1
|
Wang K, Zhu H, Zhao H, Zhang K, Tian Y. Application of carbamyl in structural optimization. Bioorg Chem 2020; 98:103757. [PMID: 32217370 DOI: 10.1016/j.bioorg.2020.103757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Carbamyl is considered a privileged structure in medicinal chemistry. It has a wide range of biological activities such as antimicrobial, anticancer, anti-epilepsy, for which the best evidence is a number of marketed carbamyl-containing drugs. Carbamyl is formed of primary amine and carbonyl moieties that act as hydrogen bond donors and hydrogen acceptors with residues of targets respectively, which are benefit for improving pharmacological activities. In other cases, the introduced carbamyl improves drug-like properties including oral bioavailability. In this review, we introduce the carbamyl-containing drugs and the application of carbamyl in structural optimization as a result of enhancing activities or/and drug-like properties.
Collapse
Affiliation(s)
- Kuanglei Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxi Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongqian Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yongshou Tian
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
2
|
Chuanxin Z, Shengzheng W, Lei D, Duoli X, Jin L, Fuzeng R, Aiping L, Ge Z. Progress in 11β-HSD1 inhibitors for the treatment of metabolic diseases: A comprehensive guide to their chemical structure diversity in drug development. Eur J Med Chem 2020; 191:112134. [PMID: 32088493 DOI: 10.1016/j.ejmech.2020.112134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key metabolic enzyme that catalyzing the intracellular conversion of inactive glucocorticoids to physiologically active ones. Work over the past decade has demonstrated the aberrant overexpression of 11β-HSD1 contributed to the pathophysiological process of metabolic diseases like obesity, type 2 diabetes mellitus, and metabolic syndromes. The inhibition of 11β-HSD1 represented an attractive therapeutic strategy for the treatment of metabolic diseases. Therefore, great efforts have been devoted to developing 11β-HSD1 inhibitors based on the diverse molecular scaffolds. This review focused on the structural features of the most important 11β-HSD1 inhibitors and categorized them into natural products derivatives and synthetic compounds. We also briefly discussed the optimization process, binding modes, structure-activity relationships (SAR) and biological evaluations of each inhibitor. Moreover, the challenges and directions for 11β-HSD1 inhibitors were discussed, which might provide some useful clues to guide the future discovery of novel 11β-HSD1 inhibitors.
Collapse
Affiliation(s)
- Zhong Chuanxin
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wang Shengzheng
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dang Lei
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xie Duoli
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Liu Jin
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute for Research and Continuing Education (IRACE), Hong Kong Baptist University, Shenzhen, China
| | - Ren Fuzeng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Lu Aiping
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zhang Ge
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
3
|
Leiva R, Griñan-Ferré C, Seira C, Valverde E, McBride A, Binnie M, Pérez B, Luque FJ, Pallàs M, Bidon-Chanal A, Webster SP, Vázquez S. Design, synthesis and in vivo study of novel pyrrolidine-based 11β-HSD1 inhibitors for age-related cognitive dysfunction. Eur J Med Chem 2017; 139:412-428. [PMID: 28818766 DOI: 10.1016/j.ejmech.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022]
Abstract
Recent findings suggest that treatment with 11β-HSD1 inhibitors provides a novel approach to deal with age-related cognitive dysfunctions, including Alzheimer's disease. In this work we report potent 11β-HSD1 inhibitors featuring unexplored pyrrolidine-based polycyclic substituents. A selected candidate administered to 12-month-old SAMP8 mice for four weeks prevented memory deficits and displayed a neuroprotective action. This is the first time that 11β-HSD1 inhibitors have been studied in this broadly-used mouse model of accelerated senescence and late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Christian Griñan-Ferré
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Neurociències, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Constantí Seira
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Elena Valverde
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Andrew McBride
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Margaret Binnie
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Belén Pérez
- Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Mercè Pallàs
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Neurociències, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Axel Bidon-Chanal
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Scott P Webster
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom.
