1
|
Shi JH, Zhao B, Song LL, Song YQ, Sun MR, Tian T, Chen HY, Song YQ, Sun JM, Ge GB. Chalcone derivatives as novel, potent and selective inhibitors against human Notum: Structure–activity relationships and biological evaluations. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
3
|
Popova SA, Pavlova EV, Shevchenko OG, Chukicheva IY, Kutchin AV. Isobornylchalcones as Scaffold for the Synthesis of Diarylpyrazolines with Antioxidant Activity. Molecules 2021; 26:3579. [PMID: 34208180 PMCID: PMC8230786 DOI: 10.3390/molecules26123579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
The pyrazoline ring is defined as a "privileged structure" in medicinal chemistry. A variety of pharmacological properties of pyrazolines is associated with the nature and position of various substituents, which is especially evident in diarylpyrazolines. Compounds with a chalcone fragment show a wide range of biological properties as well as high reactivity which is primarily due to the presence of an α, β-unsaturated carbonyl system. At the same time, bicyclic monoterpenoids deserve special attention as a source of a key structural block or as one of the pharmacophore components of biologically active molecules. A series of new diarylpyrazoline derivatives based on isobornylchalcones with different substitutes (MeO, Hal, NO2, N(Me)2) was synthesized. Antioxidant properties of the obtained compounds were comparatively evaluated using in vitro model Fe2+/ascorbate-initiated lipid peroxidation in the substrate containing brain lipids of laboratory mice. It was demonstrated that the combination of the electron-donating group in the para-position of ring B and OH-group in the ring A in the structure of chalcone fragment provides significant antioxidant activity of synthesized diarylpyrazoline derivatives.
Collapse
Affiliation(s)
- Svetlana A. Popova
- Institute of Chemistry, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 48 Pervomayskaya, 167000 Syktyvkar, Russia; (E.V.P.); (I.Y.C.); (A.V.K.)
| | - Evgenia V. Pavlova
- Institute of Chemistry, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 48 Pervomayskaya, 167000 Syktyvkar, Russia; (E.V.P.); (I.Y.C.); (A.V.K.)
| | - Oksana G. Shevchenko
- Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya, 167982 Syktyvkar, Russia;
| | - Irina Yu. Chukicheva
- Institute of Chemistry, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 48 Pervomayskaya, 167000 Syktyvkar, Russia; (E.V.P.); (I.Y.C.); (A.V.K.)
| | - Aleksandr V. Kutchin
- Institute of Chemistry, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 48 Pervomayskaya, 167000 Syktyvkar, Russia; (E.V.P.); (I.Y.C.); (A.V.K.)
| |
Collapse
|
4
|
Rocha S, Ribeiro D, Fernandes E, Freitas M. A Systematic Review on Anti-diabetic Properties of Chalcones. Curr Med Chem 2020; 27:2257-2321. [PMID: 30277140 DOI: 10.2174/0929867325666181001112226] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 01/22/2023]
Abstract
The use of anti-diabetic drugs has been increasing worldwide and the evolution of therapeutics has been enormous. Still, the currently available anti-diabetic drugs do not present the desired efficacy and are generally associated with serious adverse effects. Thus, entirely new interventions, addressing the underlying etiopathogenesis of type 2 diabetes mellitus, are required. Chalcones, secondary metabolites of terrestrial plants and precursors of the flavonoids biosynthesis, have been used for a long time in traditional medicine due to their wide-range of biological activities, from which the anti-diabetic activity stands out. This review systematizes the information found in literature about the anti-diabetic properties of chalcones, in vitro and in vivo. Chalcones are able to exert these properties by acting in different therapeutic targets: Dipeptidyl Peptidase 4 (DPP-4); Glucose Transporter Type 4 (GLUT4), Sodium Glucose Cotransporter 2 (SGLT2), α-amylase, α-glucosidase, Aldose Reductase (ALR), Protein Tyrosine Phosphatase 1B (PTP1B), Peroxisome Proliferator-activated Receptor-gamma (PPARγ) and Adenosine Monophosphate (AMP)-activated Protein Kinase (AMPK). Chalcones are, undoubtedly, promising anti-diabetic agents, and some crucial structural features have already been established. From the Structure-Activity Relationships analysis, it can generally be stated that the presence of hydroxyl, prenyl and geranyl groups in their skeleton improves their activity for the evaluated anti-diabetic targets.
