1
|
Lafferty RA, O’Harte FPM, Irwin N, Gault VA, Flatt PR. Proglucagon-Derived Peptides as Therapeutics. Front Endocrinol (Lausanne) 2021; 12:689678. [PMID: 34093449 PMCID: PMC8171296 DOI: 10.3389/fendo.2021.689678] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Initially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced via tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique physiological effects that influence metabolism and energy regulation, which has witnessed several of them exploited in the form of long-acting, enzymatically resistant analogues for treatment of various pathologies. As such, intramuscular glucagon is well established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the management of short bowel syndrome. Furthermore, since approval of the first GLP-1 mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1 therapeutics have become a mainstay of T2DM management due to multifaceted and sustainable improvements in glycaemia, appetite control and weight loss. More recently, longer-acting PGDP therapeutics have been developed, while newfound benefits on cardioprotection, bone health, renal and liver function and cognition have been uncovered. In the present article, we discuss the physiology of PGDP peptides and their therapeutic applications, with a focus on successful design of analogues including dual and triple PGDP receptor agonists currently in clinical development.
Collapse
Affiliation(s)
| | | | | | - Victor A. Gault
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | |
Collapse
|
2
|
Wright SW, Simpson B, Chinigo G, Perry MA, Maguire RJ. Reduction of 2-hydroxy-3-arylmorpholines to 3-aryl morpholines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Xu G, Gaul MD, Song F, Du F, Liang Y, DesJarlais RL, DiLoreto K, Shook B, Rentzeperis D, Santulli R, Eckardt A, Demarest K. Discovery of potent and orally bioavailable indazole-based glucagon receptor antagonists for the treatment of type 2 diabetes. Bioorg Med Chem Lett 2019; 29:126668. [DOI: 10.1016/j.bmcl.2019.126668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
|
4
|
Venugopal PP, Das BK, Soorya E, Chakraborty D. Effect of hydrophobic and hydrogen bonding interactions on the potency of ß-alanine analogs of G-protein coupled glucagon receptor inhibitors. Proteins 2019; 88:327-344. [PMID: 31443129 DOI: 10.1002/prot.25807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 01/06/2023]
Abstract
G-protein coupled glucagon receptors (GCGRs) play an important role in glucose homeostasis and pathophysiology of Type-II Diabetes Mellitus (T2DM). The allosteric pocket located at the trans-membrane domain of GCGR consists of hydrophobic (TM5) and hydrophilic (TM7) units. Hydrophobic interactions with the amino acid residues present at TM5, found to facilitate the favorable orientation of antagonist at GCGR allosteric pocket. A statistically robust and highly predictive 3D-QSAR model was developed using 58 β-alanine based GCGR antagonists with significant variation in structure and potency profile. The correlation coefficient (R2 ) and cross-validation coefficient (Q2 ) of the developed model were found to be 0.9981 and 0.8253, respectively at the PLS factor of 8. The analysis of the favorable and unfavorable contribution of different structural features on the glucagon receptor antagonists was done by 3D-QSAR contour plots. Hydrophobic and hydrogen bonding interactions are found to be main dominating non-bonding interactions in docking studies. Presence of highest occupied molecular orbital (HOMO) in the polar part and lowest unoccupied molecular orbital (LUMO) in the hydrophobic part of antagonists leads to favorable protein-ligand interactions. Molecular mechanics/generalized born surface area (MM/GBSA) calculations showed that van der Waals and nonpolar solvation energy terms are crucial components for thermodynamically stable binding of the inhibitors. The binding free energy of highly potent compound was found to be -63.475 kcal/mol; whereas the least active compound exhibited binding energy of -41.097 kcal/mol. Further, five 100 ns molecular dynamics simulation (MD) simulations were done to confirm the stability of the inhibitor-receptor complex. Outcomes of the present study can serve as the basis for designing improved GCGR antagonists.
