1
|
Deckers C, Rehm TH. In situ Diazonium Salt Formation and Photochemical Aryl-Aryl Coupling in Continuous Flow Monitored by Inline NMR Spectroscopy. Chemistry 2024; 30:e202303692. [PMID: 38462439 DOI: 10.1002/chem.202303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
A novel class of diazonium salts is introduced for the photochemical aryl-aryl coupling to produce (substituted) biphenyls. As common diazonium tetrafluoroborate salts fail, soluble and safe aryl diazonium trifluoroacetates are applied. In this mild synthesis route no catalysts are required to generate an aryl-radical by irradiation with UV-A light (365 nm). This reactive species undergoes direct C-H arylation at an arene, forming the product in reasonable reaction times. With the implementation of a continuous flow setup in a capillary photoreactor 13 different biphenyl derivatives are successfully synthesized. By integrating an inline 19F-NMR benchtop spectrometer, samples are reliably quantified as the fluorine-substituents act as a probe. Here, real-time NMR spectroscopy is a perfect tool to monitor the continuously operated system, which produces fine chemicals of industrial relevance even in a multigram scale.
Collapse
Affiliation(s)
- Christoph Deckers
- Division Chemistry, Sustainable Chemical Syntheses Group, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Thomas H Rehm
- Division Chemistry, Sustainable Chemical Syntheses Group, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
| |
Collapse
|
2
|
Paul A, Nahar S, Nahata P, Sarkar A, Maji A, Samanta A, Karmakar S, Maity TK. Synthetic GPR40/FFAR1 agonists: An exhaustive survey on the most recent chemical classes and their structure-activity relationships. Eur J Med Chem 2024; 264:115990. [PMID: 38039791 DOI: 10.1016/j.ejmech.2023.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Free fatty acid receptor 1 (FFAR1 or GPR40) is a potential target for treating type 2 diabetes mellitus (T2DM) and related disorders that have been extensively researched for many years. GPR40/FFAR1 is a promising anti-diabetic target because it can activate insulin, promoting glucose metabolism. It controls T2DM by regulating glucose levels in the body through two separate mechanisms: glucose-stimulated insulin secretion and incretin production. In the last few years, various synthetic GPR40/FFAR1 agonists have been discovered that fall under several chemical classes, viz. phenylpropionic acid, phenoxyacetic acid, and dihydrobenzofuran acetic acid. However, only a few synthetic agonists have entered clinical trials due to various shortcomings like poor efficacy, low lipophilicity and toxicity issues. As a result, pharmaceutical firms and research institutions are interested in developing synthetic GPR40/FFAR1 agonists with superior effectiveness, lipophilicity, and safety profiles. This review encompasses the most recent research on synthetic GPR40/FFAR1 agonists, including their chemical classes, design strategies and structure-activity relationships. Additionally, we have emphasised the structural characteristics of the most potent GPR40/FFAR1 agonists from each chemical class of synthetic derivatives and analysed their chemico-biological interactions. This work will hopefully pave the way for developing more potent and selective synthetic GPR40/FFAR1 agonists for treating T2DM and related disorders.
Collapse
Affiliation(s)
- Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| |
Collapse
|
3
|
Yang J, Jiang C, Chen J, Qin L, Cheng G. Predicting GPR40 Agonists with A Deep Learning-Based Ensemble Model. ChemistryOpen 2023; 12:e202300051. [PMID: 37404062 PMCID: PMC10661831 DOI: 10.1002/open.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Recent studies have identified G protein-coupled receptor 40 (GPR40) as a promising target for treating type 2 diabetes mellitus, and GPR40 agonists have several superior effects over other hypoglycemic drugs, including cardiovascular protection and suppression of glucagon levels. In this study, we constructed an up-to-date GPR40 ligand dataset for training models and performed a systematic optimization of the ensemble model, resulting in a powerful ensemble model (ROC AUC: 0.9496) for distinguishing GPR40 agonists and non-agonists. The ensemble model is divided into three layers, and the optimization process is carried out in each layer. We believe that these results will prove helpful for both the development of GPR40 agonists and ensemble models. All the data and models are available on GitHub. (https://github.com/Jiamin-Yang/ensemble_model).
Collapse
Affiliation(s)
- Jiamin Yang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouP. R. China310053
| | - Chen Jiang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouP. R. China310053
| | - Jing Chen
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouP. R. China310053
| | - Lu‐Ping Qin
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouP. R. China310053
| | - Gang Cheng
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouP. R. China310053
| |
Collapse
|
4
|
Ren Q, Fan Y, Yang L, Shan M, Shi W, Qian H. An updated patent review of GPR40/ FFAR1 modulators (2020 - present). Expert Opin Ther Pat 2023; 33:565-577. [PMID: 37947382 DOI: 10.1080/13543776.2023.2272649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Free fatty acid receptor 1 (FFAR1) is a potential therapeutic target for type 2 diabetes mellitus (T2DM) because it could clinically stimulate insulin release in a glucose-dependent manner without inducing hypoglycemia. In both the pharmaceutical industry and academic community, FFAR1 agonists have attracted considerable attention. AREAS COVERED The review presents a patent overview of FFAR1 modulators in 2020-2023, along with chemical structures, the biological activities and therapeutic applications of the representative compounds. Our patent survey used the major electronic databases, namely SciFinder, and Web of Science and Innojoy. EXPERT OPINION Although FFAR1 agonists exhibit outstanding advantages, they are also associated with significant challenges. At present, reducing the molecular weight and overall lipophilicity and developing tissue-specific FFAR1 agonists may be the strategies for alleviating hepatotoxicity.
