1
|
Karataş MO, Noma SAA, Gürses C, Balcıoğlu S, Ateş B, Alıcı B, Çakır Ü. Water Soluble Coumarin Quaternary Ammonium Chlorides: Synthesis and Biological Evaluation. Chem Biodivers 2020; 17:e2000258. [PMID: 32638471 DOI: 10.1002/cbdv.202000258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/07/2020] [Indexed: 11/11/2022]
Abstract
In the present study, coumarin-bearing three pyridinium and three tetra-alkyl ammonium salts were synthesized. The compounds were fully characterized by 1 H- and 13 C-NMR, LC/MS and IR spectroscopic methods and elemental analyses. The cytotoxic properties of all compounds were tested against human liver cancer (HepG2), human colorectal cancer (Caco-2) and non-cancer mouse fibroblast (L-929) cell lines. Some compounds performed comparable cytotoxicity with standard drug cisplatin. Antibacterial properties of the compounds were tested against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria, but the compounds did not have any antibacterial effect against both bacteria. Enzyme inhibitory properties of all compounds were tested on the activities of human carbonic anhydrase I and II, and xanthine oxidase. All compounds inhibited both enzymes more effectively than standard drugs, acetazolamide and allopurinol, respectively. The biological evaluation results showed that ionic and water soluble coumarin derivatives are promising structures for further investigations especially on enzyme inhibition field.
Collapse
Affiliation(s)
- Mert O Karataş
- İnönü University, Faculty of Science, Department of Chemistry, 9044280, Malatya, Turkey
| | - Samir A A Noma
- İnönü University, Faculty of Science, Department of Chemistry, 9044280, Malatya, Turkey
| | - Canbolat Gürses
- İnönü University, Faculty of Science, Department of Molecular Biology and Genetics, 9044280, Malatya, Turkey
| | - Sevgi Balcıoğlu
- Fırat University, Department of Food Processing, 9023600, Elazığ, Turkey
| | - Burhan Ateş
- İnönü University, Faculty of Science, Department of Chemistry, 9044280, Malatya, Turkey
| | - Bülent Alıcı
- İnönü University, Faculty of Science, Department of Chemistry, 9044280, Malatya, Turkey
| | - Ümit Çakır
- Balıkesir University, Faculty of Science, Department of Chemistry, 9010440, Balıkesir, Turkey
| |
Collapse
|
2
|
Banala S, Arvin MC, Bannon NM, Jin XT, Macklin JJ, Wang Y, Peng C, Zhao G, Marshall JJ, Gee KR, Wokosin DL, Kim VJ, McIntosh JM, Contractor A, Lester HA, Kozorovitskiy Y, Drenan RM, Lavis LD. Photoactivatable drugs for nicotinic optopharmacology. Nat Methods 2018; 15:347-350. [PMID: 29578537 PMCID: PMC5923430 DOI: 10.1038/nmeth.4637] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/26/2018] [Indexed: 11/10/2022]
Abstract
Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales.
Collapse
Affiliation(s)
- Sambashiva Banala
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn,
Virginia, USA
| | - Matthew C. Arvin
- Department of Pharmacology, Northwestern University Feinberg School
of Medicine, Chicago, Illinois, USA
| | - Nicolas M. Bannon
- Department of Neurobiology, Weinberg School of Arts and Sciences,
Northwestern University, Evanston, Illinois, USA
| | - Xiao-Tao Jin
- Department of Pharmacology, Northwestern University Feinberg School
of Medicine, Chicago, Illinois, USA
| | - John J. Macklin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn,
Virginia, USA
| | - Yong Wang
- Department of Pharmacology, Northwestern University Feinberg School
of Medicine, Chicago, Illinois, USA
| | - Can Peng
- Department of Pharmacology, Northwestern University Feinberg School
of Medicine, Chicago, Illinois, USA
| | - Guiqing Zhao
- Department of Pharmacology, Northwestern University Feinberg School
of Medicine, Chicago, Illinois, USA
| | - John J. Marshall
- Department of Physiology, Northwestern University Feinberg School of
Medicine, Chicago, Illinois, USA
| | - Kyle R. Gee
- Molecular Probes, ThermoFisher, Eugene, Oregon, USA
| | - David L. Wokosin
- Department of Physiology, Northwestern University Feinberg School of
Medicine, Chicago, Illinois, USA
| | - Veronica J. Kim
- Department of Pharmacology, Northwestern University Feinberg School
of Medicine, Chicago, Illinois, USA
| | - J. Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center and Departments of
Psychiatry and Biology, University of Utah, Salt Lake City, Utah, USA
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of
Medicine, Chicago, Illinois, USA
- Department of Neurobiology, Weinberg School of Arts and Sciences,
Northwestern University, Evanston, Illinois, USA
| | - Henry A. Lester
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn,
Virginia, USA
- Division of Biology and Biological Engineering, California Institute
of Technology, Pasadena, California, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Weinberg School of Arts and Sciences,
Northwestern University, Evanston, Illinois, USA
| | - Ryan M. Drenan
- Department of Pharmacology, Northwestern University Feinberg School
of Medicine, Chicago, Illinois, USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn,
Virginia, USA
| |
Collapse
|