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain.
| |
Collapse
|
4
|
Leiva R, Seira C, McBride A, Binnie M, Luque FJ, Bidon-Chanal A, Webster SP, Vázquez S. Novel 11β-HSD1 inhibitors: C-1 versus C-2 substitution and effect of the introduction of an oxygen atom in the adamantane scaffold. Bioorg Med Chem Lett 2015; 25:4250-3. [PMID: 26306982 DOI: 10.1016/j.bmcl.2015.07.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
The adamantane scaffold is found in several marketed drugs and in many investigational 11β-HSD1 inhibitors. Interestingly, all the clinically approved adamantane derivatives are C-1 substituted. We demonstrate that, in a series of paired adamantane isomers, substitution of the adamantane in C-2 is preferred over the substitution at C-1 and is necessary for potency at human 11β-HSD1. Furthermore, the introduction of an oxygen atom in the hydrocarbon scaffold of adamantane is deleterious to 11β-HSD1 inhibition. Molecular modeling studies provide a basis to rationalize these features.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, s/n, Barcelona E-08028, Spain
| | - Constantí Seira
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Andrew McBride
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Margaret Binnie
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - F Javier Luque
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Axel Bidon-Chanal
- Departament de Fisicoquímica, Facultat de Farmàcia and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - Scott P Webster
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, s/n, Barcelona E-08028, Spain.
| |
Collapse
|
5
|
Ryu JH, Kim S, Lee JA, Han HY, Son HJ, Lee HJ, Kim YH, Kim JS, Park HG. Synthesis and optimization of picolinamide derivatives as a novel class of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors. Bioorg Med Chem Lett 2015; 25:1679-1683. [DOI: 10.1016/j.bmcl.2015.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 11/15/2022]
|
6
|
Ryu JH, Kim S, Han HY, Son HJ, Lee HJ, Shin YA, Kim JS, Park HG. Synthesis and biological evaluation of picolinamides as potent inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Bioorg Med Chem Lett 2014; 25:695-700. [PMID: 25529735 DOI: 10.1016/j.bmcl.2014.11.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Synthesis of a series of 6-substituted picolinamide derivatives and their inhibitory activities against 11β-hydroxysteroid dehydrogenase type 1 are described. Optimization of the initial hit compound, N-cyclohexyl-6-(piperidin-1-yl)picolinamide (1) from high throughput screening of in-house library resulted in the discovery of the highly potent and metabolically stable compound 25, which was efficacious in a mouse ex vivo pharmacodynamic model and reduced the fasting blood glucose and insulin levels in a HF/STZ mouse model after oral dosing.
Collapse
Affiliation(s)
- Je Ho Ryu
- Life Science R&D Center, SK Chemicals, 686 Sampyeong-dong, Bundang-gu, Seongnam-si 463-400, Republic of Korea; Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Shinae Kim
- Life Science R&D Center, SK Chemicals, 686 Sampyeong-dong, Bundang-gu, Seongnam-si 463-400, Republic of Korea
| | - Hye Young Han
- Life Science R&D Center, SK Chemicals, 686 Sampyeong-dong, Bundang-gu, Seongnam-si 463-400, Republic of Korea
| | - Hyun Joo Son
- Life Science R&D Center, SK Chemicals, 686 Sampyeong-dong, Bundang-gu, Seongnam-si 463-400, Republic of Korea
| | - Hyun Jung Lee
- Life Science R&D Center, SK Chemicals, 686 Sampyeong-dong, Bundang-gu, Seongnam-si 463-400, Republic of Korea
| | - Young Ah Shin
- Life Science R&D Center, SK Chemicals, 686 Sampyeong-dong, Bundang-gu, Seongnam-si 463-400, Republic of Korea
| | - Jae-Sun Kim
- Life Science R&D Center, SK Chemicals, 686 Sampyeong-dong, Bundang-gu, Seongnam-si 463-400, Republic of Korea
| | - Hyeung-Geun Park
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
7
|
Gillespie P, Pietranico-Cole S, Myers M, Bilotta JA, Conde-Knape K, Fotouhi N, Goodnow RA, Guertin KR, Hamilton MM, Haynes NE, Liu B, Qi L, Ren Y, Scott NR, So SS, Spence C, Taub R, Thakkar K, Tilley JW, Zwingelstein C. Discovery of camphor-derived pyrazolones as 11β-hydroxysteroid dehydrogenase type 1 inhibitors. Bioorg Med Chem Lett 2014; 24:2707-11. [PMID: 24815509 DOI: 10.1016/j.bmcl.2014.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/26/2022]
Abstract
Starting from screening hit, (4S,7R)-1,7,8,8-tetramethyl-2-phenyl-1,2,4,5,6,7-hexahydro-4,7-methano-indazol-3-one (7), we optimized the potency and pharmacokinetic properties. This led to the identification of compounds with good in vivo activity in a mouse pharmacodynamic model of inhibition of 11βHSD1.