Collapse
Affiliation(s)
- Qiang Ren
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Yiqing Fan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Lixin Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Mayu Shan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
5
|
Kudale P, Gavali K, Pinjari D, Chaturbhuj G. A new parallel, rapid, and green Knoevenagel Condensation catalyzed by in-situ generated carbonic acid (CO2 (g) in water): Application to intermediate of AMG 837. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
6
|
Wang B, Cai Z, Yao H, Jiao S, Chen S, Yang Z, Huang W, Ren Q, Cao Z, Chen Y, Zhang L, Li Z. Discovery of a structurally novel, potent, and once-weekly free fatty acid receptor 1 agonist for the treatment of diabetes. Eur J Med Chem 2023; 245:114883. [PMID: 36343410 DOI: 10.1016/j.ejmech.2022.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 12/08/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a lifelong disease that requires long-term medication to control glucose levels, and thereby long-acting drug has been clinically needed for improving medical adherence. The free fatty acid receptor 1 (FFA1) was considered as a promising target for several diseases, such as T2DM, pain and fatty liver. However, no once-weekly FFA1 agonist has been reported until now. Herein, we report the successful discovery of ZLY50, the first once-weekly FFA1 agonist with a completely new chemotype, highly agonistic activity and selectivity on FFA1. Moreover, ZLY50 has enough brain exposure to activate FFA1 in brain, and it is the first orally available FFA1 agonist with analgesic activity. Notably, the long-term anti-diabetic and anti-fatty liver effects of ZLY50 (once-weekly) were better than those of HWL-088 (once-daily), a highly potent FFA1 agonist with far stronger glucose-lowering effect than Phase 3 clinical candidate TAK-875. Further mechanism studies suggested that ZLY50 alleviates fatty liver by regulating the expressions of genes related to lipid metabolism, mitochondrial function, and oxidative stress in liver.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huixin Yao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
7
|
Zhu J, Wang Y, Charlack AD, Wang YM. Enantioselective and Diastereodivergent Allylation of Propargylic C-H Bonds. J Am Chem Soc 2022; 144:15480-15487. [PMID: 35976157 PMCID: PMC9437123 DOI: 10.1021/jacs.2c07297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes to generate 3,4-substituted 1,5-enynes is reported. Under optimized conditions, the coupling products are formed with excellent regio-, diastereo-, and enantioselectivities, and the protocol is functional group tolerant. Moreover, we report conditions that allow the reaction to proceed with complete reversal of diastereoselectivity. Mechanistic studies are consistent with an unprecedented dual role for the iridium catalyst, enabling the propargylic deprotonation of the alkyne through π-coordination, as well as the generation of a π-allyl species from the allylic ether starting material.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu225002, China
| | - Aaron D Charlack
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
8
|
Katsouri IP, Vandervelpen EVG, Gattor AO, Engelbeen S, El Sayed A, Seitaj K, Becerra EDM, Vanderheyden PML. Complex FFA1 receptor (in)dependent modulation of calcium signaling by free fatty acids. Biochem Pharmacol 2022; 202:115150. [PMID: 35724691 DOI: 10.1016/j.bcp.2022.115150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
The expression of free fatty acid 1 receptors (FFA1R), activated by long chain fatty acids in human pancreatic β-cells and enhancing glucose-stimulated insulin secretion are an attractive target to treat type 2 diabetes. Yet several clinical studies with synthetic FFA1R agonists had to be discontinued due to cytotoxicity and/or so-called "liver concerns". It is not clear whether these obstructions are FFA1R dependent. In this context we used CHO-AEQ cells expressing the bioluminescent calcium-sensitive protein aequorin to investigate calcium signaling elicited by FFA1 receptor ligands α-linolenic acid (ALA), oleic acid (OLA) and myristic acid (MYA). This study revealed complex modulation of intracellular calcium signaling by these fatty acids. First these compounds elicited a typical transient increase of intracellular calcium via binding to FFA1 receptors. Secondly slightly higher concentrations of ALA substantially reduced ATP mediated calcium responses in CHO-AEQ cells and Angiotensin II responses in CHO-AEQ cells expressing human AT1 receptors. This effect was less pronounced with MYA and OLA and was not linked to FFA1 receptor activation nor to acute cytotoxicity as a result of plasma membrane perturbation. Yet it can be hypothesized that, in line with previous studies, unsaturated long chain fatty acids such as ALA and OLA are capable of inactivating the G-proteins involved in purinergic and Angiotensin AT1 receptor calcium signaling. Alternatively the ability of fatty acids to deplete intracellular calcium stores might underly the observed cross-inhibition of these receptor responses in the same cells.
Collapse
Affiliation(s)
- Ilektra Petrina Katsouri
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ebert Vinciane G Vandervelpen
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Albert Owusu Gattor
- Lehrstuhl für Pharmazeutische und Medizinische Chemie II, Universität Regensburg, Regensburg, Germany
| | - Sarah Engelbeen
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Abdulrahman El Sayed
- The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Klejdia Seitaj
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eduardo Daniel Morales Becerra
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Patrick M L Vanderheyden
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
9
|
Kolbinger A, Kestner RI, Jencio L, Schäufele TJ, Vutukuri R, Pfeilschifter W, Scholich K. Behind the Wall-Compartment-Specific Neovascularisation during Post-Stroke Recovery in Mice. Cells 2022; 11:1659. [PMID: 35626695 PMCID: PMC9139871 DOI: 10.3390/cells11101659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a highly prevalent vascular disease leading to oxygen- and glucose deprivation in the brain. In response, ischemia-induced neovascularization occurs, which is supported by circulating CD34+ endothelial progenitor cells. Here, we used the transient middle cerebral artery occlusion (tMCAO) mouse model to characterize the spatio-temporal alterations within the ischemic core from the acute to the chronic phase using multiple-epitope-ligand cartography (MELC) for sequential immunohistochemistry. We found that around 14 days post-stroke, significant angiogenesis occurs in the ischemic core, as determined by the presence of CD31+/CD34+ double-positive endothelial cells. This neovascularization was accompanied by the recruitment of CD4+ T-cells and dendritic cells as well as IBA1+ and IBA1- microglia. Neighborhood analysis identified, besides pericytes only for T-cells and dendritic cells, a statistically significant distribution as direct neighbors of CD31+/CD34+ endothelial cells, suggesting a role for these cells in aiding angiogenesis. This process was distinct from neovascularization of the peri-infarct area as it was separated by a broad astroglial scar. At day 28 post-stroke, the scar had emerged towards the cortical periphery, which seems to give rise to a neuronal regeneration within the peri-infarct area. Meanwhile, the ischemic core has condensed to a highly vascularized subpial region adjacent to the leptomeningeal compartment. In conclusion, in the course of chronic post-stroke regeneration, the astroglial scar serves as a seal between two immunologically active compartments-the peri-infarct area and the ischemic core-which exhibit distinct processes of neovascularization as a central feature of post-stroke tissue remodeling. Based on our findings, we propose that neovascularization of the ischemic core comprises arteriogenesis as well as angiogenesis originating from the leptomenigeal vasculature.
Collapse
Affiliation(s)
- Anja Kolbinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (A.K.); (T.J.S.)
| | - Roxane Isabelle Kestner
- Department of Neurology, Hospital of the Goethe University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; (R.I.K.); (L.J.)
- Institute of Pharmacology and Toxicology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (R.V.); (W.P.)
| | - Lara Jencio
- Department of Neurology, Hospital of the Goethe University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; (R.I.K.); (L.J.)
| | - Tim J. Schäufele
- Institute of Clinical Pharmacology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (A.K.); (T.J.S.)
| | - Rajkumar Vutukuri
- Institute of Pharmacology and Toxicology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (R.V.); (W.P.)
| | - Waltraud Pfeilschifter
- Institute of Pharmacology and Toxicology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (R.V.); (W.P.)
- Department of Neurology and Clinical Neurophysiology, Municipal Hospital Lüneburg, D-21339 Lüneburg, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (A.K.); (T.J.S.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Plin5, a New Target in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2122856. [PMID: 35509833 PMCID: PMC9060988 DOI: 10.1155/2022/2122856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
Abnormal lipid accumulation is commonly observed in diabetic cardiomyopathy (DC), which can create a lipotoxic microenvironment and damage cardiomyocytes. Lipid toxicity is an important pathogenic factor due to abnormal lipid accumulation in DC. As a lipid droplet (LD) decomposition barrier, Plin5 can protect LDs from lipase decomposition and regulate lipid metabolism, which is involved in the occurrence and development of cardiovascular diseases. In recent years, studies have shown that Plin5 expression is involved in the pathogenesis of DC lipid toxicity, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and insulin resistance (IR) and has become a key target of DC research. Therefore, understanding the relationship between Plin5 and DC progression as well as the mechanism of this process is crucial for developing new therapeutic approaches and exploring new therapeutic targets. This review is aimed at exploring the latest findings and roles of Plin5 in lipid metabolism and DC-related pathogenesis, to explore possible clinical intervention approaches.
