1
|
Antoniuk O, Maranha A, Salvador JAR, Empadinhas N, Moreira VM. Bi- and tricyclic diterpenoids: landmarks from a decade (2013-2023) in search of leads against infectious diseases. Nat Prod Rep 2024; 41:1858-1894. [PMID: 39371026 DOI: 10.1039/d4np00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Covering: 2013 to 2023In an era where antimicrobial resistance severely threatens our ability to treat infections, the discovery of new drugs that belong to different chemical classes and/or bear original modes of action is urgently needed. In this case, diterpenoids comprise a productive field with a proven track record in providing new anti-infectives to tackle bacterial infections and malaria. This review highlights the potential of both naturally occurring and semi-synthetic bi- and tricyclic diterpenoids to become leads in search of new drugs to treat infections caused by bacteria, fungi, viruses and protozoan parasites. The literature from the last decade (2013-2023) is covered, focusing on naturally occurring and semi-synthetic bicyclic (labdanes and labdane-type) and tricyclic (all classes) diterpenoids, detailing their relevant biological activities in the context of infection, which are explained through structure-activity relationships.
Collapse
Affiliation(s)
- Olha Antoniuk
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Ana Maranha
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Jorge A R Salvador
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Nuno Empadinhas
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Vânia M Moreira
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Hamdi A, Daoudi W, Aaddouz M, Azzouzi M, Amhamdi H, Elyoussfi A, Aatiaoui AE, Verma DK, Abboud M, Ahari M. Various synthesis and biological evaluation of some tri -tetra-substituted imidazoles derivatives: A review. Heliyon 2024; 10:e31253. [PMID: 38803909 PMCID: PMC11128531 DOI: 10.1016/j.heliyon.2024.e31253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
The imidazole nucleus represents a significant group of heterocyclic molecules with diverse significance in the modern world due to its exploration potential and various pharmacological applications. The relevance of imidazole and its derivatives has gained popularity in recent years, especially in the production of commercial drugs and the treatment of various conditions. The imidazole nucleus is present in many natural compounds and widely distributed in essential amino acids, such as l-histidine, whose derivatives exhibit powerful pharmacological properties. In this review, we delve into the historical timeline and development of synthetic pathways for tri- and tetra-substituted imidazoles used in the renowned Radziszewski reaction. Furthermore, we explore various bacteriological applications documented in the literature, as well as current advances in preclinical approaches to imidazole-based drug discovery. Tri- or tetra-substituted imidazole derivatives show strong potential for new synthesis methods, such as reflux or microwave, as well as various biological activities.
Collapse
Affiliation(s)
- Abdeljalil Hamdi
- Applied Chemistry Research Unit, FSTH, Abdelmalek Essaâdi University, AL Hoceima, Tetouan, Morocco
| | - Walid Daoudi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Departement of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Mohamed Aaddouz
- Laboratoire de chimie analytique appliquée, matériaux et environnement (LC2AME), Faculté des Sciences, B.P. 717, 60000 Oujda, Morocco
| | - Mohamed Azzouzi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Departement of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Hassan Amhamdi
- Applied Chemistry Research Unit, FSTH, Abdelmalek Essaâdi University, AL Hoceima, Tetouan, Morocco
| | - Abdellah Elyoussfi
- Laboratoire de chimie analytique appliquée, matériaux et environnement (LC2AME), Faculté des Sciences, B.P. 717, 60000 Oujda, Morocco
| | - Abdelmalik El Aatiaoui
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Departement of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Dakeshwar Kumar Verma
- Department of Chemistry, Government Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh-491441, India
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - M'hamed Ahari
- Applied Chemistry Research Unit, FSTH, Abdelmalek Essaâdi University, AL Hoceima, Tetouan, Morocco
| |
Collapse
|
3
|
Ding YY, Zhou H, Peng-Deng, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 2023; 259:115627. [PMID: 37467619 DOI: 10.1016/j.ejmech.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Peng-Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Niedziałkowska K, Felczak A, Głowacka IE, Piotrowska DG, Lisowska K. Antimicrobial Activity and Toxicity of Newly Synthesized 4-[4-(benzylamino)butoxy]-9 H-carbazole Derivatives. Int J Mol Sci 2023; 24:13722. [PMID: 37762024 PMCID: PMC10530720 DOI: 10.3390/ijms241813722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
One of the main challenges of medicinal chemistry is the search for new substances with antimicrobial potential that could be used in the fight against pathogenic microorganisms. Therefore, the antimicrobial activity of newly synthesized compounds is still being investigated. Carbazole-containing compounds appear to be promising antibacterial, antifungal, and antiviral agents. The aim of this study was to examine the antimicrobial potential and toxicity of newly synthesized isomeric fluorinated 4-[4-(benzylamino)butoxy]-9H-carbazole derivatives. Their antimicrobial activity against bacteria and fungi was tested according to CLSI guidelines. Similarly to previously studied carbazole-containing compounds, the tested derivatives showed the ability to effectively inhibit the growth of Gram-positive bacteria. The addition of carbazole derivatives 2, 4, and 8 at the concentration of 16 µg/mL caused the inhibition of S. aureus growth by over 60%. The MIC value of compounds 2-5 and 7-10 was 32 µg/mL for Staphylococcus strains. Gram-negative strains of E. coli and P. aeruginosa were found to be more resistant to the tested carbazole derivatives. E. coli cells treated with compounds 3 and 8 at a concentration of 64 µg/mL resulted in a greater-than-40% reduction in bacterial growth. In the case of the P. aeruginosa strain, all compounds in the highest concentration that we tested limited growth by 35-42%. Moreover, an over-60% inhibition of fungal growth was observed in the cultures of C. albicans and A. flavus incubated with 64 µg/mL of compounds 2 or 7 and 1 or 4, respectively. The hemolysis of red blood cells after their incubation with the tested carbazole derivatives was in the range of 2-13%. In the case of human fibroblast cells, the toxicity of the tested compounds was higher. Derivative 1, functionalized with fluorine in position 2 and its hydrobromide, was the least toxic. The obtained results indicated the antimicrobial potential of the tested 4-[4-(benzylamino)butoxy]-9H-carbazole derivatives, especially against S. aureus strains; therefore, it is worth further modifying these structures, in order to enhance their activity against pathogenic microorganisms.