Collapse
Affiliation(s)
- Pushyaraga P Venugopal
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| | - Bratin K Das
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| | - E Soorya
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, India
| |
Collapse
|
5
|
Song F, Xu G, Gaul MD, Zhao B, Lu T, Zhang R, DesJarlais RL, DiLoreto K, Huebert N, Shook B, Rentzeperis D, Santulli R, Eckardt A, Demarest K. Design, synthesis and structure activity relationships of indazole and indole derivatives as potent glucagon receptor antagonists. Bioorg Med Chem Lett 2019; 29:1974-1980. [DOI: 10.1016/j.bmcl.2019.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023]
|
6
|
Gao C, Ren SV, Yu J, Baal U, Thai D, Lu J, Zeng C, Yan H, Wang Y. Glucagon Receptor Antagonism Ameliorates Progression of Heart Failure. JACC Basic Transl Sci 2019; 4:161-172. [PMID: 31061918 PMCID: PMC6488764 DOI: 10.1016/j.jacbts.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/08/2023]
Abstract
Mice were treated with a fully human monoclonal glucagon receptor antagonistic antibody REMD2.59 following myocardial infarction or pressure overload. REMD2.59 treatment blunted cardiac hypertrophy and fibrotic remodeling, and attenuated contractile dysfunction at 4 weeks after myocardial infarction. In addition, REMD2.59 treatment at the onset of pressure overload significantly suppressed cardiac hypertrophy and chamber dilation with marked preservation of cardiac systolic and diastolic function. Initiation of REMD2.59 treatment 2 weeks after pressure overload significantly blunted the progression of cardiac pathology. These results provide the first in vivo proof-of-concept evidence that glucagon receptor antagonism is a potentially efficacious therapy to ameliorate both onset and progression of heart failure.
Collapse
Affiliation(s)
- Chen Gao
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Address for correspondence: Dr. Yibin Wang or Dr. Chen Gao, Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive, Room CHS 37-200J, Los Angeles, California 90095.
| | - Shuxun Vincent Ren
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Junyi Yu
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Ulysis Baal
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dung Thai
- REMD Biotherapeutics, Camarillo, California
- Beijing Cosci-REMD Biotherapeutics, Beijing, China
| | - John Lu
- REMD Biotherapeutics, Camarillo, California
- Beijing Cosci-REMD Biotherapeutics, Beijing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, California
- Beijing Cosci-REMD Biotherapeutics, Beijing, China
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Address for correspondence: Dr. Yibin Wang or Dr. Chen Gao, Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive, Room CHS 37-200J, Los Angeles, California 90095.
| |
Collapse
|
7
|
Jacob C, Lamberth C. First synthesis and further derivatization of furo[3,2-c]pyrazol-6-ones. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Vella A, Freeman JLR, Dunn I, Keller K, Buse JB, Valcarce C. Targeting hepatic glucokinase to treat diabetes with TTP399, a hepatoselective glucokinase activator. Sci Transl Med 2019; 11:11/475/eaau3441. [DOI: 10.1126/scitranslmed.aau3441] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/07/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
The therapeutic success of interventions targeting glucokinase (GK) activation for the treatment of type 2 diabetes has been limited by hypoglycemia, steatohepatitis, and loss of efficacy over time. The clinical characteristics of patients with GK-activating mutations or GK regulatory protein (GKRP) loss-of-function mutations suggest that a hepatoselective GK activator (GKA) that does not activate GK in β cells or affect the GK-GKRP interaction may reduce hyperglycemia in patients with type 2 diabetes while limiting hypoglycemia and liver-associated adverse effects. Here, we review the rationale for TTP399, an oral hepatoselective GKA, and its progression from preclinical to clinical development, with an emphasis on the results of a randomized, double-blind, placebo- and active-controlled phase 2 study of TTP399 in patients with type 2 diabetes. In this 6-month study, TTP399 (800 mg/day) was associated with a clinically significant and sustained reduction in glycated hemoglobin, with a placebo-subtracted least squares mean HbA1c change from baseline of −0.9% (P < 0.01). Compared to placebo, TTP399 (800 mg/day) also increased high-density lipoprotein cholesterol (3.2 mg/dl; P < 0.05), decreased fasting plasma glucagon (−20 pg/ml; P < 0.05), and decreased weight in patients weighing ≥100 kg (−3.4 kg; P < 0.05). TTP399 did not cause hypoglycemia, had no detrimental effect on plasma lipids or liver enzymes, and did not increase blood pressure, highlighting the importance of tissue selectivity and preservation of physiological regulation when targeting key metabolic regulators such as GK.