Collapse
|
11
|
Free Fatty Acid Receptors (FFARs) in Adipose: Physiological Role and Therapeutic Outlook. Cells 2022; 11:cells11040750. [PMID: 35203397 PMCID: PMC8870169 DOI: 10.3390/cells11040750] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Fatty acids (FFAs) are important biological molecules that serve as a major energy source and are key components of biological membranes. In addition, FFAs play important roles in metabolic regulation and contribute to the development and progression of metabolic disorders like diabetes. Recent studies have shown that FFAs can act as important ligands of G-protein-coupled receptors (GPCRs) on the surface of cells and impact key physiological processes. Free fatty acid-activated receptors include FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), and FFAR4 (GPR120). FFAR2 and FFAR3 are activated by short-chain fatty acids like acetate, propionate, and butyrate, whereas FFAR1 and FFAR4 are activated by medium- and long-chain fatty acids like palmitate, oleate, linoleate, and others. FFARs have attracted considerable attention over the last few years and have become attractive pharmacological targets in the treatment of type 2 diabetes and metabolic syndrome. Several lines of evidence point to their importance in the regulation of whole-body metabolic homeostasis including adipose metabolism. Here, we summarize our current understanding of the physiological functions of FFAR isoforms in adipose biology and explore the prospect of FFAR-based therapies to treat patients with obesity and Type 2 diabetes.
Collapse
|
12
|
Wang B, Cai Z, Chen S, Chen Y, Jiao S, Ren Q, Wang X, Geng X, Li Z, Wang G. Design, synthesis, and biological evaluation of novel FFA1 partial agonists bearing oxime ether scaffold**. ChemistrySelect 2022; 7. [DOI: 10.1002/slct.202104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Bin Wang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
- National Key Clinical Department (Clinical Pharmacy) The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Zongyu Cai
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Siliang Chen
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Ya Chen
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Shixuan Jiao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of New Drug Discovery and Evaluation Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Qiang Ren
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of New Drug Discovery and Evaluation Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Xuekun Wang
- College of Pharmacy Liaocheng University Liaocheng 252059 China
| | - Xinqian Geng
- Department of Endocrinology The Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan Province Kunming 650021 China
| | - Zheng Li
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of New Drug Discovery and Evaluation Guangdong Pharmaceutical University Guangzhou 510006 China
- National Key Clinical Department (Clinical Pharmacy) The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Guangji Wang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| |
Collapse
|
13
|
Rady B, Liu J, Huang H, Bakaj I, Qi J, Lee SP, Martin T, Norquay L, Player M, Pocai A. A FFAR1 full agonist restores islet function in models of impaired glucose-stimulated insulin secretion and diabetic non-human primates. Front Endocrinol (Lausanne) 2022; 13:1061688. [PMID: 36482991 PMCID: PMC9723222 DOI: 10.3389/fendo.2022.1061688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
The free fatty acid receptor 1 (FFAR1/GPR40) mediates fatty acid-induced insulin secretion from pancreatic β-cells. At least 3 distinct binding sites exist on the FFAR1 receptor and numerous synthetic ligands have been investigated for their anti-diabetic actions. Fasiglifam, binds to site-1 and stimulates intra-cellular calcium release and improves glycemic control in diabetic patients. Recently, small molecule FFAR1 agonists were discovered which bind to site-3, stimulating both intra-cellular calcium and cAMP, resulting in insulin and glucagon-like peptide-1 (GLP-1) secretion. The ability of our site-3 FFAR1 agonist (compound A) to control blood glucose was evaluated in spontaneously diabetic cynomolgus monkeys during an oral glucose tolerance test. In type-2 diabetic (T2D) animals, significant reductions in blood glucose and insulin were noted. To better understand the mechanism of these in vivo findings, we evaluated the effect of compound A in islets under several conditions of dysfunction. First, healthy human and non-human primate islets were treated with compound A and showed potentiation of insulin and glucagon secretion from both species. Next, we determined glucose-responsive insulin secretion under gluco-lipotoxic conditions and from islets isolated from type-2 diabetic humans. Despite a dysfunctional phenotype that failed to secrete insulin in response to glucose, site-3 FFAR1 agonism not only enhanced insulin secretion, but restored glucose responsiveness across a range of glucose concentrations. Lastly, we treated ex vivo human islets chronically with a sulfonylurea to induce secondary beta-cell failure. Again, this model showed reduced glucose-responsive insulin secretion that was restored and potentiated by site-3 FFAR1 agonism. Together these data suggest a mechanism for FFAR1 where agonists have direct effects on islet hormone secretion that can overcome a dysfunctional T2D phenotype. These unique characteristics of FFAR1 site-3 agonists make them an appealing potential therapy to treat type-2 diabetes.
Collapse
Affiliation(s)
- Brian Rady
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- *Correspondence: Brian Rady,
| | - Jianying Liu
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Hui Huang
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Discovery Chemistry, Janssen R&D, Spring House, PA, United States
| | - Ivona Bakaj
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Jenson Qi
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - S. P. Lee
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Tonya Martin
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Medical Affairs, Janssen R&D, Spring House, PA, United States
| | - Lisa Norquay
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Business Development, Janssen R&D, Raritan, NJ, United States
| | - Mark Player
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Discovery Chemistry, Janssen R&D, Spring House, PA, United States
| | - Alessandro Pocai
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| |
Collapse
|
14
|
Vilas-Boas EA, Almeida DC, Roma LP, Ortis F, Carpinelli AR. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells 2021; 10:cells10123328. [PMID: 34943836 PMCID: PMC8699655 DOI: 10.3390/cells10123328] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
A high caloric intake, rich in saturated fats, greatly contributes to the development of obesity, which is the leading risk factor for type 2 diabetes (T2D). A persistent caloric surplus increases plasma levels of fatty acids (FAs), especially saturated ones, which were shown to negatively impact pancreatic β-cell function and survival in a process called lipotoxicity. Lipotoxicity in β-cells activates different stress pathways, culminating in β-cells dysfunction and death. Among all stresses, endoplasmic reticulum (ER) stress and oxidative stress have been shown to be strongly correlated. One main source of oxidative stress in pancreatic β-cells appears to be the reactive oxygen species producer NADPH oxidase (NOX) enzyme, which has a role in the glucose-stimulated insulin secretion and in the β-cell demise during both T1 and T2D. In this review, we focus on the acute and chronic effects of FAs and the lipotoxicity-induced β-cell failure during T2D development, with special emphasis on the oxidative stress induced by NOX, the ER stress, and the crosstalk between NOX and ER stress.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| | - Davidson Correa Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Leticia Prates Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany;
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| |
Collapse
|
15
|
Free fatty acid receptor 1: a ray of hope in the therapy of type 2 diabetes mellitus. Inflammopharmacology 2021; 29:1625-1639. [PMID: 34669065 DOI: 10.1007/s10787-021-00879-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022]
Abstract
Free fatty acid receptor 1 (FFAR1) is a G-protein coupled receptor with prominent expression on pancreatic beta cells, bones, intestinal cells as well as the nerve cells. This receptor mediates a multitude of functions in the body including release of incretins, secretion of insulin as well as sensation of pain. Since FFAR1 causes secretion of insulin and regulates glucose metabolism, efforts were made to unfold its structure followed by discovering agonists for the receptor and the utilization of these agonists in the therapy of type 2 diabetes mellitus. Development of such functional FFAR1 agonists is a necessity because the currently available therapy for type 2 diabetes mellitus has numerous drawbacks, of which, the major one is hypoglycemia. Since the most prominent effect of the FFAR1 agonists is on glucose concentration in the body, so the major research is focused on treating type 2 diabetes mellitus, though the agonists could benefit other metabolic disorders and neurological disorders as well. The agonists developed so far had one major limitation, i.e., hepatotoxicity. Although, the only agonist that could reach phase 3 clinical trials was TAK-875 developed by Takeda Pharmaceuticals but it was also withdrawn due to toxic effects on the liver. Thus, there are numerous agonists for the varied binding sites of the receptor but no drug available yet. There does seem to be a ray of hope in the drugs that target FFAR1 but a lot more efforts towards drug discovery would result in the successful management of type 2 diabetes mellitus.