Collapse
Affiliation(s)
- Katarzyna Niedziałkowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (I.E.G.); (D.G.P.)
| | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (I.E.G.); (D.G.P.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
| |
Collapse
|
5
|
Patil SA, Patil SA, Ble-González EA, Isbel SR, Hampton SM, Bugarin A. Carbazole Derivatives as Potential Antimicrobial Agents. Molecules 2022; 27:molecules27196575. [PMID: 36235110 PMCID: PMC9573399 DOI: 10.3390/molecules27196575] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Microbial infection is a leading cause of death worldwide, resulting in around 1.2 million deaths annually. Due to this, medicinal chemists are continuously searching for new or improved alternatives to combat microbial infections. Among many nitrogen-containing heterocycles, carbazole derivatives have shown significant biological activities, of which its antimicrobial and antifungal activities are the most studied. In this review, miscellaneous carbazole derivatives and their antimicrobial activity are discussed (articles published from 1999 to 2022).
Collapse
Affiliation(s)
- Siddappa A. Patil
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
- Correspondence: (S.A.P.); (S.A.P.); (A.B.)
| | - Shivaputra A. Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Correspondence: (S.A.P.); (S.A.P.); (A.B.)
| | - Ever A. Ble-González
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Stephen R. Isbel
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Sydney M. Hampton
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Alejandro Bugarin
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
- Correspondence: (S.A.P.); (S.A.P.); (A.B.)
| |
Collapse
|
6
|
Zhang Z, Kang Y, Hou R, Min X, Wang T, Liang Y. An Oxidant- and Catalyst-Free Synthesis of Dibenzo[a,c]carbazoles via UV Light Irradiation of 2,3-Diphenyl-1H-indoles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1677-4881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAn efficient methodology for the synthesis of dibenzo[a,c]carbazoles via annulation of 2,3-diphenyl-1H-indoles in EtOH under UV light irradiation (λ = 365 nm) along with hydrogen evolution is described. This method exhibits the advantages of mild reaction conditions, no requirement of any oxidants and catalysts, and release of hydrogen as the only byproduct. Notably, the mechanism investigation confirms that the trans-4b,8a-dihydro-9H-dibenzo[a,c]carbazole intermediate could convert into cis-4b,8a-dihydro-9H-dibenzo[a,c]carbazole, which relies on the nitrogen atom of the indole ring. This is followed by intramolecular dehydrogenation which yields the dibenzo[a,c]carbazoles.
Collapse
Affiliation(s)
- Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Yang Kang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Rong Hou
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Xiaoyan Min
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Yong Liang
- Department of Molecular Medicine, Beckman Research Institute of City of Hope
| |
Collapse
|
7
|
Chiral Quaternary Ammoniums Derived from Dehydroabietylamine: Synthesis and Application to Alkynylation of Isatin Derivatives Catalyzed by Silver. Catalysts 2021. [DOI: 10.3390/catal11121479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abietic acid and its derivatives have broadly been used in fine chemicals and are renewable resources. Its inherent chiral rigid tricyclic phenanthrene skeleton is unique. Its utilities in asymmetric catalysis remain to be explored. A series new amide-type chiral quaternary ammoniums bearing dehydroabietylamine were designed, and prepared by two convenient steps. Acylation of dehydroabietylamine with bromoacetyl chloride afforded amide holding bromoacetyl group in higher yields using triethyl amine as base. Subsequent quaternization reaction gave the desired amide-type chiral quaternary ammoniums. The new chiral quaternary ammoniums can be used as phase-transfer catalyst (PTC) for the transition metal-catalysed alkynylation of isatin derivatives.
Collapse
|
8
|
Zawadzka K, Felczak A, Głowacka IE, Piotrowska DG, Lisowska K. Evaluation of the Antimicrobial Potential and Toxicity of a Newly Synthesised 4-(4-(Benzylamino)butoxy)-9 H-carbazole. Int J Mol Sci 2021; 22:ijms222312796. [PMID: 34884610 PMCID: PMC8657542 DOI: 10.3390/ijms222312796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
One of the greatest threats to human and animal health is posed by infections caused by drug-resistant bacterial strains. Therefore, newly synthesised substances are tested for their antimicrobial activity. Carbazole derivatives seem to be promising antibacterial agents. This study aimed at investigating the toxicity and activity of newly synthesised, functionalised carbazole derivative 2 (4-(4-(benzylamino)butoxy)-9H-carbazole) against various microorganisms. Its antimicrobial potential against Gram-positive and Gram-negative bacteria, yeast, and filamentous fungi was examined according to CLSI (Clinical and Laboratory Standards Institute) standards. The tested compound was found to efficiently inhibit the growth of Gram-positive strains. The addition of carbazole derivative 2 at the concentration of 30 µg/mL caused inhibition of bacterial growth by over 95%. Moreover, about 50 and 45% limitation of Pseudomonas aeruginosa and Aspergillus flavus growth was observed in the samples incubated with the addition of 20 and 60 µg/mL of the compound, respectively. Its addition to the microbial cultures caused an increase in the permeability of the cellular membrane. Slight haemolysis of red blood cells was observed after 24-h treatment with carbazole derivative 2. On the other hand, human fibroblasts were found to be more sensitive to its effects. The activity of the tested compound indicates a possibility of its further modification in order to obtain effective drugs, especially against drug-resistant staphylococci.
