1
|
Asensi-Cantó A, López-Abellán MD, Castillo-Guardiola V, Hurtado AM, Martínez-Penella M, Luengo-Gil G, Conesa-Zamora P. Antitumoral Effects of Tricyclic Antidepressants: Beyond Neuropathic Pain Treatment. Cancers (Basel) 2022; 14:cancers14133248. [PMID: 35805019 PMCID: PMC9265090 DOI: 10.3390/cancers14133248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tricyclic antidepressants (TCAs) are old and known therapeutic agents whose good safety profile makes them good candidates for drug repurposing. As the relevance of nerves in cancer development and progression is being unveiled, attention now turns to the use of nerve-targeting drugs, such as TCAs, as an interesting approach to combat cancer. In this review, we discuss current evidence about the safety of TCAs, their application to treat neuropathic pain in cancer patients, and in vitro and in vivo demonstrations of the antitumoral effects of TCAs. Finally, the results of ongoing clinical trials and future directions are discussed. Abstract Growing evidence shows that nerves play an active role in cancer development and progression by altering crucial molecular pathways and cell functions. Conversely, the use of neurotropic drugs, such as tricyclic antidepressants (TCAs), may modulate these molecular signals with a therapeutic purpose based on a direct antitumoral effect and beyond the TCA use to treat neuropathic pain in oncology patients. In this review, we discuss the TCAs’ safety and their central effects against neuropathic pain in cancer, and the antitumoral effects of TCAs in in vitro and preclinical studies, as well as in the clinical setting. The current evidence points out that TCAs are safe and beneficial to treat neuropathic pain associated with cancer and chemotherapy, and they block different molecular pathways used by cancer cells from different locations for tumor growth and promotion. Likewise, ongoing clinical trials evaluating the antineoplastic effects of TCAs are discussed. TCAs are very biologically active compounds, and their repurposing as antitumoral drugs is a promising and straightforward approach to treat specific cancer subtypes and to further define their molecular targets, as well as an interesting starting point to design analogues with increased antitumoral activity.
Collapse
Affiliation(s)
- Antonio Asensi-Cantó
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Servicio de Farmacia Hospitalaria, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - María Dolores López-Abellán
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - Verónica Castillo-Guardiola
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - Ana María Hurtado
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Grupo de Investigación en Inmunobiología para la Acuicultura, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Mónica Martínez-Penella
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Servicio de Farmacia Hospitalaria, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain
| | - Ginés Luengo-Gil
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Correspondence: (G.L.-G.); (P.C.-Z.); Tel.: +34-968-128-600 (ext. 951615) (G.L.-G. & P.C.-Z.)
| | - Pablo Conesa-Zamora
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Correspondence: (G.L.-G.); (P.C.-Z.); Tel.: +34-968-128-600 (ext. 951615) (G.L.-G. & P.C.-Z.)
| |
Collapse
|
2
|
Dhara HN, Rakshit A, Alam T, Patel BK. Metal-catalyzed reactions of organic nitriles and boronic acids to access diverse functionality. Org Biomol Chem 2022; 20:4243-4277. [PMID: 35552581 DOI: 10.1039/d2ob00288d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nitrile or cyano (-CN) group is one of the most appreciated and effective functional groups in organic synthesis, having a polar unsaturated C-N triple bond. Despite sufficient stability and being intrinsically inert, the nitrile group can be easily transformed into many other functional groups, such as amines, carboxylic acids, ketones, etc. which makes it a vital group in organic synthesis. On the other hand, despite several boronic acids having a low level of genotoxicity, they have found wide applicability in the field of organic synthesis, especially in transition metal-catalyzed cross-coupling reactions. Recently, transition-metal-catalyzed cascade additions or addition/cyclization processes of boronic acids to the nitrile group open up exciting and useful strategies to prepare a variety of functional molecules through the formation of C-C, C-N and CO bonds. Boronic acids can be added to the cyano functionality through catalytic carbometallation or through a radical cascade process to provide newer pathways for the rapid construction of various important acyclic ketones or amides, carbamidines, carbocycles and N,O-heterocycles. The present review focuses on various transition-metal-catalyzed additions of boronic acids via carbometallation or radical cascade processes using the cyano group as an acceptor.
Collapse
Affiliation(s)
- Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
3
|
Hu K, Liu R, Zhou X. Sequential Addition of Amines to Nitrile and Carbon-Carbon Multiple Bond: A Route to 7-Amino-5 H-dibenzo[ c,e]azepines. Org Lett 2021; 23:6946-6950. [PMID: 34415175 DOI: 10.1021/acs.orglett.1c02540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A rare earth metal-catalyzed sequential inter- and intramolecular C-N bond formation of 2-nitrile-2'-alkenyl(alkynyl)biphenyls with amines has been developed, which provides a straightforward and efficient access to a range of new functional dibenzo[c,e]azepines. This represents the first examples of direct construction of seven-membered azaheterocycle from unsaturated nitriles and amines. Such transformations have the advantages of avoiding the use of additives, easily available starting materials, step- and high atom-economy, mild reaction conditions, and high selectivity.