Collapse
|
16
|
Mach M, Bazydło-Guzenda K, Buda P, Matłoka M, Dzida R, Stelmach F, Gałązka K, Wąsińska-Kałwa M, Smuga D, Hołowińska D, Dawid U, Gurba-Bryśkiewicz L, Wiśniewski K, Dubiel K, Pieczykolan J, Wieczorek M. Discovery and development of CPL207280 as new GPR40/FFA1 agonist. Eur J Med Chem 2021; 226:113810. [PMID: 34537444 DOI: 10.1016/j.ejmech.2021.113810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022]
Abstract
Due to a unique mechanism that limits the possibility of hypoglycemia, the free fatty acid receptor (FFA1) is an attractive target for the treatment of type 2 diabetes. So far, however, none of the promising agonists have been able to enter the market. The most advanced clinical candidate, TAK-875, was withdrawn from phase III clinical trials due to liver safety issues. In this article, we describe the key aspects leading to the discovery of CPL207280 (13), the design of which focused on long-term safety. The introduction of small, nature-inspired acyclic structural fragments resulted in compounds with retained high potency and a satisfactory pharmacokinetic profile. Optimized synthesis and upscaling provided a stable, solid form of CPL207280-51 (45) with the properties required for the toxicology studies and ongoing clinical trials.
Collapse
Affiliation(s)
- Mateusz Mach
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland.
| | - Katarzyna Bazydło-Guzenda
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Zwirki i Wigury Street, 02-091, Warsaw, Poland
| | - Paweł Buda
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Mikołaj Matłoka
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Radosław Dzida
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Filip Stelmach
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Kinga Gałązka
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | | | - Damian Smuga
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Dagmara Hołowińska
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Urszula Dawid
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | | | | | - Krzysztof Dubiel
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Jerzy Pieczykolan
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| | - Maciej Wieczorek
- Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152, Kazun Nowy, Poland
| |
Collapse
|
17
|
Gajjar KA, Gajjar AK. CoMFA, CoMSIA and HQSAR Analysis of 3-aryl-3-ethoxypropanoic Acid Derivatives as GPR40 Modulators. Curr Drug Discov Technol 2021; 17:100-118. [PMID: 30160214 DOI: 10.2174/1570163815666180829144431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human GPR40 receptor, also known as free fatty-acid receptor 1, is a Gprotein- coupled receptor that binds long chain free fatty acids to enhance glucose-dependent insulin secretion. In order to improve the resistance and efficacy, computational tools were applied to a series of 3-aryl-3-ethoxypropanoic acid derivatives. A relationship between the structure and biological activity of these compounds, was derived using a three-dimensional quantitative structure-activity relationship (3D-QSAR) study using CoMFA, CoMSIA and two-dimensional QSAR study using HQSAR methods. METHODS Building the 3D-QSAR models, CoMFA, CoMSIA and HQSAR were performed using Sybyl-X software. The ratio of training to test set was kept 70:30. For the generation of 3D-QSAR model three different alignments were used namely, distill, pharmacophore and docking based alignments. Molecular docking studies were carried out on designed molecules using the same software. RESULTS Among all the three methods used, Distill alignment was found to be reliable and predictive with good statistical results. The results obtained from CoMFA analysis q2, r2cv and r2 pred were 0.693, 0.69 and 0.992 respectively and in CoMSIA analysis q2, r2cv and r2pred were 0.668, 0.648 and 0.990. Contour maps of CoMFA (lipophilic and electrostatic), CoMSIA (lipophilic, electrostatic, hydrophobic, and donor) and HQSAR (positive & negative contribution) provided significant insights i.e. favoured and disfavoured regions or positive & negative contributing fragments with R1 and R2 substitutions, which gave hints for the modifications required to design new molecules with improved biological activity. CONCLUSION 3D-QSAR techniques were applied for the first time on the series 3-aryl-3- ethoxypropanoic acids. All the models (CoMFA, CoMSIA and HQSAR) were found to be satisfactory according to the statistical parameters. Therefore such a methodology, whereby maximum structural information (from ligand and biological target) is explored, gives maximum insights into the plausible protein-ligand interactions and is more likely to provide potential lead candidates has been exemplified from this study.
Collapse
Affiliation(s)
- Krishna A Gajjar
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India.,Department of Pharmaceutical Analysis, RPCP, Changa, Anand, India
| | - Anuradha K Gajjar
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India.,Department of Pharmaceutical Analysis, RPCP, Changa, Anand, India
| |
Collapse
|
18
|
Hidalgo MA, Carretta MD, Burgos RA. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front Physiol 2021; 12:668330. [PMID: 34276398 PMCID: PMC8280355 DOI: 10.3389/fphys.2021.668330] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Long-chain fatty acids are molecules that act as metabolic intermediates and constituents of membranes; however, their novel role as signaling molecules in immune function has also been demonstrated. The presence of free fatty acid (FFA) receptors on immune cells has contributed to the understanding of this new role of long-chain fatty acids (LCFAs) in immune function, showing their role as anti-inflammatory or pro-inflammatory molecules and elucidating their intracellular mechanisms. The FFA1 and FFA4 receptors, also known as GPR40 and GPR120, respectively, have been described in macrophages and neutrophils, two key cells mediating innate immune response. Ligands of the FFA1 and FFA4 receptors induce the release of a myriad of cytokines through well-defined intracellular signaling pathways. In this review, we discuss the cellular responses and intracellular mechanisms activated by LCFAs, such as oleic acid, linoleic acid, palmitic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), in T-cells, macrophages, and neutrophils, as well as the role of the FFA1 and FFA4 receptors in immune cells.
Collapse
Affiliation(s)
- Maria A Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
19
|
Rani L, Grewal AS, Sharma N, Singh S. Recent Updates on Free Fatty Acid Receptor 1 (GPR-40) Agonists for the Treatment of Type 2 Diabetes Mellitus. Mini Rev Med Chem 2021; 21:426-470. [PMID: 33100202 DOI: 10.2174/1389557520666201023141326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global incidence of type 2 diabetes mellitus (T2DM) has enthused the development of new antidiabetic targets with low toxicity and long-term stability. In this respect, free fatty acid receptor 1 (FFAR1), which is also recognized as a G protein-coupled receptor 40 (GPR40), is a novel target for the treatment of T2DM. FFAR1/GPR40 has a high level of expression in β-cells of the pancreas, and the requirement of glucose for stimulating insulin release results in immense stimulation to utilise this target in the medication of T2DM. METHODS The data used for this review is based on the search of several scienctific databases as well as various patent databases. The main search terms used were free fatty acid receptor 1, FFAR1, FFAR1 agonists, diabetes mellitus, G protein-coupled receptor 40 (GPR40), GPR40 agonists, GPR40 ligands, type 2 diabetes mellitus and T2DM. RESULTS The present review article gives a brief overview of FFAR1, its role in T2DM, recent developments in small molecule FFAR1 (GPR40) agonists reported till now, compounds of natural/plant origin, recent patents published in the last few years, mechanism of FFAR1 activation by the agonists, and clinical status of the FFAR1/GPR40 agonists. CONCLUSION The agonists of FFAR1/GRP40 showed considerable potential for the therapeutic control of T2DM. Most of the small molecule FFAR1/GPR40 agonists developed were aryl alkanoic acid derivatives (such as phenylpropionic acids, phenylacetic acids, phenoxyacetic acids, and benzofuran acetic acid derivatives) and thiazolidinediones. Some natural/plant-derived compounds, including fatty acids, sesquiterpenes, phenolic compounds, anthocyanins, isoquinoline, and indole alkaloids, were also reported as potent FFAR1 agonists. The clinical investigations of the FFAR1 agonists demonstrated their probable role in the improvement of glucose control. Though, there are some problems still to be resolved in this field as some FFAR1 agonists terminated in the late phase of clinical studies due to "hepatotoxicity." Currently, PBI-4050 is under clinical investigation by Prometic. Further investigation of pharmacophore scaffolds for FFAR1 full agonists as well as multitargeted modulators and corresponding clinical investigations will be anticipated, which can open up new directions in this area.