Collapse
Affiliation(s)
- Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
- Correspondence: ; Tel.: +48-426354500
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (I.E.G.); (D.G.P.)
| | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (I.E.G.); (D.G.P.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.F.); (K.L.)
| |
Collapse
|
9
|
Ghorai J, Ramachandran K, Anbarasan P. Rhodium-Catalyzed Annulation of N-Acetoxyacetanilide with Substituted Alkynes: Conversion of Nitroarenes to Substituted Indoles. J Org Chem 2021; 86:14812-14825. [PMID: 34623800 DOI: 10.1021/acs.joc.1c01604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general and efficient rhodium-catalyzed redox-neutral annulation of N-acetoxyacetanilides, readily accessible from nitroarenes, with alkynes has been accomplished for the synthesis of substituted indole derivatives. A wide range of substituted 2,3-diarylindoles were achieved from various substituted N-acetoxyacetanilides and symmetrical/unsymmetrical alkynes in good to excellent yields. The developed method was successfully integrated with the synthesis of N-acetoxyacetanilides for the efficient one-pot synthesis of indoles from nitroarenes. The important features are the introduction of N-acetoxyacetamide as a new directing group, redox-neutral annulation, an additive-free approach, wide functional group tolerance, an intramolecular version, and a one-pot reaction of nitroarenes. The method was further extended to the synthesis of potent higher analogues of indole, viz., pyrrolo[3,2-f]indoles and dibenzo[a,c]carbazoles. In addition, a plausible mechanism was proposed based on the isolation and stoichiometric study of a potential aryl-Rh intermediate.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
Selective enrichment of carbazole from an anthracene slag by extraction: Experiment and simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Hao T, Huang L, Wei Y, Shi M. Copper-Catalyzed Synthesis of Indolyl Benzo[ b]carbazoles and Their Photoluminescence Property. Org Lett 2021; 23:5133-5137. [PMID: 34143628 DOI: 10.1021/acs.orglett.1c01659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A copper-catalyzed cascade cyclization of dihydroisobenzofurans with indoles for the rapid construction of indoly benzo[b]carbazoles has been reported, providing the desired products in moderate to good yields under mild conditions along with a broad substrate scope and good functional group tolerance. The photoluminescence property of these indoly benzo[b]carbazoles has also been investigated.
Collapse
Affiliation(s)
- Tonggang Hao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Long Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
12
|
Neto I, Domínguez-Martín EM, Ntungwe E, Reis CP, Pesic M, Faustino C, Rijo P. Dehydroabietic Acid Microencapsulation Potential as Biofilm-Mediated Infections Treatment. Pharmaceutics 2021; 13:825. [PMID: 34199531 PMCID: PMC8229915 DOI: 10.3390/pharmaceutics13060825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
The antimicrobial activity of dehydroabietic acid (DHA) for its use as an antibiofilm agent was tested in this work. DHA was assayed against a collection of Gram-positive, Gram-negative sensitive and resistant bacteria and yeasts through the minimum inhibitory concentration (MIC), MIC with Bioburden challenge, minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), MBIC with Bioburden challenge and growth curve studies. Toxicological studies (Artemia salina, sulforhodamine B (SRB) assay) were done to assess if the compound had antimicrobial and not cytotoxic properties. Furthermore, microencapsulation and stability studies were carried out to evaluate the chemical behavior and stability of DHA. On MIC results, Gram-positive bacteria Staphylococcus aureus ATCC 1228 and Mycobacterium smegmatis ATCC 607 presented a high efficiency (7.81 µg/mL), while on Gram-negative bacteria the highest MIC value of 125 µg/mL was obtained by all Klebsiella pneumoniae strains and Escherichia coli isolate strain HSM 303. Bioburden challenge showed that MIC, MBIC and percentage biofilm inhibition (BI) values suffered alterations, therefore, having higher concentrations. MBIC values demonstrated that DHA has a higher efficiency against S. aureus ATCC 43866 with a percentage of BI of 75.13 ± 0.82% at 0.49 µg/mL. Growth curve kinetic profiles of DHA against S. aureus ATCC 25923 were observed to be bacteriostatic. DHA-alginate beads had a average size of 2.37 ± 0.20 and 2.31 ± 0.17 × 103 µm2 with an encapsulation efficiency (EE%) around 99.49 ± 0.05%, a protection percentage (PP%) of 60.00 ± 0.05% in the gastric environment and a protection efficiency (PE%) around 88.12 ± 0.05% against UV light. In toxicological studies DHA has shown IC50 of 19.59 ± 7.40 µg/mL and a LC50 of 21.71 ± 2.18%. The obtained results indicate that DHA is a promising antimicrobial candidate against a wide range of bacteria and biofilm formation that must be further explored.
