles (LV) of guinea pig hearts (ΔpCa50=0.12±0.01; EC50=2.88±0.14 µM). ORM-3819 increased the maximal rate of LV pressure development (+dP/dtmax) (EC50=8.9±1.7 nM) and LV systolic pressure (EC50=7.63±1.74 nM) in Langendorff-perfused guinea pig hearts. Intravenous administration of ORM-3819 increased LV+dP/dtmax (EC50=0.13±0.05 µM/kg) and improved the rate of LV pressure decrease (-dP/dtmax); (EC50=0.03±0.02 µM/kg) in healthy guinea pigs. In an in vivo dog model of myocardial stunning, ORM-3819 restored the depressed LV+dP/dtmax and improved % segmental shortening (%SS) in the ischemic area (to 18.8±3), which was reduced after the ischaemia-reperfusion insult (from 24.1±2.1 to 11.0±2.4). Our data demonstrate ORM-3819 as a potent positive inotropic agent exerting its cardiotonic effect by a cTnC-dependent Ca(2+)-sensitizing mechanism in combination with the selective inhibition of the PDE III isozyme. This dual mechanism of action results in the concentration-dependent augmentation of the contractile performance under control conditions and in the postischemic failing myocardium.
Collapse
Affiliation(s)
- László Nagy
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Hungary Móricz Zs. krt. 22 Hungary, 4032 Debrecen, Hungary
| | | | - Heimo Haikala
- Orion Pharma, Drug Discovery and Pharmacology, Espoo, Finland
| | - Ágnes Végh
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tia Sorsa
- Orion Pharma, Drug Discovery and Pharmacology, Espoo, Finland
| | - Jouko Levijoki
- Orion Pharma, Drug Discovery and Pharmacology, Espoo, Finland
| | - Szabolcs Szilágyi
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Hungary Móricz Zs. krt. 22 Hungary, 4032 Debrecen, Hungary
| | - István Édes
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Hungary Móricz Zs. krt. 22 Hungary, 4032 Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Hungary Móricz Zs. krt. 22 Hungary, 4032 Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Hungary Móricz Zs. krt. 22 Hungary, 4032 Debrecen, Hungary.
| | - Julius Gy Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
8
|
Pharmacophore modeling, 3D-QSAR, and docking study of pyrozolo[1,5-a]pyridine/4,4-dimethylpyrazolone analogues as PDE4 selective inhibitors. J Mol Model 2015; 21:289. [DOI: 10.1007/s00894-015-2837-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/09/2015] [Indexed: 01/26/2023]
|
9
|
Li M, Zhao BX. Progress of the synthesis of condensed pyrazole derivatives (from 2010 to mid-2013). Eur J Med Chem 2014; 85:311-40. [PMID: 25104650 DOI: 10.1016/j.ejmech.2014.07.102] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 01/08/2023]
Abstract
Condensed pyrazole derivatives are important heterocyclic compounds due to their excellent biological activities and have been widely applied in pharmaceutical and agromedical fields. In recent years, numerous condensed pyrazole derivatives have been synthesized and advanced to clinic studies with various biological activities. In this review, we summarized the reported synthesis methods of condensed pyrazole derivatives from 2010 until now. All compounds are divided into three parts according to the rings connected to pyrazole-ring, i.e. [5, 5], [5,F 6], and [5, 7]-condensed pyrazole derivatives. The biological activities and applications in pharmaceutical fields are briefly introduced to offer an orientation for the design and synthesis of condensed pyrazole derivatives with good biological activities.
Collapse
Affiliation(s)
- Meng Li
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
10
|
Azam MA, Tripuraneni NS. Selective Phosphodiesterase 4B Inhibitors: A Review. Sci Pharm 2014; 82:453-81. [PMID: 25853062 PMCID: PMC4318138 DOI: 10.3797/scipharm.1404-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/10/2014] [Indexed: 12/28/2022] Open
Abstract
Phosphodiesterase 4B (PDE4B) is a member of the phosphodiesterase family of proteins that plays a critical role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP) by controlling its rate of degradation. It has been demonstrated that this isoform is involved in the orchestra of events which includes inflammation, schizophrenia, cancers, chronic obstructive pulmonary disease, contractility of the myocardium, and psoriatic arthritis. Phosphodiesterase 4B has constituted an interesting target for drug development. In recent years, a number of PDE4B inhibitors have been developed for their use as therapeutic agents. In this review, an up-to-date status of the inhibitors investigated for the inhibition of PDE4B has been given so that this rich source of structural information of presently known PDE4B inhibitors could be helpful in generating a selective and potent inhibitor of PDE4B.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, J. S. S. College of Pharmacy, Ootacamund-643001, Tamil Nadu, India
| | - Naga Srinivas Tripuraneni
- Department of Pharmaceutical Chemistry, J. S. S. College of Pharmacy, Ootacamund-643001, Tamil Nadu, India
| |
Collapse
|
11
|
Kojima A, Takita S, Sumiya T, Ochiai K, Iwase K, Kishi T, Ohinata A, Yageta Y, Yasue T, Kohno Y. Phosphodiesterase inhibitors. Part 6: Design, synthesis, and structure–activity relationships of PDE4-inhibitory pyrazolo[1,5-a]pyridines with anti-inflammatory activity. Bioorg Med Chem Lett 2013; 23:5311-6. [DOI: 10.1016/j.bmcl.2013.07.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022]