Collapse
Affiliation(s)
- Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
20
|
Nunes Marsiglio-Librais G, Aparecida Vilas-Boas E, Carlein C, Hoffmann MDA, Roma LP, Carpinelli AR. Evidence for NADPH oxidase activation by GPR40 in pancreatic β-cells. Redox Rep 2021; 25:41-50. [PMID: 32354273 PMCID: PMC7241480 DOI: 10.1080/13510002.2020.1757877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Investigate the involvement of the fatty acids receptor GPR40 in the assembly and activation of NADPH oxidase and the implications on pancreatic β-cell function. Methods: BRIN-BD11 β-cells were exposed to GPR40 agonist (GW9508) or linoleic acid in different glucose concentrations. Superoxide and H2O2 were analyzed, respectively, by DHE fluorescence and by fluorescence of the H2O2 sensor, roGFP2-Orp1. Protein contents of p47phox in plasma membrane and cytosol were analyzed by western blot. NADPH oxidase role was evaluated by p22phox siRNA or by pharmacological inhibition with VAS2870. NOX2 KO islets were used to measure total cytosolic calcium and insulin secretion. Results: GW9508 and linoleic acid increased superoxide and H2O2 contents at 5.6 and 8.3 mM of glucose. In addition, in 5.6 mM, but not at 16.7 mM of glucose, activation of GPR40 led to the translocation of p47phox to the plasma membrane. Knockdown of p22phox abolished the increase in superoxide after GW9508 and linoleic acid. No differences in insulin secretion were found between wild type and NOX2 KO islets treated with GW9508 or linoleic acid. Discussion: We report for the first time that acute activation of GPR40 leads to NADPH oxidase activation in pancreatic β-cells, without impact on insulin secretion.
Collapse
Affiliation(s)
| | - Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | - Christopher Carlein
- Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | | | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
21
|
Zhao X, Yoon DO, Yoo J, Park HJ. Structure-Activity Relationship Study and Biological Evaluation of 2-(Disubstituted phenyl)-indole-5-propanoic Acid Derivatives as GPR40 Full Agonists. J Med Chem 2021; 64:4130-4149. [PMID: 33769827 DOI: 10.1021/acs.jmedchem.1c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G-protein-coupled receptor 40 (GPR40) is considered as an attractive drug target for treating type 2 diabetes, owing to its role in the free fatty acid-mediated increase in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. To identify a new chemotype of GPR40 agonist, a series of 2-aryl-substituted indole-5-propanoic acid derivatives were designed and synthesized. We identified two GPR40 agonist lead compounds-4k (3-[2-(4-fluoro-2-methylphenyl)-1H-indol-5-yl]propanoic acid) and 4o (3-[2-(2,5-dimethylphenyl)-1H-indol-5-yl]propanoic acid), having GSIS and glucagon-like peptide 1 secretory effects. Unlike previously reported GPR40 partial agonists that only activate the Gq pathway, 4k and 4o activated both the Gq and Gs signaling pathways and were characterized as GPR40 full agonists. In in vivo efficacy studies, 4o significantly improved glycemic control in both C57BL/6J and db/db mice and increased plasma-active GLP-1 in C57BL/6J mice. Thus, 4o represents a promising lead for further development as a novel GPR40 full agonist against type 2 diabetes.
Collapse
Affiliation(s)
- Xiaodi Zhao
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dong-Oh Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jaeho Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
22
|
Screening of a novel free fatty acid receptor 1 (FFAR1) agonist peptide by phage display and machine learning based-amino acid substitution. Biochem Biophys Res Commun 2021; 550:177-183. [PMID: 33706101 DOI: 10.1016/j.bbrc.2021.02.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 11/27/2022]
Abstract
Free fatty acid receptor 1 (FFAR1 or GPR40) has attracted attention for the treatment of type 2 diabetes mellitus, and various small-molecule agonists have been developed. However, most FFAR1 agonists as well as endogenous ligands, such as linoleic acids, have high lipophilicity, and their high lipophilicity is related to off-target toxicity. Therefore, we need to focus on new ligand candidates with less toxicity. In this study, we screened peptides with FFAR1 agonist activity as new ligand candidates. First, we used phage display to identify peptides with high affinity to FFAR1. Next, the agonist activities of peptides determined by the phage display were evaluated by the TGF-α shedding assay. Finally, to improve the FFAR1 agonist activity of the peptide, we performed an inclusive single amino acid substitution and sequence analysis. Logistic regression (LR) analysis using 120 physiochemical properties was performed to predict peptides with high FFAR1 agonist activity. STTGTQY determined by phage display promoted glucose-stimulated insulin secretion in pancreatic MIN6 cells. Furthermore, STKGTF predicted by the LR analysis showed high insulin secretion at low concentrations compared to STTGTQY. The results of this study suggest that peptides could be new candidates as FFAR1 agonists.
Collapse
|
23
|
Copper-catalyzed one-pot synthesis of amide linked 1,2,3-triazoles bearing aryloxy skeletons. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Chang X, Zhang J, Peng L, Guo C. Collective synthesis of acetylenic pharmaceuticals via enantioselective Nickel/Lewis acid-catalyzed propargylic alkylation. Nat Commun 2021; 12:299. [PMID: 33436637 PMCID: PMC7803749 DOI: 10.1038/s41467-020-20644-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Chiral acetylenic derivatives are found in many bioactive compounds and are versatile functional groups in organic chemistry. Here, we describe an enantioselective nickel/Lewis acid-catalyzed asymmetric propargylic substitution reaction from simple achiral materials under mild condition. The introduction of a Lewis acid cocatalyst is crucial to the efficiency of the transformation. Notably, we investigate this asymmetric propargylic substitution reaction for the development of a range of structurally diverse natural products. The power of this strategy is highlighted by the collective synthesis of seven biologically active compounds: (-)-Thiohexital, (+)-Thiopental, (+)-Pentobarbital, (-)-AMG 837, (+)-Phenoxanol, (+)-Citralis, and (-)-Citralis Nitrile.
Collapse
Affiliation(s)
- Xihao Chang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jiayin Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Lingzi Peng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
25
|
Kuranov SO, Luzina OA, Salakhutdinov NF. FFA1 (GPR40) Receptor Agonists Based on Phenylpropanoic Acid as Hypoglycemic Agents: Structure–Activity Relationship. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Ye Z, Liu C, Zou F, Cai Y, Chen B, Zou Y, Mo J, Han T, Huang W, Qiu Q, Qian H. Discovery of novel potent GPR40 agonists containing imidazo[1,2-a]pyridine core as antidiabetic agents. Bioorg Med Chem 2020; 28:115574. [PMID: 32546302 DOI: 10.1016/j.bmc.2020.115574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023]
Abstract
Free fatty acid receptor 1 (FFA1 or GPR40) has been studied for many years as a target for the treatment of type 2 diabetes mellitus. In order to increase potency and reduce hepatotoxicity, a series of novel compounds containing imidazo[1,2-a]pyridine scaffold as GPR40 agonist were synthesized. Compound I-14 was identified as an effective agonist as shown by the conspicuous drop in blood glucose in normal and diabetic mice. It had no risk of hepatotoxicity compared with TAK-875. Moreover, good pharmacokinetic (PK) properties of I-14 were observed (CL = 27.26 ml/h/kg, t1/2 = 5.93 h). The results indicate that I-14 could serve as a possible candidate to treat diabetes.