Collapse
Affiliation(s)
- Iris Neto
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (I.N.); (E.M.D.-M.); (E.N.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Eva María Domínguez-Martín
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (I.N.); (E.M.D.-M.); (E.N.)
- Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group. Ctra. A2, Department of Biomedical Sciences, Faculty of Pharmacy, Km 33.100—Campus Universitario, University of Alcalá de Henares, Alcalá de Henares, 28805 Madrid, Spain
| | - Epole Ntungwe
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (I.N.); (E.M.D.-M.); (E.N.)
- Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group. Ctra. A2, Department of Biomedical Sciences, Faculty of Pharmacy, Km 33.100—Campus Universitario, University of Alcalá de Henares, Alcalá de Henares, 28805 Madrid, Spain
| | - Catarina P. Reis
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Milica Pesic
- Institute for Biological Research “Sinisa Stankovic”-National Institute of Republic of Serbia, University of Belgrade 142, 11060 Belgrade, Serbia;
| | - Célia Faustino
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Patrícia Rijo
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (I.N.); (E.M.D.-M.); (E.N.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
13
|
Rossi R, Ciofalo M. An Updated Review on the Synthesis and Antibacterial Activity of Molecular Hybrids and Conjugates Bearing Imidazole Moiety. Molecules 2020; 25:molecules25215133. [PMID: 33158247 PMCID: PMC7663458 DOI: 10.3390/molecules25215133] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
The rapid growth of serious infections caused by antibiotic resistant bacteria, especially the nosocomial ESKAPE pathogens, has been acknowledged by Governments and scientists and is one of the world's major health problems. Various strategies have been and are currently investigated and developed to reduce and/or delay the bacterial resistance. One of these strategies regards the design and development of antimicrobial hybrids and conjugates. This unprecedented critical review, in which our continuing interest in the synthesis and evaluation of the bioactivity of imidazole derivatives is testified, aims to summarise and comment on the results obtained from the end of the 1900s until February 2020 in studies conducted by numerous international research groups on the synthesis and evaluation of the antibacterial properties of imidazole-based molecular hybrids and conjugates in which the pharmacophoric constituents of these compounds are directly covalently linked or connected through a linker or spacer. In this review, significant attention was paid to summarise the strategies used to overcome the antibiotic resistance of pathogens whose infections are difficult to treat with conventional antibiotics. However, it does not include literature data on the synthesis and evaluation of the bioactivity of hybrids and conjugates in which an imidazole moiety is fused with a carbo- or heterocyclic subunit.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi, 3, I-56124 Pisa, Italy
- Correspondence: (R.R.); (M.C.)
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
- Correspondence: (R.R.); (M.C.)
| |
Collapse
|
14
|
Tret'yakova EV, Salimova EV, Parfenova LV. Synthesis, modification, and biological activity of propargylated methyl dihydroquinopimarates. Nat Prod Res 2020; 36:79-86. [PMID: 32396399 DOI: 10.1080/14786419.2020.1762187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The introduction of the alkynyl moiety to the abietane diterpenic core by modification of the cycle E of methyl dihydroquinopimarate is described. The arylpropargyl, aminopropargyl, and 1,2,3-triazole derivatives are synthesized via Sonogashira reaction, Mannich reaction and click-chemistry, correspondingly. The antitumor effect towards the NCI-60 cancer cell line panel and antimicrobial activity against key ESKAPE pathogens of the synthesized compounds were studied in vitro. The cytotoxicity and hemolytic activity of the abietane derivatives was tested using HEK293 human embryonic kidney cell line and the human red blood cells, correspondingly. The methyl dihydroquinopimarate propargyl analogs showed high antitumor activity against leukemia (CCRF-CEM; SR), non-small cell lung cancer (NCI-H522), melanoma (LOX IMVI; MALME-3M), ovarian cancer (IGROV1), and renal cancer (786-0; UO-31) cell lines. The Mannich's diterpene bases with pyrrolidine and diethylamine fragments exhibited fungicidal activity towards Cr. neoformans (MIC= 16 μg/ml), while possessing low toxicity. The described modifications of the abietane diterpenoids have great potential for further development of new cytotoxic and fungicidal compounds.
Collapse
Affiliation(s)
- Elena V Tret'yakova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, Russian Federation
| | - Elena V Salimova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, Russian Federation
| | - Lyudmila V Parfenova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, Russian Federation
| |
Collapse
|
15
|
Chen H, Qiao C, Miao TT, Li AL, Wang WY, Gu W. Synthesis and biological evaluation of novel N-(piperazin-1-yl)alkyl-1 H-dibenzo[ a, c]carbazole derivatives of dehydroabietic acid as potential MEK inhibitors. J Enzyme Inhib Med Chem 2020; 34:1544-1561. [PMID: 31448648 PMCID: PMC6720511 DOI: 10.1080/14756366.2019.1655407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this paper, a series of novel 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid bearing different N-(piperazin-1-yl)alkyl side chains were designed, synthesised and evaluated for their in vitro anticancer activities against three human hepatocarcinoma cell lines (SMMC-7721, HepG2 and Hep3B). Among them, compound 10g exhibited the most potent activity against three cancer cell lines with IC50 values of 1.39 ± 0.13, 0.51 ± 0.09 and 0.73 ± 0.08 µM, respectively. In the kinase inhibition assay, compound 10g could significantly inhibit MEK1 kinase activity with IC50 of 0.11 ± 0.02 µM, which was confirmed by western blot analysis and molecular docking study. In addition, compound 10g could elevate the intracellular ROS levels, decrease mitochondrial membrane potential, destroy the cell membrane integrity, and finally lead to the oncosis and apoptosis of HepG2 cells. Therefore, compound 10g could be a potent MEK inhibitor and a promising anticancer agent worthy of further investigations.