Collapse
Affiliation(s)
- Kun Hu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Ruiting Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xigeng Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.,State Key Laboratory of Organometallic Chemistry, Shanghai 200032, China
| |
Collapse
|
4
|
Barlaz Us S, Sogut F, Yildirim M, Yetkin D, Yalin S, Yilmaz SN, Comelekoglu U. Effect of Imipramine on radiosensitivity of Prostate Cancer: An In Vitro Study. Cancer Invest 2019; 37:489-500. [PMID: 31496302 DOI: 10.1080/07357907.2019.1662434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer is the most common cancer and leading cause of cancer death for males. Imipramine (IMI), which is a tricyclic antidepressant, has also been shown to has antineoplastic effect. This study was performed to investigate the radiosensitizing effect of IMI on DU145 prostate cancer cell. Cells were divided into 4 groups. Cell index, apoptotic activity, cell cycle arrest, oxidative stress and EAG1 channel currents were determined in all groups. Our findings showed that combined treatment with IMI and radiotherapy (RAD) did not enhance radiosensitivity of DU145 cells but as unexpected finding, treatment of IMI alone was more effective in DU145 cells.
Collapse
Affiliation(s)
- Songul Barlaz Us
- Department of Radiation Oncology Mersin-Turkey, School of Medicine, Mersin University , Mersin , Turkey
| | - Fatma Sogut
- Department of Perfusion Technology, Vocational School of Medical Services, Mersin University , Mersin , Turkey
| | - Metin Yildirim
- Department of Biochemistry, School of Pharmacy, Mersin University , Mersin , Turkey
| | - Derya Yetkin
- Institute of Advanced Technology Research and Application, Mersin University , Mersin , Turkey
| | - Serap Yalin
- Department of Biochemistry, School of Pharmacy, Mersin University , Mersin , Turkey
| | - Sakir Necat Yilmaz
- Department of Histology-Embryology, School of Medicine, Mersin University , Mersin , Turkey
| | - Ulku Comelekoglu
- Department of Biophysics, School of Medicine, Mersin University , Mersin , Turkey
| |
Collapse
|
5
|
Yao X, Shao Y, Hu M, Zhang M, Li S, Xia Y, Cheng T, Chen J. Palladium‐Catalyzed Selective Synthesis of Dibenzo[
c
,
e
]azepin‐5‐ols and Benzo[
c
]pyrido[2,3‐
e
]azepin‐5‐ols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinrong Yao
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Yinlin Shao
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Maolin Hu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Maosheng Zhang
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Shaotong Li
- Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 People's Republic of China
| | - Yuanzhi Xia
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Tianxing Cheng
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Jiuxi Chen
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
6
|
Yao X, Shao Y, Hu M, Xia Y, Cheng T, Chen J. Palladium-Catalyzed Cascade Reaction of o-Cyanobiaryls with Arylboronic Acids: Synthesis of 5-Arylidene-7-aryl-5H-dibenzo[c,e]azepines. Org Lett 2019; 21:7697-7701. [DOI: 10.1021/acs.orglett.9b02351] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinrong Yao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Maolin Hu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Tianxing Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| |
Collapse
|
7
|
Zhang S, Chen F, He YM, Fan QH. Asymmetric Hydrogenation of Dibenzo[c,e]azepine Derivatives with Chiral Cationic Ruthenium Diamine Catalysts. Org Lett 2019; 21:5538-5541. [DOI: 10.1021/acs.orglett.9b01859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shanshan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fei Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yan-Mei He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
8
|
Yang T, Guo X, Yin Q, Zhang X. Intramolecular asymmetric reductive amination: synthesis of enantioenriched dibenz[ c, e]azepines. Chem Sci 2018; 10:2473-2477. [PMID: 30881676 PMCID: PMC6385856 DOI: 10.1039/c8sc04482a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/21/2018] [Indexed: 01/11/2023] Open
Abstract
An enantioselective synthesis of dibenz[c,e]azepines containing both central and axial chiralities through a one pot N-Boc deprotection/intramolecular asymmetric reductive amination sequence has been achieved with generally excellent enantiocontrol (up to 97% ee).
An Ir-catalyzed intramolecular asymmetric reductive amination (ARA) of bridged biaryl derivatives has been described. Using this unprecedented approach, synthetically useful dibenz[c,e]azepines containing both central and axial chiralities are obtained with excellent enantiocontrol (up to 97% ee). This methodology represents a rare example of enantioselective chemocatalytic synthesis of chiral dibenz[c,e]azepines featuring a broad substrate scope, and their synthetic utilities are exhibited by derivatizing the products into a chiral amino acid derivative and chiral phosphoramidite ligands, which display excellent enantiocontrol in Rh-catalyzed asymmetric hydrogenation of α-dehydroamino acid derivatives. Remarkably, our method is also applicable to enantioselectively synthesize an allocolchicine analogue.
Collapse
Affiliation(s)
- Tao Yang
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China .
| | - Xiaochong Guo
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China .
| | - Qin Yin
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China . .,SUSTech Academy for Advanced Interdisciplinary Studies , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China .