Collapse
Affiliation(s)
- Zhiwen Ye
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Feng Zou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yan Cai
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Bin Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yuxing Zou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jiaxian Mo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ting Han
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qianqian Qiu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
27
|
Vilas-Boas EA, Karabacz N, Marsiglio-Librais GN, Valle MMR, Nalbach L, Ampofo E, Morgan B, Carpinelli AR, Roma LP. Chronic activation of GPR40 does not negatively impact upon BRIN-BD11 pancreatic β-cell physiology and function. Pharmacol Rep 2020; 72:1725-1737. [PMID: 32274767 PMCID: PMC7704488 DOI: 10.1007/s43440-020-00101-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Free fatty acids (FFAs) are known for their dual effects on insulin secretion and pancreatic β-cell survival. Short-term exposure to FFAs, such as palmitate, increases insulin secretion. On the contrary, long-term exposure to saturated FFAs results in decreased insulin secretion, as well as triggering oxidative stress and endoplasmic reticulum (ER) stress, culminating in cell death. The effects of FFAs can be mediated either via their intracellular oxidation and consequent effects on cellular metabolism or via activation of the membrane receptor GPR40. Both pathways are likely to be activated upon both short- and long-term exposure to FFAs. However, the precise role of GPR40 in β-cell physiology, especially upon chronic exposure to FFAs, remains unclear. METHODS We used the GPR40 agonist (GW9508) and antagonist (GW1100) to investigate the impact of chronically modulating GPR40 activity on BRIN-BD11 pancreatic β-cells physiology and function. RESULTS We observed that chronic activation of GPR40 did not lead to increased apoptosis, and both proliferation and glucose-induced calcium entry were unchanged compared to control conditions. We also observed no increase in H2O2 or superoxide levels and no increase in the ER stress markers p-eIF2α, CHOP and BIP. As expected, palmitate led to increased H2O2 levels, decreased cell viability and proliferation, as well as decreased metabolism and calcium entry. These changes were not counteracted by the co-treatment of palmitate-exposed cells with the GPR40 antagonist GW1100. CONCLUSIONS Chronic activation of GPR40 using GW9508 does not negatively impact upon BRIN-BD11 pancreatic β-cells physiology and function. The GPR40 antagonist GW1100 does not protect against the deleterious effects of chronic palmitate exposure. We conclude that GPR40 is probably not involved in mediating the toxicity associated with chronic palmitate exposure.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.,Department of Biophysics, Center for Human and Molecular Biology, Saarland University, Universität Des Saarlandes, CIPMM, Geb. 48, 66421, Homburg/Saar, Germany
| | - Noémie Karabacz
- Department of Biophysics, Center for Human and Molecular Biology, Saarland University, Universität Des Saarlandes, CIPMM, Geb. 48, 66421, Homburg/Saar, Germany
| | | | - Maíra Melo Rezende Valle
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology, Saarland University, Universität Des Saarlandes, CIPMM, Geb. 48, 66421, Homburg/Saar, Germany.
| |
Collapse
|
28
|
|
29
|
Dowarah J, Singh VP. Anti-diabetic drugs recent approaches and advancements. Bioorg Med Chem 2020; 28:115263. [PMID: 32008883 DOI: 10.1016/j.bmc.2019.115263] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is one of the major diseases worldwide and is the third leading cause of death in the United States. Anti-diabetic drugs are used in the treatment of diabetes mellitus to control glucose levels in the blood. Most of the drugs are administered orally, except for a few of them, such as insulin, exenatide, and pramlintide. In this review, we are going to discuss seven major types of anti-diabetic drugs: Peroxisome proliferator-activated receptor (PPAR) agonist, protein tyrosine phosphatase 1B (PTP1B) inhibitors, aldose reductase inhibitors, α-glucosidase inhibitors, dipeptidyl peptidase IV (DPP-4) inhibitors, G protein-coupled receptor (GPCR) agonists and sodium-glucose co-transporter (SGLT) inhibitors. Here, we are also discussing some of the recently reported anti-diabetic agents with its multi-target pharmacological actions. This review summarises recent approaches and advancement in anti-diabetes treatment concerning characteristics, structure-activity relationships, functional mechanisms, expression regulation, and applications in medicine.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ved Prakash Singh
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
30
|
Li Z, Ren Q, Wang X, Zhou Z, Hu L, Deng L, Guan L, Qiu Q. Discovery of HWL-088: A highly potent FFA1/GPR40 agonist bearing a phenoxyacetic acid scaffold. Bioorg Chem 2019; 92:103209. [DOI: 10.1016/j.bioorg.2019.103209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022]
|
31
|
Carullo G, Perri M, Manetti F, Aiello F, Caroleo MC, Cione E. Quercetin-3-oleoyl derivatives as new GPR40 agonists: Molecular docking studies and functional evaluation. Bioorg Med Chem Lett 2019; 29:1761-1764. [DOI: 10.1016/j.bmcl.2019.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 11/26/2022]
|
32
|
Design, synthesis and biological evaluation of indane derived GPR40 agoPAMs. Bioorg Med Chem Lett 2019; 29:1842-1848. [DOI: 10.1016/j.bmcl.2019.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/16/2019] [Accepted: 04/30/2019] [Indexed: 01/21/2023]
|
33
|
Li Z, Liu C, Yang J, Zhou J, Ye Z, Feng D, Yue N, Tong J, Huang W, Qian H. Design, synthesis and biological evaluation of novel FFA1/GPR40 agonists: New breakthrough in an old scaffold. Eur J Med Chem 2019; 179:608-622. [PMID: 31279294 DOI: 10.1016/j.ejmech.2019.06.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/04/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
Abstract
Based on an old phenoxyacetic acid scaffold, CPU014 (compound 14) has been identified as a superior agonist by comprehensive exploration of structure-activity relationship. In vitro toxicity study suggested that CPU014 has lower risk of hepatotoxicity than TAK-875. During acute toxicity study (5-500 mg/kg), a favorable therapeutic window of CPU014 was observed by evaluation of plasma profiles and liver slices. Moreover, CPU014 promotes insulin secretion in a glucose-dependent manner, while no GLP-1 secretion has been enhanced. Other than good pharmacokinetic properties, CPU014 significantly improved glucose tolerance both in normal and diabetic models without the risk of hypoglycemia. These subversive findings provided a safer candidate CPU014, which is currently in preclinical study to assess its potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Zheng Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jianyong Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jiaqi Zhou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhiwen Ye
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Dazhi Feng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Na Yue
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jiayi Tong
- Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
34
|
Li Y, Yang X, Zhang H, Wu Q. Pharmacokinetics and metabolism of GW9508 in rat by liquid chromatography/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 2019; 170:176-186. [PMID: 30927663 DOI: 10.1016/j.jpba.2019.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 10/27/2022]
Abstract
In this study, a simple, fast and sensitive LC/MS/MS method was developed and validated for the determination of GW9508 in rat plasma. The sample was precipitated with acetonitrile and subsequently separated on ZORBAX Eclipse XDB C18 column (50 mm × 2.1 mm, 5 μm). Mobile phase was composed of 0.1% formic acid in water and acetonitrile with gradient elution, at a flow rate of 0.4 mL/min. The analyte and internal standard were quantitatively monitored with precursor-to-product transitions of m/z 348.2→183.1 and m/z 397.2→260.2, respectively. The linearity of the assay was evident in the range of 1-1000 ng/mL with correlation coefficient more than 0.998. The validation parameters were all within the acceptable limits. The validated method has been successfully applied to the pharmacokinetics study of GW9508 in rat plasma, and our results demonstrated that GW9508 showed low clearance, moderate half-life and ideal bioavailability (54.88%). Furthermore, metabolites stemmed from rat plasma, rat hepatocytes and human hepatocytes were analyzed by an LC-Q-Exactive-Orbitrap-MS assay, resulting in the identification of seven metabolites based on the accurate mass and fragment ions. Acylglucuronide conjugate (M6) was found as the most abundant metabolite in all tested matrices. The metabolic pathways were proposed as hydroxylation and glucuronidation. This study provided an overview of disposition of GW9508, which is highly instructive for better understanding the effectiveness and toxicity of this drug.