Collapse
Affiliation(s)
- Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Chao Qiao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Ting-Ting Miao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| |
Collapse
|
16
|
Guo S, Liu Y, Zhao L, Zhang X, Fan X. Rhodium-Catalyzed Selective Oxidative (Spiro)annulation of 2-Arylindoles by Using Benzoquinone as a C2 or C1 Synthon. Org Lett 2019; 21:6437-6441. [PMID: 31386384 DOI: 10.1021/acs.orglett.9b02336] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rhodium-catalyzed substrate-tunable oxidative annulation and spiroannulation reactions of 2-arylindoles with benzoquinone leading to 9H-dibenzo[a,c]carbazol-3-ols and new spirocyclic products are reported. Intriguingly, with 2-aryl-substituted indoles, benzoquinone could act as a C2 synthon to afford dibenzo[a,c]carbazoles. On the contrary, when 2-aryl-3-substituted indoles were used, benzoquinone switched to act as a C1 synthon to furnish spirocyclic compounds. In addition, further transformations of the obtained products demonstrate the synthetic utility of the present protocol.
Collapse
Affiliation(s)
- Shenghai Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Yangfan Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Lu Zhao
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
17
|
Kugler S, Ossowicz P, Malarczyk-Matusiak K, Wierzbicka E. Advances in Rosin-Based Chemicals: The Latest Recipes, Applications and Future Trends. Molecules 2019; 24:E1651. [PMID: 31035500 PMCID: PMC6539233 DOI: 10.3390/molecules24091651] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023] Open
Abstract
A comprehensive review of the publications about rosin-based chemicals has been compiled. Rosin, or colophony, is a natural, abundant, cheap and non-toxic raw material which can be easily modified to obtain numerous useful products, which makes it an excellent subject of innovative research, attracting growing interest in recent years. The last extensive review in this research area was published in 2008, so the current article contains the most promising, repeatable achievements in synthesis of rosin-derived chemicals, published in scientific literature from 2008 to 2018. The first part of the review includes low/medium molecule weight compounds: Especially intermediates, resins, monomers, curing agents, surfactants, medications and biocides. The second part is about macromolecules: mainly elastomers, polymers for biomedical applications, coatings, adhesives, surfactants, sorbents, organosilicons and polysaccharides. In conclusion, a critical evaluation of the publications in terms of data completeness has been carried out with an indication of the most promising directions of rosin-based chemicals development.
Collapse
Affiliation(s)
- Szymon Kugler
- Faculty of Chemical Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland.
| | - Paula Ossowicz
- Faculty of Chemical Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland.
| | - Kornelia Malarczyk-Matusiak
- Faculty of Chemical Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland.
| | - Ewa Wierzbicka
- Industrial Chemistry Research Institute, Rydygiera 8, 01-793 Warsaw, Poland.
| |
Collapse
|
18
|
Convenient one-pot synthesis of resin acid Mannich bases as novel anticancer and antifungal agents. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2227-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Mohamooda Sumaya U, Sankar E, Arasambattu MohanaKrishnan K, Biruntha K, Usha G. Crystal structure determination, Hirshfeld surface analysis and energy frameworks of 6-phenyl-sulfonyl-6 H-thieno[3,2- c]carbazole. Acta Crystallogr E Crystallogr Commun 2018; 74:878-883. [PMID: 30002878 PMCID: PMC6038642 DOI: 10.1107/s2056989018007971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/30/2018] [Indexed: 11/10/2022]
Abstract
In the title compound, C20H13NO2S2, the carbazole ring system forms a dihedral angle of 89.08 (1)° with the sulfonyl-substituted phenyl ring. Intra-molecular C-H⋯O hydrogen bonds involving the sulfone O atoms and the carbazole moiety result in two S(6) rings. In the crystal, mol-ecules are linked via pairs of C-H⋯O hydrogen bonds forming inversion dimers with an R22(12) graph-set motif. Analysis of the Hirshfeld surfaces and two-dimensional fingerprint plots was used to explore the distribution of weak inter-molecular inter-actions in the crystal structure.
Collapse
Affiliation(s)
- U. Mohamooda Sumaya
- Department of Physics, Bharathi Women’s College (A), Chennai-108, Tamilnadu, India
| | - E. Sankar
- Department of organic Chemistry, University of Madras, Chennai-25, Tamilnadu, India
| | | | - K. Biruntha
- Department of Physics, Bharathi Women’s College (A), Chennai-108, Tamilnadu, India
| | - G. Usha
- PG and Research Department of Physics, Queen Mary’s College (A), Chennai-4, Tamilnadu, India
| |
Collapse
|
20
|
Zhang WM, Yao Y, Yang T, Wang XY, Zhu ZY, Xu WT, Lin HX, Gao ZB, Zhou H, Yang CG, Cui YM. The synthesis and antistaphylococcal activity of N-sulfonaminoethyloxime derivatives of dehydroabietic acid. Bioorg Med Chem Lett 2018; 28:1943-1948. [PMID: 29650291 DOI: 10.1016/j.bmcl.2018.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
A series of N-sulfonaminoethyloxime derivatives of dehydroabietic acid were synthesized and investigated for their antibacterial activity against Staphylococcus aureus Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108 and NRS-271). Most of the target compounds having chloro, bromo, trifluoromethyl phenyl moiety exhibited potent in vitro antistaphylococcal activity. The meta-CF3 phenyl derivative T23 showed the highest activity with MIC of 0.39-0.78 μg/mL against S. aureus Newman, while several analogues showed similar potent antibacterial activity with MIC values between 0.78 and 1.56 μg/mL against five multidrug-resistant S. aureus. The stability of T35 in plasma of SD rat and the cellular cytotoxicity were also evaluated.