Collapse
Affiliation(s)
- Sonia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Yamada S, Kawasaki M, Fujihara M, Watanabe M, Takamura Y, Takioku M, Nishioka H, Takeuchi Y, Makishima M, Motoyama T, Ito S, Tokiwa H, Nakano S, Kakuta H. Competitive Binding Assay with an Umbelliferone-Based Fluorescent Rexinoid for Retinoid X Receptor Ligand Screening. J Med Chem 2019; 62:8809-8818. [PMID: 31483660 DOI: 10.1021/acs.jmedchem.9b00995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligands for retinoid X receptors (RXRs), "rexinoids", are attracting interest as candidates for therapy of type 2 diabetes and Alzheimer's and Parkinson's diseases. However, current screening methods for rexinoids are slow and require special apparatus or facilities. Here, we created 7-hydroxy-2-oxo-6-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-2H-chromene-3-carboxylic acid (10, CU-6PMN) as a new fluorescent RXR agonist and developed a screening system of rexinoids using 10. Compound 10 was designed based on the fact that umbelliferone emits strong fluorescence in a hydrophilic environment, but the fluorescence intensity decreases in hydrophobic environments such as the interior of proteins. The developed assay using 10 enabled screening of rexinoids to be performed easily within a few hours by monitoring changes of fluorescence intensity with widely available fluorescence microplate readers, without the need for processes such as filtration.
Collapse
Affiliation(s)
- Shoya Yamada
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan.,Research Fellowship Division , Japan Society for the Promotion of Science , Sumitomo-Ichibancho FS Bldg., 8 Ichibancho , Chiyoda-ku, Tokyo 102-8472 , Japan
| | - Mayu Kawasaki
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan.,AIBIOS Co. Ltd. , Tri-Seven Roppongi 8F 7-7-7 Roppongi , Minato-ku, Tokyo 106-0032 Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Maho Takioku
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Hiromi Nishioka
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Yasuo Takeuchi
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences , Nihon University School of Medicine , 30-1 Oyaguchi-kamicho , Itabashi-ku, Tokyo 173-8610 , Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | | | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| |
Collapse
|
6
|
Eleftheriou P, Geronikaki A, Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr Top Med Chem 2019; 19:246-263. [PMID: 30714526 DOI: 10.2174/1568026619666190201152153] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM), is a metabolic disorder characterized by high blood glucose levels. The main types of diabetes mellitus are Diabetes mellitus type I, Diabetes mellitus type II, gestational diabetes and Diabetes of other etiology. Diabetes type II, the Non Insulin Dependent Type (NIDDM) is the most common type, characterized by the impairment in activation of the intracellular mechanism leading to the insertion and usage of glucose after interaction of insulin with its receptor, known as insulin resistance. Although, a number of drugs have been developed for the treatment of diabetes type II, their ability to reduce blood glucose levels is limited, while several side effects are also observed. Furthermore, none of the market drugs targets the enhancement of the action of the intracellular part of insulin receptor or recuperation of the glucose transport mechanism in GLUT4 dependent cells. The Protein Tyrosine Phosphatase (PTP1b) is the main enzyme involved in insulin receptor desensitization and has become a drug target for the treatment of Diabetes type II. Several PTP1b inhibitors have already been found, interacting with the binding site of the enzyme, surrounding the catalytic amino acid Cys215 and the neighboring