Collapse
Affiliation(s)
- Yu Li
- Department of Pharmacy, Maternal and Child Health Care Hospital of Zaozhuang, No. 25 East Cultural Road, Zaozhuang 277100, China
| | - Xue Yang
- Department of Pharmacy, Liaocheng People's Hospital, No. 67 West Dongchang Road, Liaocheng 25200, China
| | - Hui Zhang
- Department of Pharmacy, Maternal and Child Health Care Hospital of Zaozhuang, No. 25 East Cultural Road, Zaozhuang 277100, China
| | - Qiuhong Wu
- Department of Pharmacy, Maternal and Child Health Care Hospital of Zaozhuang, No. 25 East Cultural Road, Zaozhuang 277100, China.
| |
Collapse
|
35
|
Liu B, Deng L, Chen H, Liao R, Li Y, Zeng X, Deng F, Zhang L, Li Z. Design, synthesis and biological activity of deuterium-based FFA1 agonists with improved pharmacokinetic profiles. Bioorg Med Chem Lett 2019; 29:1471-1475. [DOI: 10.1016/j.bmcl.2019.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
|
36
|
Caille S, Cui S, Faul MM, Mennen SM, Tedrow JS, Walker SD. Molecular Complexity as a Driver for Chemical Process Innovation in the Pharmaceutical Industry. J Org Chem 2019; 84:4583-4603. [DOI: 10.1021/acs.joc.9b00735] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Seb Caille
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sheng Cui
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Margaret M. Faul
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Steven M. Mennen
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jason S. Tedrow
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Shawn D. Walker
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
37
|
Kong D, Guo S, Yang Y, Guo B, Xie X, Hu W. Synthesis and biological evaluation of novel potent FFA1 agonists containing 2,3-dihydrobenzo[b][1,4]dioxine. Bioorg Med Chem Lett 2019; 29:848-852. [PMID: 30685095 DOI: 10.1016/j.bmcl.2019.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/07/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
FFA1 (free fatty acid receptor 1) has emerged as an attractive antidiabetic target due to its role in mediating the enhancement of glucose-stimulated insulin secretion in pancreatic β cells with a low risk of hypoglycemia. Many reported FFA1 agonists possessed somewhat pharmacokinetic and/or safety issues. Herein, we describe the identification of 2,3-dihydrobenzo[b][1,4]dioxine as a novel scaffold for FFA1 agonists. Comprehensive structure-activity relationship study based on this scaffold led to the discovery of (S)-3-(4-(((S)-7-(4-methoxyphenyl)-2,3-dihydrobenzo [b][1,4]dioxin-2-yl)methoxy) phenyl)hex-4-ynoic acid (26k), which displayed a potent FFA1 agonistic activity and good pharmacokinetic profiles. Subsequent in vivo studies demonstrated that compound 26k significantly improved the glucose tolerance in ICR mice. In summary, compound 26k is a promising drug candidate for further investigation.
Collapse
Affiliation(s)
- Deyu Kong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Shimeng Guo
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Bin Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Wenhao Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
38
|
Design and optimization of 2,3-dihydrobenzo[b][1,4]dioxine propanoic acids as novel GPR40 agonists with improved pharmacokinetic and safety profiles. Bioorg Med Chem 2018; 26:5780-5791. [DOI: 10.1016/j.bmc.2018.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
|
39
|
Sun Z, Zhou T, Pan X, Yang Y, Huan Y, Xiao Z, Shen Z, Liu Z. Design, synthesis and biological evaluation of a series of novel GPR40 agonists containing nitrogen heterocyclic rings. Bioorg Med Chem Lett 2018; 28:3050-3056. [DOI: 10.1016/j.bmcl.2018.07.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
|
40
|
Li Z, Xu X, Liu R, Deng F, Zeng X, Zhang L. Nitric oxide donor-based FFA1 agonists: Design, synthesis and biological evaluation as potential anti-diabetic and anti-thrombotic agents. Bioorg Med Chem 2018; 26:4560-4566. [DOI: 10.1016/j.bmc.2018.07.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
|
41
|
Chen HY, Plummer CW, Xiao D, Chobanian HR, DeMong D, Miller M, Trujillo ME, Kirkland M, Kosinski D, Mane J, Pachanski M, Cheewatrakoolpong B, Di Salvo J, Thomas-Fowlkes B, Souza S, Tatosian DA, Chen Q, Hafey MJ, Houle R, Nolting AF, Orr R, Ehrhart J, Weinglass AB, Tschirret-Guth R, Howard AD, Colletti SL. Structure-Activity Relationship of Novel and Selective Biaryl-Chroman GPR40 AgoPAMs. ACS Med Chem Lett 2018; 9:685-690. [PMID: 30034601 DOI: 10.1021/acsmedchemlett.8b00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
A series of biaryl chromans exhibiting potent and selective agonism for the GPR40 receptor with positive allosteric modulation of endogenous ligands (AgoPAM) were discovered as potential therapeutics for the treatment of type II diabetes. Optimization of physicochemical properties through modification of the pendant aryl rings resulted in the identification of compound AP5, which possesses an improved metabolic profile while demonstrating sustained glucose lowering.
Collapse
|
42
|
Brown SP, Dransfield P, Vimolratana M, Zhu L, Luo J, Zhang J, Jiao X, Pattaropong V, Wong S, Zhuang R, Swaminath G, Houze JB, Lin DCH. Discovery of AM-6226: A Potent and Orally Bioavailable GPR40 Full Agonist That Displays Efficacy in Nonhuman Primates. ACS Med Chem Lett 2018; 9:757-760. [PMID: 30034614 DOI: 10.1021/acsmedchemlett.8b00213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
GPR40 (FFA1) is a G-protein-coupled receptor, primarily expressed in pancreatic islets and enteroendocrine L-cells, and, when activated, elicits increased insulin secretion only in the presence of elevated glucose levels. We recently reported the discovery of AM-1638 (2), a full agonist of GPR40. Herein, we present further structure-activity relationships progressing from AM-1638 (2) to AM-6226 (14) that possesses a profile acceptable for dosing cynomolgus monkeys. The GPR40 full agonist AM-6226 (14) is the first molecule to display significant glucose lowering in cynomolgus monkeys providing additional evidence that GPR40 full agonists afford access to a powerful mechanism for maintaining glycemic control.