Collapse
Affiliation(s)
- Wen-Ming Zhang
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yang Yao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Teng Yang
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue-Ying Wang
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhen-Yun Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen-Tao Xu
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hai-Xia Lin
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao-Bing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yong-Mei Cui
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
21
|
Jin XY, Zhang KP, Chen H, Miao TT, Wang SF, Gu W. Synthesis, in vitro Antimicrobial, and Cytotoxic Activities of New 1,3,4-Oxadiazin-5(6H
)-one Derivatives from Dehydroabietic Acid. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiao-Yan Jin
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| | - Kang-Ping Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| | - Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| | - Ting-Ting Miao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| | - Shi-Fa Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P. R. China
| |
Collapse
|
22
|
Hou W, Zhang G, Luo Z, Li D, Ruan H, Ruan BH, Su L, Xu H. Identification of a diverse synthetic abietane diterpenoid library and insight into the structure-activity relationships for antibacterial activity. Bioorg Med Chem Lett 2017; 27:5382-5386. [PMID: 29153424 DOI: 10.1016/j.bmcl.2017.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/12/2023]
Abstract
A diverse natural product-like (NPL) synthetic abietane diterpenoid library containing 86 compounds were obtained and the SARs were studied based on their antibacterial potential. Further in vitro cytotoxic and in silico drug-like properties evaluation showed that the potent antibacterial compound 84 had good drug-like properties and displayed low cytotoxicity toward noncancerous mammalian cells, indicating the study of AA and DHAA might be a good starting point for the search of novel antimicrobial molecules. Future work should be focused on the optimization of their potency and selectivity.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guanjun Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zhi Luo
- Shanghai Evergene Biotech Co., Ltd., Shanghai 201499, PR China
| | - Di Li
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Haoqiang Ruan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Benfang Helen Ruan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lin Su
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, PR China.
| |
Collapse
|
23
|
Kolsi LE, Krogerus S, Brito V, Rüffer T, Lang H, Yli-Kauhaluoma J, Silvestre SM, Moreira VM. Regioselective Benzylic Oxidation of Aromatic Abietanes: Application to the Semisynthesis of the Naturally Occurring Picealactones A, B and C. ChemistrySelect 2017. [DOI: 10.1002/slct.201701477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Laura E. Kolsi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P.O. Box 56), FI- 00014 Helsinki Finland
| | - Sara Krogerus
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P.O. Box 56), FI- 00014 Helsinki Finland
| | - Vanessa Brito
- Health Sciences Research Centre; University of Beira Interior (CICS-UBI); Av. Infante D. Henrique 6200-506 Covilhã Portugal
| | - Tobias Rüffer
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry; Technische Universität Chemnitz; 09107 Chemnitz Germany
| | - Heinrich Lang
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry; Technische Universität Chemnitz; 09107 Chemnitz Germany
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P.O. Box 56), FI- 00014 Helsinki Finland
| | - Samuel M. Silvestre
- Health Sciences Research Centre; University of Beira Interior (CICS-UBI); Av. Infante D. Henrique 6200-506 Covilhã Portugal
- Centre for Neuroscience and Cell Biology (CNC); 3004-504 Coimbra Portugal
| | - Vânia M. Moreira
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P.O. Box 56), FI- 00014 Helsinki Finland
- Strathclyde Institute of Pharmacy and Biomedical Sciences; University of Strathclyde; 161 Cathedral Street Glasgow G4 0RE UK
| |
Collapse
|
24
|
Cheng CY, Chang CP, Lauderdale TLY, Yu GY, Lee JC, Jhang YW, Wu CH, Ke YY, Sadani AA, Yeh CF, Huang IW, Kuo YP, Tsai DJ, Yeh TK, Tseng CT, Song JS, Liu YW, Tsou LK, Shia KS. Bromomethylthioindole Inspired Carbazole Hybrids as Promising Class of Anti-MRSA Agents. ACS Med Chem Lett 2016; 7:1191-1196. [PMID: 27994762 DOI: 10.1021/acsmedchemlett.6b00289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/21/2016] [Indexed: 11/30/2022] Open
Abstract
Series of N-substituted carbazole analogues bearing an indole ring were synthesized as anti-methicillin-resistant Staphylococcus aureus (MRSA) agents from a molecular hybridization approach. The representative compound 19 showed an MIC = 1 μg/mL against a panel of MRSA clinical isolates as it possessed comparable in vitro activities to that of vancomycin. Moreover, compound 19 also exhibited MIC = 1 μg/mL activities against a recent identified Z172 MRSA strain (vancomycin-intermediate and daptomycin-nonsusceptible phenotype) and the vancomycin-resistant Enterococcus faecalis (VRE) strain. In a mouse model with lethal infection of MRSA (4N216), a 75% survival rate was observed after a single dose of compound 19 was intravenously administered at 20 mg/kg. In light of their equipotent activities against different MRSA isolates and VRE strain, the data underscore the importance of designed hybrid series for the development of new N-substituted carbazoles as potential anti-MRSA agents.