Collapse
|
9
|
Chemical Diversity in the G Protein-Coupled Receptor Superfamily. Trends Pharmacol Sci 2018; 39:494-512. [PMID: 29576399 DOI: 10.1016/j.tips.2018.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell signaling transmembrane proteins that can be modulated by a plethora of chemical compounds. Systematic cheminformatics analysis of structurally and pharmacologically characterized GPCR ligands shows that cocrystallized GPCR ligands cover a significant part of chemical ligand space, despite their limited number. Many GPCR ligands and substructures interact with multiple receptors, providing a basis for polypharmacological ligand design. Experimentally determined GPCR structures represent a variety of binding sites and receptor-ligand interactions that can be translated to chemically similar ligands for which structural data are lacking. This integration of structural, pharmacological, and chemical information on GPCR-ligand interactions enables the extension of the structural GPCR-ligand interactome and the structure-based design of novel modulators of GPCR function.
Collapse
|
10
|
Lin S, Zhang F, Jiang G, Qureshi SA, Yang X, Chicchi GG, Tota L, Bansal A, Brady E, Trujillo M, Salituro G, Miller C, Tata JR, Zhang BB, Parmee ER. A novel series of indazole-/indole-based glucagon receptor antagonists. Bioorg Med Chem Lett 2015; 25:4143-7. [PMID: 26303893 DOI: 10.1016/j.bmcl.2015.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 02/02/2023]
Abstract
A novel, potent series of glucagon receptor antagonists (GRAs) was discovered. These indazole- and indole-based compounds were designed on an earlier pyrazole-based GRA lead MK-0893. Structure-activity relationship (SAR) studies were focused on the C3 and C6 positions of the indazole core, as well as the benzylic position on the N-1 of indazole. Multiple potent GRAs were identified with excellent in vitro profiles and good pharmacokinetics in rat. Among them, GRA 16d was found to be orally active in blunting glucagon induced glucose excursion in an acute glucagon challenge model in glucagon receptor humanized (hGCGR) mice at 1, 3 and 10mg/kg (mpk), and significantly lowered acute glucose levels in hGCGR ob/ob mice at 3 mpk dose.
Collapse
Affiliation(s)
- Songnian Lin
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States.
| | - Fengqi Zhang
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Guoqiang Jiang
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Sajjad A Qureshi
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Xiaodong Yang
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Gary G Chicchi
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Laurie Tota
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Alka Bansal
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Edward Brady
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Maria Trujillo
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Gino Salituro
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Corey Miller
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - James R Tata
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Bei B Zhang
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| | - Emma R Parmee
- Early Development and Discovery Science, and Preclinical Development, Merck Research Laboratories, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, United States
| |
Collapse
|
11
|
Sammons MF, Lee ECY. Recent progress in the development of small-molecule glucagon receptor antagonists. Bioorg Med Chem Lett 2015; 25:4057-64. [PMID: 26271588 DOI: 10.1016/j.bmcl.2015.07.092] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 01/05/2023]
Abstract
The endocrine hormone glucagon stimulates hepatic glucose output via its action at the glucagon receptor (GCGr) in the liver. In the diabetic state, dysregulation of glucagon secretion contributes to abnormally elevated hepatic glucose output. The inhibition of glucagon-induced hepatic glucose output via antagonism of the GCGr using small-molecule ligands is a promising mechanism for improving glycemic control in the diabetic state. Clinical data evaluating the therapeutic potential of small-molecule GCGr antagonists is currently emerging. Recently disclosed clinical data demonstrates the potential efficacy and possible therapeutic limitations of small-molecule GCGr antagonists. Recent pre-clinical work on the development of GCGr antagonists is also summarized.