area or with the allosteric site of the enzyme, placed at a distance of 20 Å from the active site, around Phe280. However, the research continues for finding more potent inhibitors with increased cell permeability and specificity. OBJECTIVE The aim of this review is to show the attempts made in developing of Protein Tyrosine Phosphatase (PTP1b) inhibitors with high potency, selectivity and bioavailability and to sum up the indications for favorable structural characteristics of effective PTP1b inhibitors. METHODS The methods used include a literature survey and the use of Protein Structure Databanks such as PuBMed Structure and RCSB and the tools they provide. CONCLUSION The research for finding PTP1b inhibitors started with the design of molecules mimicking the Tyrosine substrate of the enzyme. The study revealed that an aromatic ring connected to a polar group, which preferably enables hydrogen bond formation, is the minimum requirement for small inhibitors binding to the active site surrounding Cys215. Molecules bearing two hydrogen bond donor/acceptor (Hb d/a) groups at a distance of 8.5-11.5 Å may form more stable complexes, interacting simultaneously with a secondary area A2. Longer molecules with two Hb d/a groups at a distance of 17 Å or 19 Å may enable additional interactions with secondary sites (B and C) that confer stability as well as specificity. An aromatic ring linked to polar or Hb d/a moieties is also required for allosteric inhibitors. A lower distance between Hb d/a moieties, around 7.5 Å may favor allosteric interaction. Permanent inhibition of the enzyme by oxidation of the catalytic Cys215 has also been referred. Moreover, covalent modification of Cys121, placed near but not inside the catalytic pocket has been associated with permanent inhibition of the enzyme.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki 57400, Greece
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
7
|
Eleftheriou P, Therianou E, Lazari D, Dirnali S, Micha A. Docking Assisted Prediction and Biological Evaluation of Sideritis L. Components with PTP1b Inhibitory Action and Probable Anti-Diabetic Properties. Curr Top Med Chem 2019; 19:383-392. [DOI: 10.2174/1568026619666190219104430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
Background:
The main characteristic of Diabetes type II is the impaired activation of intracellular
mechanisms triggered by the action of insulin. PTP1b is a Protein Tyrosine Phosphatase that
dephosphorylates insulin receptor causing its desensitization. Since inhibition of PTP1b may prolong
insulin receptor activity, PTP1b has become a drug target for the treatment of Diabetes II. Although a
number of inhibitors have been synthesized during the last decades, the research still continues for the
development of more effective and selective compounds. Moreover, several constituents of plants and
edible algae with PTP1b inhibitory action have been found, adding this extra activity at the pallet of
properties of the specific natural products.
Objective:
Sideritis L. (Lamiaceae) is a herbal plant growing around the Mediterranean sea which is included
in the Mediterranean diet for centuries. The present study is the continuation of a previous work
where the antioxidant and anti-inflammatory activities of the components of Sideritis L. were evaluated
and aimed to investigate the potential of some sideritis’s components to act as PTP1b inhibitors, thus
exhibiting the beneficial effect in the treatment of diabetes II.
Methods:
Docking analysis was done to predict PTP1b inhibitory action. Human recombinant PTP1b
enzyme was used for the evaluation of the PTP1b inhibitory action, while inhibition of the human LAR
and human T-cell PTP was tested for the estimation of the selectivity of the compounds.