Collapse
Affiliation(s)
- Chia-Yi Cheng
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Chun-Ping Chang
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | | | | | - Jinq-Chyi Lee
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Yi-Wun Jhang
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Chien-Huang Wu
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Yi-Yu Ke
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Amit A. Sadani
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Ching-Fang Yeh
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | | | | | | | - Teng-Kuang Yeh
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Chen-Tso Tseng
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Jen-Shin Song
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Yu-Wei Liu
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Lun K. Tsou
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| | - Kak-Shan Shia
- Institute
of Biotechnology and Pharmaceutical Research and ‡National Institute of Infectious
Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan, R.O.C
| |
Collapse
|
25
|
Zhang WM, Yang T, Pan XY, Liu XL, Lin HX, Gao ZB, Yang CG, Cui YM. The synthesis and antistaphylococcal activity of dehydroabietic acid derivatives: modifications at C12 and C7. Eur J Med Chem 2016; 127:917-927. [PMID: 27837995 DOI: 10.1016/j.ejmech.2016.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/14/2023]
Abstract
A series of 7-N-acylaminoethyl/propyloxime derivatives of dehydroabietic acid were synthesized and investigated for their antibacterial activity against Staphylococcus aureus Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108 and NRS-271). Most of the target compounds having trifluoromethyl phenyl/benzyl, halogen-substituted thiophenyl, benzothiophenyl or pyrrolyl moiety exhibited potent in vitro antibacterial activity. Among which, compounds 4m, 4x and 7j showed high antibacterial activity with minimum inhibitory concentration (MIC) values of 1.25-3.13 μg/mL against five multidrug-resistant S. aureus.
Collapse
Affiliation(s)
- Wen-Ming Zhang
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Teng Yang
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue-Ying Pan
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123 China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Lan Liu
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hai-Xia Lin
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao-Bing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yong-Mei Cui
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
26
|
The synthesis and antistaphylococcal activity of dehydroabietic acid derivatives: Modifications at C-12. Bioorg Med Chem Lett 2016; 26:5492-5496. [DOI: 10.1016/j.bmcl.2016.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 11/19/2022]
|
27
|
Iacopetta D, Rosano C, Puoci F, Parisi OI, Saturnino C, Caruso A, Longo P, Ceramella J, Malzert-Fréon A, Dallemagne P, Rault S, Sinicropi MS. Multifaceted properties of 1,4-dimethylcarbazoles: Focus on trimethoxybenzamide and trimethoxyphenylurea derivatives as novel human topoisomerase II inhibitors. Eur J Pharm Sci 2016; 96:263-272. [PMID: 27702608 DOI: 10.1016/j.ejps.2016.09.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/17/2016] [Accepted: 09/30/2016] [Indexed: 01/17/2023]
Abstract
Natural or synthetic carbazole derivatives have recently attracted the attention of the scientific world because of their multiple biological activity, leading to an increase of designed, synthesized and studied analogues. In this paper, four 1,4-dimethylcarbazole derivatives, analogues of Ellipticine, have been investigated for their ability to block cancer cells growth, with low effects on the proliferation of normal cells. DNA topoisomerases inhibition assays, docking simulations, stability studies and effects on a membrane model are reported. Particularly, compounds 2 and 3 have been found thermally stable and able to inhibit, strongly and selectively, the human DNA topoisomerase II. These properties confer a good and broad antitumoral activity in vitro, with very low cytotoxic effect on the proliferation of normal cell lines and without damaging, in contrast with Ellipticine, the cell membrane model. The presented outcomes set the most active compounds as good candidates for pre-clinical studies useful in cancer treatment.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Camillo Rosano
- UOS Proteomics IRCCS AOU San Martino-IST National Institute for Cancer Research, Largo R. Benzi 10, Genoa, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Aurélie Malzert-Fréon
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France.
| | - Patrick Dallemagne
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Sylvain Rault
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
28
|
Dehydroabietic Acid Derivative QC4 Induces Gastric Cancer Cell Death via Oncosis and Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2581061. [PMID: 27057539 PMCID: PMC4789375 DOI: 10.1155/2016/2581061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
Abstract
AIM QC4 is the derivative of rosin's main components dehydroabietic acid (DHA). We investigated the cytotoxic effect of QC4 on gastric cancer cells and revealed the mechanisms beneath the induction of cell death. METHODS The cytotoxic effect of QC4 on gastric cancer cells was evaluated by CCK-8 assay and flow cytometry. The underlying mechanisms were tested by administration of cell death related inhibitors and detection of apoptotic and oncosis related proteins. Cytomembrane integrity and organelles damage were confirmed by lactate dehydrogenase (LDH) leakage assay, mitochondrial function test, and cytosolic free Ca(2+) concentration detection. RESULTS QC4 inhibited cell proliferation dose- and time-dependently and destroyed cell membrane integrity, activated calpain-1 autolysis, and induced apoptotic protein cleavage in gastric cancer cells. The detection of decreased ATP and mitochondrial membrane potential, ROS accumulation, and cytosolic free Ca(2+) elevation confirmed organelles damage in QC4-treated gastric cancer cells. CONCLUSIONS DHA derivative QC4 induced the damage of cytomembrane and organelles which finally lead to oncosis and apoptosis in gastric cancer cells. Therefore, as a derivative of plant derived small molecule DHA, QC4 might become a promising agent in gastric cancer therapy.