Collapse
Affiliation(s)
- Paul Gillespie
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States.
| | - Sherrie Pietranico-Cole
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Michael Myers
- Metabolic and Vascular Diseases, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Joseph A Bilotta
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Karin Conde-Knape
- Metabolic and Vascular Diseases, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Nader Fotouhi
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Robert A Goodnow
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Kevin R Guertin
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Matthew M Hamilton
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Nancy-Ellen Haynes
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Baolian Liu
- Drug Metabolism and Pharmacokinetics, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Lida Qi
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Yonglin Ren
- Metabolic and Vascular Diseases, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Nathan R Scott
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Sung-Sau So
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Cheryl Spence
- Metabolic and Vascular Diseases, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Rebecca Taub
- Metabolic and Vascular Diseases, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Kshitij Thakkar
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Jefferson W Tilley
- Department of Discovery Chemistry, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| | - Catherine Zwingelstein
- Metabolic and Vascular Diseases, Pharmaceutical Research and Early Drug Development, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, United States
| |
Collapse
|
8
|
Scott JS, Goldberg FW, Turnbull AV. Medicinal Chemistry of Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1). J Med Chem 2013; 57:4466-86. [DOI: 10.1021/jm4014746] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James S. Scott
- AstraZeneca Innovative Medicines, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Frederick W. Goldberg
- AstraZeneca Innovative Medicines, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| | - Andrew V. Turnbull
- AstraZeneca Innovative Medicines, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K
| |
Collapse
|
9
|
Meyer A, Vuorinen A, Zielinska AE, Strajhar P, Lavery GG, Schuster D, Odermatt A. Formation of threohydrobupropion from bupropion is dependent on 11β-hydroxysteroid dehydrogenase 1. Drug Metab Dispos 2013; 41:1671-8. [PMID: 23804523 DOI: 10.1124/dmd.113.052936] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bupropion is widely used for treatment of depression and as a smoking-cessation drug. Despite more than 20 years of therapeutic use, its metabolism is not fully understood. While CYP2B6 is known to form hydroxybupropion, the enzyme(s) generating erythro- and threohydrobupropion have long remained unclear. Previous experiments using microsomal preparations and the nonspecific inhibitor glycyrrhetinic acid suggested a role for 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in the formation of both erythro- and threohydrobupropion. 11β-HSD1 catalyzes the conversion of inactive glucocorticoids (cortisone, prednisone) to their active forms (cortisol, prednisolone). Moreover, it accepts several other substrates. Here, we used for the first time recombinant 11β-HSD1 to assess its role in the carbonyl reduction of bupropion. Furthermore, we applied human, rat, and mouse liver microsomes and a selective inhibitor to characterize species-specific differences and to estimate the relative contribution of 11β-HSD1 to bupropion metabolism. The results revealed 11β-HSD1 as the major enzyme responsible for threohydrobupropion formation. The reaction was stereoselective and no erythrohydrobupropion was formed. Human liver microsomes showed 10 and 80 times higher activity than rat and mouse liver microsomes, respectively. The formation of erythrohydrobupropion was not altered in experiments with microsomes from 11β-HSD1-deficient mice or upon incubation with 11β-HSD1 inhibitor, indicating the existence of another carbonyl reductase that generates erythrohydrobupropion. Molecular docking supported the experimental findings and suggested that 11β-HSD1 selectively converts R-bupropion to threohydrobupropion. Enzyme inhibition experiments suggested that exposure to bupropion is not likely to impair 11β-HSD1-dependent glucocorticoid activation but that pharmacological administration of cortisone or prednisone may inhibit 11β-HSD1-dependent bupropion metabolism.
Collapse
Affiliation(s)
- Arne Meyer
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Böhme T, Engel CK, Farjot G, Güssregen S, Haack T, Tschank G, Ritter K. 1,1-Dioxo-5,6-dihydro-[4,1,2]oxathiazines, a novel class of 11ß-HSD1 inhibitors for the treatment of diabetes. Bioorg Med Chem Lett 2013; 23:4685-91. [PMID: 23845218 DOI: 10.1016/j.bmcl.2013.05.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 11/19/2022]
Abstract
Racemic cis-1,1-dioxo-5,6-dihydro-[4,1,2]oxathiazine derivative 4a was isolated as an impurity in a sample of a hit from a HTS campaign on 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). After separation by chiral chromatography the 4a-S, 8a-R enantiomer of compound 4a was identified as the true, potent enzyme inhibitor. The cocrystal structure of 4a with human and murine 11ß-HSD1 revealed the unique binding mode of the oxathiazine series. SAR elucidation and optimization in regard to metabolic stability led to monocyclic tetramethyloxathiazines as exemplified by compound 21g.
Collapse
Affiliation(s)
- Thomas Böhme
- Sanofi Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|