|
12
|
Hoashi Y, Takai T, Kotani E, Koike T. Synthesis of pyrazolo[1,5-a]pyridines by thermal intramolecular cyclization. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Cameron RT, Coleman RG, Day JP, Yalla KC, Houslay MD, Adams DR, Shoichet BK, Baillie GS. Chemical informatics uncovers a new role for moexipril as a novel inhibitor of cAMP phosphodiesterase-4 (PDE4). Biochem Pharmacol 2013; 85:1297-305. [PMID: 23473803 PMCID: PMC3625111 DOI: 10.1016/j.bcp.2013.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 12/17/2022]
Abstract
PDE4 is one of eleven known cyclic nucleotide phosphodiesterase families and plays a pivotal role in mediating hydrolytic degradation of the important cyclic nucleotide second messenger, cyclic 3′5′ adenosine monophosphate (cAMP). PDE4 inhibitors are known to have anti-inflammatory properties, but their use in the clinic has been hampered by mechanism-associated side effects that limit maximally tolerated doses. In an attempt to initiate the development of better-tolerated PDE4 inhibitors we have surveyed existing approved drugs for PDE4-inhibitory activity. With this objective, we utilised a high-throughput computational approach that identified moexipril, a well tolerated and safe angiotensin-converting enzyme (ACE) inhibitor, as a PDE4 inhibitor. Experimentally we showed that moexipril and two structurally related analogues acted in the micro molar range to inhibit PDE4 activity. Employing a FRET-based biosensor constructed from the nucleotide binding domain of the type 1 exchange protein activated by cAMP, EPAC1, we demonstrated that moexipril markedly potentiated the ability of forskolin to increase intracellular cAMP levels. Finally, we demonstrated that the PDE4 inhibitory effect of moexipril is functionally able to induce phosphorylation of the small heat shock protein, Hsp20, by cAMP dependent protein kinase A. Our data suggest that moexipril is a bona fide PDE4 inhibitor that may provide the starting point for development of novel PDE4 inhibitors with an improved therapeutic window.
Collapse
Affiliation(s)
- Ryan T. Cameron
- Institute of Cardiovascular and Medical Sciences, CMVLS, Glasgow University, Glasgow G12 8QQ, UK
| | - Ryan G. Coleman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Jon P. Day
- Institute of Cardiovascular and Medical Sciences, CMVLS, Glasgow University, Glasgow G12 8QQ, UK
| | - Krishna C. Yalla
- Institute of Cardiovascular and Medical Sciences, CMVLS, Glasgow University, Glasgow G12 8QQ, UK
| | - Miles D. Houslay
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH UK
| | - David R. Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - George S. Baillie
- Institute of Cardiovascular and Medical Sciences, CMVLS, Glasgow University, Glasgow G12 8QQ, UK
- Corresponding author. Tel.: +44 01413301662.
| |
Collapse
|
14
|
Ochiai K, Takita S, Kojima A, Eiraku T, Iwase K, Kishi T, Ohinata A, Yageta Y, Yasue T, Adams DR, Kohno Y. Phosphodiesterase inhibitors. Part 5: Hybrid PDE3/4 inhibitors as dual bronchorelaxant/anti-inflammatory agents for inhaled administration. Bioorg Med Chem Lett 2013. [DOI: 10.1016/j.bmcl.2012.08.121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Functionalization of the pyridazin-3(2H)-one ring via palladium-catalysed aminocarbonylation. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Ochiai K, Takita S, Kojima A, Eiraku T, Ando N, Iwase K, Kishi T, Ohinata A, Yageta Y, Yasue T, Adams DR, Kohno Y. Phosphodiesterase inhibitors. Part 4: Design, synthesis and structure-activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-4,4-dimethylpyrazolones. Bioorg Med Chem Lett 2012; 22:5833-8. [DOI: 10.1016/j.bmcl.2012.07.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/11/2012] [Accepted: 07/24/2012] [Indexed: 11/30/2022]
|
17
|
Roscales S, Ortega A, Martín-Aragón S, Bermejo-Bescós P, Csákÿ AG. PdII-Catalyzed Conjugate Addition of Boronic Acids to Ketoglutaconic Esters toward the Synthesis of Functionalized Pyridazin-3(2H)-ones with Neuroprotective Activity. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Ochiai K, Takita S, Eiraku T, Kojima A, Iwase K, Kishi T, Fukuchi K, Yasue T, Adams DR, Allcock RW, Jiang Z, Kohno Y. Phosphodiesterase inhibitors. Part 3: Design, synthesis and structure–activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-dihydropyridazinones with anti-inflammatory and bronchodilatory activity. Bioorg Med Chem 2012; 20:1644-58. [DOI: 10.1016/j.bmc.2012.01.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 11/24/2022]
|
19
|
Ochiai K, Kojima A, Kohno Y. An Improved Method for Synthesis of 4,4-Dimethylpyrazolone and Application to Dihydropyridazinone Ring Formation. Chem Pharm Bull (Tokyo) 2012; 60:267-9. [DOI: 10.1248/cpb.60.267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Koji Ochiai
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd
| | - Akihiko Kojima
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd
| | - Yasushi Kohno
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd
| |
Collapse
|
20
|
Phosphodiesterase inhibitors. Part 2: Design, synthesis, and structure–activity relationships of dual PDE3/4-inhibitory pyrazolo[1,5-a]pyridines with anti-inflammatory and bronchodilatory activity. Bioorg Med Chem Lett 2011; 21:5451-6. [DOI: 10.1016/j.bmcl.2011.06.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 11/24/2022]
|