Collapse
Affiliation(s)
- Matthew F Sammons
- Cardiovascular, Metabolic and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development, 610 Main St, Cambridge, MA 02139, United States
| | - Esther C Y Lee
- Cardiovascular, Metabolic and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development, 610 Main St, Cambridge, MA 02139, United States
| |
Collapse
|
12
|
Huang W, Liu S, Chen B, Guo X, Yu Y. Synthesis of polysubstituted 4-aminopyrazoles and 4-hydroxypyrazoles from vinyl azides and hydrazines. RSC Adv 2015. [DOI: 10.1039/c5ra04371a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and direct synthesis of polysubstituted 4-aminopyrazoles and 4-hydroxypyrazoles from vinyl azides and hydrazines.
Collapse
Affiliation(s)
- Wei Huang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Shen Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Binhui Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Xiao Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Yongping Yu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| |
Collapse
|
13
|
Ding Z, Tan Q, Gao M, Xu B. Copper-catalyzed aerobic cascade cycloamination and acyloxylation: a direct approach to 4-acyloxy-1H-pyrazoles. Org Biomol Chem 2015; 13:4642-6. [DOI: 10.1039/c5ob00409h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient copper-catalyzed regioselective olefinic C(sp2)–H bond cycloamination and acyloxylation was developed to give acyloxylated pyrazoles under mild conditions, which combines the formation of the pyrazole skeleton and installation of an acyloxyl group in a single step.
Collapse
Affiliation(s)
- Zhengwei Ding
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai 200444
- China
| | - Qitao Tan
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai 200444
- China
| | - Mingchun Gao
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai 200444
- China
| | - Bin Xu
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
14
|
Synthesis and antihyperglycemic evaluation of new 2-hydrazolyl-4-thiazolidinone-5-carboxylic acids having pyrazolyl pharmacophores. Bioorg Med Chem Lett 2014; 24:2651-4. [PMID: 24813740 DOI: 10.1016/j.bmcl.2014.04.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/15/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022]
Abstract
In the search of new antihyperglycemic agents and following rational approach of drug designing here new 2-hydrazolyl-4-thiazolidinone-5-carboxylic acids (4a-g) with pyrazolyl pharmacophore have been synthesized via thia Michael addition reaction of 1-((3-(4-substituted phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)thiosemicarbazides (3a-g) with maleic anhydride. The required precursors, (3a-g) were obtained by condensing known 3-(4-substituted phenyl)-1-phenyl-1H-pyrazole-4-carbaldehydes (1a-g) with thiosemicarbazide in ethanol. The newly synthesized compounds (4a-g) have been evaluated for the antihyperglycemic activity in sucrose loaded rat model and among these compounds 4d, 4f and 4g have displayed significant antihyperglycemic activity.
Collapse
|
15
|
Identification of a novel conformationally constrained glucagon receptor antagonist. Bioorg Med Chem Lett 2014; 24:839-44. [DOI: 10.1016/j.bmcl.2013.12.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/22/2022]
|
16
|
Kurpet MK, Dąbrowska A, Jarosz MM, Kajewska-Kania K, Kuźnik N, Suwiński JW. Coupling of C-nitro-NH-azoles with arylboronic acids. A route to N-aryl-C-nitroazoles. Beilstein J Org Chem 2013; 9:1517-25. [PMID: 23946851 PMCID: PMC3740504 DOI: 10.3762/bjoc.9.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/28/2013] [Indexed: 11/27/2022] Open
Abstract
A method for the synthesis of N-aryl-C-nitroazoles is presented. A coupling reaction between variously substituted arylboronic acids and 3(5)-nitro-1H-pyrazole catalyzed by copper salt has been carried out in methanol in the presence of sodium hydroxide to afford the desired N-aryl-C-nitroazoles in good yields. This synthetic route has also been successfully applied to obtain N-phenyl derivatives of 4-nitropyrazole, 2-nitroimidazole, 4(5)-nitroimidazole and 3-nitro-1,2,4-triazole.