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China .
| |
Collapse
|
9
|
Andersen J, Ladefoged LK, Kristensen TNB, Munro L, Grouleff J, Stuhr-Hansen N, Kristensen AS, Schiøtt B, Strømgaard K. Interrogating the Molecular Basis for Substrate Recognition in Serotonin and Dopamine Transporters with High-Affinity Substrate-Based Bivalent Ligands. ACS Chem Neurosci 2016; 7:1406-1417. [PMID: 27425420 DOI: 10.1021/acschemneuro.6b00164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The transporters for the neurotransmitters serotonin and dopamine (SERT and DAT, respectively) are targets for drugs used in the treatment of mental disorders and widely used drugs of abuse. Studies of prokaryotic homologues have advanced our structural understanding of SERT and DAT, but it still remains enigmatic whether the human transporters contain one or two high-affinity substrate binding sites. We have designed and employed 24 bivalent ligands possessing a highly systematic combination of substrate moieties (serotonin and/or dopamine) and aliphatic or poly(ethylene glycol) spacers to reveal insight into substrate recognition in SERT and DAT. An optimized bivalent ligand comprising two serotonin moieties binds SERT with 3,800-fold increased affinity compared to that of serotonin, suggesting that the human transporters have two distinct substrate binding sites. We show that the bivalent ligands are inhibitors of SERT and an experimentally validated docking model suggests that the bivalent compounds bind with one substrate moiety in the central binding site (the S1 site), whereas the other substrate moiety binds in a distinct binding site (the S2 site). A systematic study of nonconserved SERT/DAT residues surrounding the proposed binding region showed that nonconserved binding site residues do not contribute to selective recognition of substrates in SERT or DAT. This study provides novel insight into the molecular basis for substrate recognition in human transporters and provides an improved foundation for the development of new drugs targeting SERT and DAT.
Collapse
Affiliation(s)
- Jacob Andersen
- Department
of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lucy Kate Ladefoged
- Interdisciplinary
Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Trine N. Bjerre Kristensen
- Interdisciplinary
Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lachlan Munro
- Department
of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Julie Grouleff
- Interdisciplinary
Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Nicolai Stuhr-Hansen
- Department
of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Anders S. Kristensen
- Department
of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Birgit Schiøtt
- Interdisciplinary
Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kristian Strømgaard
- Department
of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Synthesis and inhibitory evaluation of 3-linked imipramines for the exploration of the S2 site of the human serotonin transporter. Bioorg Med Chem 2016; 24:2725-38. [PMID: 27160055 DOI: 10.1016/j.bmc.2016.04.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023]
Abstract
The human serotonin transporter is the primary target of several antidepressant drugs, and the importance of a primary, high affinity binding site (S1) for antidepressant binding is well documented. The existence of a lower affinity, secondary binding site (S2) has, however, been debated. Herein we report the synthesis of 3-position coupled imipramine ligands from clomipramine using a copper free Sonogashira reaction. Ligand design was inspired by results from docking and steered molecular dynamics simulations, and the ligands were utilized in a structure-activity relationship study of the positional relationship between the S1 and S2 sites. The computer simulations suggested that the S2 site does indeed exist although with lower affinity for imipramine than observed within the S1 site. Additionally, it was possible to dock the 3-linked imipramine analogs into positions which occupy the S1 and the S2 site simultaneously. The structure activity relationship study showed that the shortest ligands were the most potent, and mutations enlarging the proposed S2 site were found to affect the larger ligands positively, while the smaller ligands were mostly unaffected.
Collapse
|
11
|
Stuhr-Hansen N, Andersen J, Thygesen MB, Strømgaard K. Synthesis of Symmetrical and Non-Symmetrical Bivalent Neurotransmitter Ligands. ChemistrySelect 2016. [DOI: 10.1002/slct.201600116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicolai Stuhr-Hansen
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 DK-2100 Copenhagen Denmark
- Department of Chemistry; Chemical Biology Section; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Jacob Andersen
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; Chemical Biology Section; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 DK-2100 Copenhagen Denmark
| |
Collapse
|
12
|
Narbonne V, Retailleau P, Maestri G, Malacria M. Diastereoselective Synthesis of Dibenzoazepines through Chelation on Palladium(IV) Intermediates. Org Lett 2013; 16:628-31. [DOI: 10.1021/ol403525c] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vanessa Narbonne
- Institut
de Chimie des Substances Naturelles, ICNS-CNRS, UPR 2301, Gif sur Yvette Cedex 91198, France
| | - Pascal Retailleau
- Institut
de Chimie des Substances Naturelles, ICNS-CNRS, UPR 2301, Gif sur Yvette Cedex 91198, France
| | - Giovanni Maestri
- Institut
de Chimie des Substances Naturelles, ICNS-CNRS, UPR 2301, Gif sur Yvette Cedex 91198, France
| | - Max Malacria
- Institut
de Chimie des Substances Naturelles, ICNS-CNRS, UPR 2301, Gif sur Yvette Cedex 91198, France
- Institut
Parisien de Chimie Moléculaire, UPMC Université Paris 06, IPCM-UMR 7201, Paris Cedex 75005, France
| |
Collapse
|