Conclusion:
Docking analysis effectively predicted inhibition and mode of inhibitory action. According
to the experimental results, four of the components exhibited PTP1b inhibitory action. The most active
ones were acetoside, which acted as a competitive inhibitor, with an IC50 of 4 µM and lavandufolioside,
which acted as an uncompetitive inhibitor, with an IC50 of 9.3 µM. All four compounds exhibited increased
selectivity against PTP1b.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, ATEITH Campus, Sindos, 57400, Thessaloniki, Greece
| | - Ekaterini Therianou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, ATEITH Campus, Sindos, 57400, Thessaloniki, Greece
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, Division of Pharmacognosy-Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Stavroula Dirnali
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, ATEITH Campus, Sindos, 57400, Thessaloniki, Greece
| | - Anna Micha
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, ATEITH Campus, Sindos, 57400, Thessaloniki, Greece
| |
Collapse
|
8
|
Verma SK, Yadav YS, Thareja S. 2,4-Thiazolidinediones as PTP 1B Inhibitors: A Mini Review (2012-2018). Mini Rev Med Chem 2019; 19:591-598. [PMID: 30968766 DOI: 10.2174/1389557518666181026092029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
2,4-thiazolidinedione (TZD) scaffold is a synthetic versatile scaffold explored by medicinal chemists for the discovery of novel molecules for the target-specific approach to treat or manage number of deadly ailments. PTP 1B is the negative regulator of insulin signaling cascade, and its diminished activity results in abolishment of insulin resistance associated with T2DM. The present review focused on the seven years journey (2012-2018) of TZDs as PTP 1B inhibitors with the insight into the amendments in the structural framework of TZD scaffold in order to optimize/design potential PTP 1B inhibitors. We have investigated the synthesized molecules based on TZD scaffold with potential activity profile against PTP 1B. Based on the SAR studies, the combined essential pharmacophoric features of selective and potent TZDs have been mapped and presented herewith for further design and synthesis of novel inhibitors of PTP 1B. Compound 46 bearing TZD scaffold with N-methyl benzoic acid and 5-(3-methoxy-4-phenethoxy) benzylidene exhibited the most potent activity (IC50 1.1 µM). Imidazolidine-2,4-dione, isosteric analogue of TZD, substituted with 1-(2,4-dichlorobenzyl)-5-(3-(2,4- dichlorobenzyloxy)benzylidene) (Compound 15) also endowed with very good PTP inhibitory activity profile (IC50 0.57 µM). It is noteworthy that Z-configuration is essential in structural framework around the double bond of arylidene for the designing of bi-dentate ligands with optimum activity.
Collapse
Affiliation(s)
- Sant Kumar Verma
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Yatesh Sharad Yadav
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Suresh Thareja
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| |
Collapse
|
9
|
Nho SH, Yoon G, Seo JH, Oh HN, Cho SS, Kim H, Choi HW, Shim JH, Chae JI. Licochalcone H induces the apoptosis of human oral squamous cell carcinoma cells via regulation of matrin 3. Oncol Rep 2018; 41:333-340. [PMID: 30320347 PMCID: PMC6278573 DOI: 10.3892/or.2018.6784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Licochalcone H (LCH) is a chemical compound that is a positional isomer of licochalcone C (LCC), a chalconoid isolated from the root of Glycyrrhiza inflata, which has various pharmacological properties including anti-inflammatory, antioxidant, antitumor, and anticancer effects. However, the efficacy of LCH on cancer cells has not been investigated. The present study examined the effects of LCH on cell proliferation, induction of apoptosis, and the regulation of matrin 3 (Matr3) protein in oral squamous cell carcinoma (OSCC) cells by Annexin V/propidium iodide (PI) staining and western blot analysis. LCH reduced cell viability and colony forming ability, and induced cell cycle arrest and apoptosis in HSC2 and HSC3 cells through the suppression of Matr3. It was also found that LCH directly bound to Matr3 in a Sepharose 4B pull-down assay. Consequently, the results of the present study suggest that LCH may be used as an anticancer drug in combination with conventional chemotherapy for the treatment of OSCC, and that Matr3 may be a potential effective therapeutic target.
Collapse
Affiliation(s)
- Su-Hyun Nho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| |
Collapse
|
10
|
Yoon G, Cheon SH, Shim JH, Cho SS. Design and Evaluation of Licochalcone A Derivatives as Anticancer Agents. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
New derivatives of licochalcone A were synthesized and evaluated for their potential anticancer activities. Compounds 6 (( E)-N-(4-(3-(5-bromo-4-hydroxy-2-methoxy phenyl) acryloyl) phenyl)-4-isopropylbenzamide) and 8 (1-(3-dimethylamino-phenyl)-3-(2-trifluoromethyl-phenyl)-propenone) showed potent activity against the screened cancer cell lines with that of compound 6 ranging from 6.9 ± 0.2 μM to 22.9 ± 3.1 μM, and that of compound 8 from 4.2 ± 0.5 μM to 11.8 ± 0.7 μM. Both compounds showed stronger cytotoxicity than that of licochalcone A. These two candidates have very different substituents and could be considered as promising lead compounds for further development of potent anticancer agents.