Collapse
Affiliation(s)
- Marta K Kurpet
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | | | | | | | | | | |
Collapse
|
17
|
Guzman-Perez A, Pfefferkorn JA, Lee EC, Stevens BD, Aspnes GE, Bian J, Didiuk MT, Filipski KJ, Moore D, Perreault C, Sammons MF, Tu M, Brown J, Atkinson K, Litchfield J, Tan B, Samas B, Zavadoski WJ, Salatto CT, Treadway J. The design and synthesis of a potent glucagon receptor antagonist with favorable physicochemical and pharmacokinetic properties as a candidate for the treatment of type 2 diabetes mellitus. Bioorg Med Chem Lett 2013; 23:3051-8. [DOI: 10.1016/j.bmcl.2013.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
18
|
Mino T, Ishikawa M, Nishikawa K, Wakui K, Sakamoto M. Palladium-catalyzed asymmetric allylic alkylation of indoles by C–N bond axially chiral phosphine ligands. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Affiliation(s)
- Satish K Garg
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Aurora, CO, USA
| |
Collapse
|
20
|
Cho YM, Merchant CE, Kieffer TJ. Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol Ther 2012; 135:247-78. [DOI: 10.1016/j.pharmthera.2012.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
|
21
|
Xiong Y, Guo J, Candelore MR, Liang R, Miller C, Dallas-Yang Q, Jiang G, McCann PE, Qureshi SA, Tong X, Xu SS, Shang J, Vincent SH, Tota LM, Wright MJ, Yang X, Zhang BB, Tata JR, Parmee ER. Discovery of a novel glucagon receptor antagonist N-[(4-{(1S)-1-[3-(3, 5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine (MK-0893) for the treatment of type II diabetes. J Med Chem 2012; 55:6137-48. [PMID: 22708876 DOI: 10.1021/jm300579z] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A potent, selective glucagon receptor antagonist 9m, N-[(4-{(1S)-1-[3-(3,5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine, was discovered by optimization of a previously identified lead. Compound 9m is a reversible and competitive antagonist with high binding affinity (IC(50) of 6.6 nM) and functional cAMP activity (IC(50) of 15.7 nM). It is selective for glucagon receptor relative to other family B GPCRs, showing IC(50) values of 1020 nM for GIPR, 9200 nM for PAC1, and >10000 nM for GLP-1R, VPAC1, and VPAC2. Compound 9m blunted glucagon-induced glucose elevation in hGCGR mice and rhesus monkeys. It also lowered ambient glucose levels in both acute and chronic mouse models: in hGCGR ob/ob mice it reduced glucose (AUC 0-6 h) by 32% and 39% at 3 and 10 mpk single doses, respectively. In hGCGR mice on a high fat diet, compound 9m at 3, and 10 mpk po in feed lowered blood glucose levels by 89% and 94% at day 10, respectively, relative to the difference between the vehicle control and lean hGCGR mice. On the basis of its favorable biological and DMPK properties, compound 9m (MK-0893) was selected for further preclinical and clinical evaluations.
Collapse
Affiliation(s)
- Yusheng Xiong
- Discovery and Preclinical Sciences, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Verspohl EJ. Novel Pharmacological Approaches to the Treatment of Type 2 Diabetes. Pharmacol Rev 2012; 64:188-237. [DOI: 10.1124/pr.110.003319] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|