Collapse
Affiliation(s)
- Sean P. Brown
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Paul Dransfield
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Marc Vimolratana
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Liusheng Zhu
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jian Luo
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jane Zhang
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - XianYun Jiao
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Vatee Pattaropong
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Simon Wong
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Run Zhuang
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Gayathri Swaminath
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jonathan B. Houze
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Daniel C.-H. Lin
- Department of Medicinal Chemistry, Amgen Discovery Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
43
|
Structure-based design of free fatty acid receptor 1 agonists bearing non-biphenyl scaffold. Bioorg Chem 2018; 80:296-302. [PMID: 29980115 DOI: 10.1016/j.bioorg.2018.06.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/05/2018] [Accepted: 06/29/2018] [Indexed: 11/22/2022]
Abstract
The free fatty acid receptor 1 (FFA1) enhances the glucose-stimulated insulin secretion without the risk of hypoglycemia. However, most of FFA1 agonists have a common biphenyl moiety, leading to a relative deprivation in structure types. Herein, we describe the exploration of non-biphenyl scaffold based on the co-crystal structure of FFA1 to increase additional interactions with the lateral residues, which led to the identification of lead compounds 3 and 9. In induced-fit docking study, compound 3 forms an edge-on interaction with Trp150 by slightly rotating the indole ring of Trp150, and compound 9 has additional hydrogen bond and δ-π interactions with Leu135, which demonstrated the feasibility of our design strategy. Moreover, lead compounds 3 and 9 revealed improved polar surface area compared to GW9508, and have considerable hypoglycemic effects in mice. This structure-based study might inspire us to design more promising FFA1 agonists by increasing additional interactions with the residues outside of binding pocket.
Collapse
|
44
|
Eleazu C, Charles A, Eleazu K, Achi N. Free fatty acid receptor 1 as a novel therapeutic target for type 2 diabetes mellitus-current status. Chem Biol Interact 2018; 289:32-39. [PMID: 29704509 DOI: 10.1016/j.cbi.2018.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has been on the increase in recent times. Although several oral treatments for T2DM are available, some of them have been found to elicit undesirable side effects. This therefore underscores the need for new treatment options with lesser side effects than the existing ones for people with T2DM. Free fatty acid receptor 1 (FFAR1), also known as GPR40, belongs to a class of G-protein coupled receptors that are encoded by FFAR1 genes in humans. It is expressed in the pancreatic β-cells and it is activated by medium- and long-chain saturated and unsaturated fatty acids. Thus it responds to endogenous medium and long chain unsaturated fatty acids, resulting in enhancement of insulin secretion during increased glucose levels. The glucose dependency of insulin secretion has made this receptor a very good target for developing therapies that could be efficacious with fewer side effects than the existing therapies for the treatment of T2DM. Given that tremendous efforts have been made in recent times in developing novel FFAR1 agonists with antidiabetic potentials, this article provides a current status of knowledge on the efforts made so far in developing novel FFAR1 agonists that would be of relevance in the management of T2DM.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - Ayogu Charles
- Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Kate Eleazu
- Ebonyi State University Abakaliki, Ebonyi State, Nigeria
| | - Ngozi Achi
- Michael Okpara University of Agriculture, Umudike, Nigeria
| |
Collapse
|
45
|
Liu C, Li Z, Shi W, Li H, Wang N, Dai Y, Liao C, Huang W, Qian H. Improving metabolic stability with deuterium: The discovery of HWL-066, a potent and long-acting free fatty acid receptor 1 agonists. Chem Biol Drug Des 2018; 92:1547-1554. [PMID: 29777569 DOI: 10.1111/cbdd.13321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/21/2018] [Accepted: 03/11/2018] [Indexed: 11/27/2022]
Abstract
The free fatty acid receptor 1 (FFA1) is a potential target due to its function in enhancing of glucose-stimulated insulin secretion. The FFA1 agonist GW9508 has great potential for the treatment of type 2 diabetes mellitus, but it has been suffering from high plasma clearance probably because the phenylpropanoic acid is vulnerable to β-oxidation. To identify orally available analog without influence on the unique pharmacological mechanism of GW9508, we tried to interdict the metabolically labile group by incorporating two deuterium atoms at the α-position of phenylpropionic acid affording compound 4 (HWL-066). As expected, HWL-066 revealed a lower clearance (CL = 0.23 L-1 hr-1 kg-1 ), higher maximum concentration (Cmax = 5907.47 μg/L), and longer half-life (T1/2 = 3.50 hr), resulting in a 2.8-fold higher exposure than GW9508. Moreover, the glucose-lowering effect of HWL-066 was far better than that of GW9508 and comparable with TAK-875. Different from glibenclamide, no side-effect of hypoglycemia was observed in mice after oral administrating HWL-066 (80 mg/kg).
Collapse
Affiliation(s)
- Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huilan Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Nasi Wang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuxuan Dai
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chen Liao
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Hai Qian
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
46
|
Chen T, Ning M, Ye Y, Wang K, Leng Y, Shen J. Design, synthesis and structure-activity relationship studies of GPR40 agonists containing amide linker. Eur J Med Chem 2018; 152:175-194. [PMID: 29705709 DOI: 10.1016/j.ejmech.2018.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 01/19/2023]
Abstract
Free fatty acid receptor 1 (FFAR1/GPR40) attracted significant attention as a potential target for developing novel antidiabetic drugs because of its unique mechanism in glucose homeostasis. Several reports have expressed concerns about central nervous system (CNS) penetration of GPR40 agonists, which is possibly attributed to their high lipophilicity and low total polar surface area. Herein, we report our efforts to improve the physicochemical properties and pharmacokinetic profiles of LY2881835, a GPR40 agonist that had undergone Phase I clinical trial, through a series of structural optimizations. We identified an orally efficacious compound, 15k, which possessed increased plasma exposure, prolonged half-life and reduced CNS exposure and liver to plasma distribution ratio compared with LY2881835. 15k is a potentially valuable lead compound in the development of safe and efficacious GPR40-targeted drugs to treat type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
47
|
Huang H, Winters MP, Meegalla SK, Arnoult E, Paul Lee S, Zhao S, Martin T, Rady B, Liu J, Towers M, Otieno M, Xu F, Lim HK, Silva J, Pocai A, Player MR. Discovery of novel benzo[b]thiophene tetrazoles as non-carboxylate GPR40 agonists. Bioorg Med Chem Lett 2018; 28:429-436. [DOI: 10.1016/j.bmcl.2017.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/08/2023]
|
48
|
Li Z, Liu C, Shi W, Cai X, Dai Y, Liao C, Huang W, Qian H. Identification of highly potent and orally available free fatty acid receptor 1 agonists bearing isoxazole scaffold. Bioorg Med Chem 2018; 26:703-711. [DOI: 10.1016/j.bmc.2017.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
|
49
|
Design, synthesis, and biological evaluation of deuterated phenylpropionic acid derivatives as potent and long-acting free fatty acid receptor 1 agonists. Bioorg Chem 2018; 76:303-313. [DOI: 10.1016/j.bioorg.2017.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/05/2017] [Accepted: 12/03/2017] [Indexed: 11/17/2022]
|
50
|
Structure-based optimization of free fatty acid receptor 1 agonists bearing thiazole scaffold. Bioorg Chem 2018; 77:429-435. [PMID: 29433092 DOI: 10.1016/j.bioorg.2018.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022]
Abstract
The free fatty acid receptor 1 (FFA1) plays an important role in amplifying insulin secretion in a glucose dependent manner. We have previously reported a series of FFA1 agonists with thiazole scaffold exemplified by compound 1, and identified a small hydrophobic subpocket partially occupied by the methyl group of compound 1. Herein, we describe further structure optimization to better fit the small hydrophobic subpocket by replacing the small methyl group with other hydrophobic substituents. All of these efforts resulted in the identification of compound 6, a potent FFA1 agonist (EC50 = 39.7 nM) with desired ligand efficiency (0.24) and ligand lipophilicity efficiency (4.7). Moreover, lead compound 6 exhibited a greater potential for decreasing the hyperglycemia levels than compound 1 during an oral glucose tolerance test. In summary, compound 6 is a promising FFA1 agonist for further investigation, and the structure-based study promoted our understanding for the binding pocket of FFA1.
Collapse
|