Collapse
Affiliation(s)
- Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan Jeonnam 534–729, South Korea
| | - Seung Hoon Cheon
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Jung Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan Jeonnam 534–729, South Korea
| | - Seung Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan Jeonnam 534–729, South Korea
| |
Collapse
|
11
|
Sarabia-Sánchez MJ, Trejo-Soto PJ, Velázquez-López JM, Carvente-García C, Castillo R, Hernández-Campos A, Avitia-Domínguez C, Enríquez-Mendiola D, Sierra-Campos E, Valdez-Solana M, Salas-Pacheco JM, Téllez-Valencia A. Novel Mixed-Type Inhibitors of Protein Tyrosine Phosphatase 1B. Kinetic and Computational Studies. Molecules 2017; 22:molecules22122262. [PMID: 29261102 PMCID: PMC6150025 DOI: 10.3390/molecules22122262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/21/2022] Open
Abstract
The Atlas of Diabetes reports 415 million diabetics in the world, a number that has surpassed in half the expected time the twenty year projection. Type 2 diabetes is the most frequent form of the disease; it is characterized by a defect in the secretion of insulin and a resistance in its target organs. In the search for new antidiabetic drugs, one of the principal strategies consists in promoting the action of insulin. In this sense, attention has been centered in the protein tyrosine phosphatase 1B (PTP1B), a protein whose overexpression or increase of its activity has been related in many studies with insulin resistance. In the present work, a chemical library of 250 compounds was evaluated to determine their inhibition capability on the protein PTP1B. Ten molecules inhibited over the 50% of the activity of the PTP1B, the three most potent molecules were selected for its characterization, reporting Ki values of 5.2, 4.2 and 41.3 µM, for compounds 1, 2, and 3, respectively. Docking and molecular dynamics studies revealed that the three inhibitors made interactions with residues at the secondary binding site to phosphate, exclusive for PTP1B. The data reported here support these compounds as hits for the design more potent and selective inhibitors against PTP1B in the search of new antidiabetic treatment.
Collapse
Affiliation(s)
- Marie Jazmín Sarabia-Sánchez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango, Durango C.P. 34000, Mexico.
| | - Pedro Josué Trejo-Soto
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico.
| | - José Miguel Velázquez-López
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico.
| | - Carlos Carvente-García
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico.
| | - Rafael Castillo
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico.
| | - Alicia Hernández-Campos
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico.
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango, Durango C.P. 34000, Mexico.
| | - Daniel Enríquez-Mendiola
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango, Durango C.P. 34000, Mexico.
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango C.P. 35010, Mexico.
| | - Mónica Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio, Durango C.P. 35010, Mexico.
| | - José Manuel Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Av. Universidad S/N, Durango, Durango C.P. 34000, Mexico.
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango, Durango C.P. 34000, Mexico.
| |
Collapse
|
12
|
Hansch’s analysis application to chalcone synthesis by Claisen–Schmidt reaction based in DFT methodology. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0316-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Antidiabetic effect of SN158 through PPARα/γ dual activation in ob / ob mice. Chem Biol Interact 2017; 268:24-30. [DOI: 10.1016/j.cbi.2017.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/30/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
|
14
|
Wei L, Wang J, Zhang X, Wang P, Zhao Y, Li J, Hou T, Qu L, Shi L, Liang X, Fang Y. Discovery of 2H-Chromen-2-one Derivatives as G Protein-Coupled Receptor-35 Agonists. J Med Chem 2016; 60:362-372. [DOI: 10.1021/acs.jmedchem.6b01431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lai Wei
- Key
Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jixia Wang
- Key
Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiuli Zhang
- Key
Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Co-innovation
Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Ping Wang
- Key
Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yaopeng Zhao
- Key
Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiaqi Li
- Key
Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Hou
- Key
Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lala Qu
- Key
Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Liying Shi
- Key
Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinmiao Liang
- Key
Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Co-innovation
Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Ye Fang
- Biochemical
Technologies, Science and Technology Division, Corning, New York 14831, United States
| |
Collapse
|
15
|
Jung Y, Cao Y, Paudel S, Kim KH, Yoon G, Cheon SH, Lee JY, Kim SN, Kim YK. A Novel Partial PPARα/γ Dual Agonist SN159 Improves Insulin Sensitivity. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yujung Jung
- Natural Products Research Center; KIST Gangneung Institute; Gangneung 25451 Korea
| | - Yongkai Cao
- College of Pharmacy and Research, Institute of Drug Development; Chonnam National University; Gwangju 61186 Korea
| | - Suresh Paudel
- College of Pharmacy and Research, Institute of Drug Development; Chonnam National University; Gwangju 61186 Korea
| | - Ki Hyun Kim
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Korea
| | - Goo Yoon
- College of Pharmacy; Mokpo National University; Muan 58554 Korea
| | - Seung Hoon Cheon
- College of Pharmacy and Research, Institute of Drug Development; Chonnam National University; Gwangju 61186 Korea
| | - Jee-Young Lee
- Department of In Silico Molecular Design; Chemical Occasion by Modeling Alchemy; Anyang 14128 Korea
| | - Su-Nam Kim
- Natural Products Research Center; KIST Gangneung Institute; Gangneung 25451 Korea
| | - Yong Kee Kim
- College of Pharmacy; Sookmyung Women's University; Seoul 04310 Korea
| |
Collapse
|
16
|
Patel PA, Bhadani VN, Bhatt PV, Purohit DM. Synthesis and Biological Evaluation of Novel Chalcone and Pyrazoline Derivatives Bearing Substituted Vanillin Nucleus. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Piyush A Patel
- Shree M. & N. Virani Science College; Saurashtra University; Rajkot 360 005 India
| | - Vijay N Bhadani
- Shree M. & N. Virani Science College; Saurashtra University; Rajkot 360 005 India
| | - Parth V Bhatt
- Department of Microbiology, School of Science; R.K. University; Rajkot 360 005 India
| | - Dipak M Purohit
- Shree M. & N. Virani Science College; Saurashtra University; Rajkot 360 005 India
| |
Collapse
|
17
|
Wang Z, Liu Z, Lee W, Kim SN, Yoon G, Cheon SH. Design, synthesis and docking study of 5-(substituted benzylidene)thiazolidine-2,4-dione derivatives as inhibitors of protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 2014; 24:3337-40. [DOI: 10.1016/j.bmcl.2014.05.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022]
|
18
|
|
19
|
Ma Y, Jin YY, Wang YL, Wang RL, Lu XH, Kong DX, Xu WR. The Discovery of a Novel and Selective Inhibitor of PTP1B Over TCPTP: 3D QSAR Pharmacophore Modeling, Virtual Screening, Synthesis, and Biological Evaluation. Chem Biol Drug Des 2014; 83:697-709. [DOI: 10.1111/cbdd.12283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Yuan-Yuan Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Ye-Liu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Xin-Hua Lu
- New Drug Research and Development Center; North China Pharmaceutical Group Corporation; 388 Heping East Road Shijiazhuang Hebei 050015 China
| | - De-Xin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics; School of Pharmaceutical Sciences and Research Center of Basic Medical Sciences; Tianjin Medical University; Tianjin 300070 China
| | - Wei-Ren Xu
- Tianjin Institute of Pharmaceutical Research (TIPR); Tianjin 300193 China
| |
Collapse
|
20
|
Wang Z, Liu Z, Cao Y, Paudel S, Yoon G, Cheon SH. Short and Efficient Synthesis of Licochalcone B and D Through Acid-Mediated Claisen-Schmidt Condensation. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.12.3906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the leptin and insulin signaling pathways. The important roles of PTP1B related to obesity and diabetes were confirmed by a deletion of PTP1B gene in mice. Mice with the whole body deletion of PTP1B were protected against the development of obesity and diabetes. When PTP1B gene was deleted selectively in the brain of mice, the major effects on weight and glucose control were consistent with the whole body deletion of PTP1B. This is in contrast to the muscle-, liver-, and adipocyte-specific deletion, which had no beneficial effects on obesity. While these results indicate the importance of neuronal PTP1B in maintaining energy homeostasis, the peripheral PTP1B is also being investigated for their potential roles in the control of energy balance. Validation of PTP1B as a therapeutic target for obesity and diabetes prompted efforts to develop potent and selective inhibitors of PTP1B. Among the small molecule inhibitors investigated, trodusquemine, which acts both centrally and peripherally, is currently in phase 2 clinical trials. An approach using PTP1B-directed antisense oligonucleotides is also in phase 2 clinical trials.
Collapse
Affiliation(s)
- Hyeongjin Cho
- Department of Chemistry, Inha University, Incheon, Korea.
| |
Collapse
|
22
|
Sun LP, Jiang Z, Gao LX, Sheng L, Quan YC, Li J, Piao HR. Synthesis and Biological Evaluation of Furan-chalcone Derivatives as Protein Tyrosine Phosphatase Inhibitors. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.4.1023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Shi D, Guo S, Jiang B, Guo C, Wang T, Zhang L, Li J. HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides: synthesis and anti-diabetic effects in C57BL/KsJ-db/db mice. Mar Drugs 2013; 11:350-62. [PMID: 23364683 PMCID: PMC3640384 DOI: 10.3390/md11020350] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 01/12/2023] Open
Abstract
3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(isopropoxymethyl)benzyl)benzene-1,2-diol (HPN) is a synthetic analogue of 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(ethoxymethyl)benzyl)benzene-1,2-diol (BPN), which is isolated from marine red alga Rhodomela confervoides with potent protein tyrosine phosphatase 1B (PTP1B) inhibition (IC50 = 0.84 μmol/L). The in vitro assay showed that HPN exhibited enhanced inhibitory activity against PTP1B with IC50 0.63 μmol/L and high selectivity against other PTPs (T cell protein tyrosine phosphatase (TCPTP), leucocyte antigen-related tyrosine phosphatase (LAR), Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) and SHP-2). The results of antihyperglycemic activity using db/db mouse model demonstrated that HPN significantly decreased plasma glucose (P < 0.01) after eight weeks treatment period. HPN lowered serum triglycerides and total cholesterol concentration in a dose-dependent manner. Besides, both of the high and medium dose groups of HPN remarkably decreased HbA1c levels (P < 0.05). HPN in the high dose group markedly lowered the insulin level compared to the model group (P < 0.05), whereas the effects were less potent than the positive drug rosiglitazone. Western blotting results showed that HPN decreased PTP1B levels in pancreatic tissue. Last but not least, the results of an intraperitoneal glucose tolerance test in Sprague–Dawley rats indicate that HPN have a similar antihyperglycemic activity as rosiglitazone. HPN therefore have potential for development as treatments for Type 2 diabetes.
Collapse
Affiliation(s)
- Dayong Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; E-Mails: (S.G.); (B.J.); (C.G.)
- Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226006, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-0532-8289-8719; Fax: +86-0532-8289-8641
| | - Shuju Guo
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; E-Mails: (S.G.); (B.J.); (C.G.)
- Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226006, China
| | - Bo Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; E-Mails: (S.G.); (B.J.); (C.G.)
- Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226006, China
| | - Chao Guo
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; E-Mails: (S.G.); (B.J.); (C.G.)
- Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226006, China
| | - Tao Wang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; E-Mails: (T.W.); (L.Z.)
| | - Luyong Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China; E-Mails: (T.W.); (L.Z.)
| | - Jingya Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China; E-Mail:
| |
Collapse
|
24
|
|
25
|
Sun LP, Gao LX, Ma WP, Nan FJ, Li J, Piao HR. Synthesis and Biological Evaluation of 2,4,6-Trihydroxychalcone Derivatives as Novel Protein Tyrosine Phosphatase 1B Inhibitors. Chem Biol Drug Des 2012; 80:584-90. [DOI: 10.1111/j.1747-0285.2012.01431.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|