Collapse
|
29
|
Liebens V, Gerits E, Knapen WJ, Swings T, Beullens S, Steenackers HP, Robijns S, Lippell A, O'Neill AJ, Veber M, Fröhlich M, Krona A, Lövenklev M, Corbau R, Marchand A, Chaltin P, De Brucker K, Thevissen K, Cammue BP, Fauvart M, Verstraeten N, Michiels J. Identification and characterization of an anti-pseudomonal dichlorocarbazol derivative displaying anti-biofilm activity. Bioorg Med Chem Lett 2015; 24:5404-8. [PMID: 25453797 DOI: 10.1016/j.bmcl.2014.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022]
Abstract
Pseudomonas aeruginosa strains resistant towards all currently available antibiotics are increasingly encountered, raising the need for new anti-pseudomonal drugs. We therefore conducted a medium-throughput screen of a small-molecule collection resulting in the identification of the N-alkylated 3,6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol (MIC = 18.5 μg mL⁻¹). This compound, compound 1, is bacteriostatic towards a broad spectrum of Gram-positive and Gram-negative pathogens, including P. aeruginosa. Importantly, 1 also eradicates mature biofilms of P. aeruginosa. 1 displays no cytotoxicity against various human cell types, pointing to its potential for further development as a novel antibacterial drug.
Collapse
|
30
|
Abstract
Carbazoles represent an important class of heterocycles. These have been reported to exhibit diverse biological activities such as antimicrobial, antitumor, antiepileptic, antihistaminic, antioxidative, anti-inflammatory, antidiarrhoeal, analgesic, neuroprotective and pancreatic lipase inhibition properties. A series of carbazole derivatives such as N-substituted carbazoles, benzocarbazoles, furocarbazoles, pyrrolocarbazoles, indolocarbazoles, imidazocarbazoles, etc. have been synthesized. The N-substituted derivatives have gained the attention of researchers due to their therapeutic potential against neurological disorders and cell proliferation. Herein an attempt is made to review the medicinal importance of recently synthesized N-substituted carbazoles.
Collapse
|
31
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes, labdanes, clerodanes, pimaranes, abietanes, kauranes, gibberellins, cembranes and their cyclization products. The literature from January to December, 2014 is reviewed.
Collapse
|
32
|
Stalindurai K, Ramalingan C, Sridhar B, Selvanayagam S. Crystal structure of 9-butyl-3-(9-butyl-9H-carbazol-3-yl)-9H-carbazole. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o1283-o1284. [PMID: 25553048 PMCID: PMC4257394 DOI: 10.1107/s1600536814025367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
In the title carbazole derivative, C32H32N2, the mol-ecule resides on a crystallographic twofold axis, which runs through the central C-C bond. The carbazole ring system is almost planar, with a maximum deviation of 0.041 (1) Å for one of the ring-junction C atoms. The crystal packing is stabilized by C-H⋯π inter-actions only, which form a C(7) chain-like arrangement along [110] in the unit cell.
Collapse
Affiliation(s)
- K. Stalindurai
- Department of Chemistry, Kalasalingam University, Krishnankoil 626 126, India
| | - C. Ramalingan
- Department of Chemistry, Kalasalingam University, Krishnankoil 626 126, India
| | - B. Sridhar
- Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 067, India
| | - S. Selvanayagam
- Department of Physics & International Research Centre, Kalasalingam University, Krishnankoil 626 126, India
| |
Collapse
|
33
|
González MA. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur J Med Chem 2014; 87:834-42. [PMID: 25440884 DOI: 10.1016/j.ejmech.2014.10.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 11/28/2022]
Abstract
Naturally occurring aromatic abietane diterpenoids (dehydroabietanes) exhibit a wide range of biological activities. A number of synthetic studies aimed at modifying the abietane skeleton in order to obtain new potential chemotherapeutic agents have been reported. In this study, the biological activities of synthetic derivatives of aromatic abietane diterpenoids are reviewed.
Collapse
Affiliation(s)
- Miguel A González
- Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain.
| |
Collapse
|
34
|
Dehydroabietic acid derivative QC2 induces oncosis in hepatocellular carcinoma cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:682197. [PMID: 25110686 PMCID: PMC4109319 DOI: 10.1155/2014/682197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/08/2014] [Indexed: 12/22/2022]
Abstract
Aim. Rosin, the traditional Chinese medicine, is reported to be able to inhibit skin cancer cell lines. In this report, we investigate the inhibitory effect against HCC cells of QC2, the derivative of rosin's main components dehydroabietic acid. Methods. MTT assay was used to determine the cytotoxicity of QC2. Morphological changes were observed by time-lapse microscopy and transmission electron microscopy and the cytoskeleton changes were observed by laser-scanning confocal microscopy. Cytomembrane integrity and organelles damage were confirmed by detection of the reactive oxygen (ROS), lactate dehydrogenase (LDH), and mitochondrial membrane potential (Δψm). The underlying mechanism was manifested by Western blotting. The oncotic cell death was further confirmed by detection of oncosis related protein calpain. Results. Swelling cell type and destroyed cytoskeleton were observed in QC2-treated HCC cells. Organelle damage was visualized by transmission electron microscopy. The detection of ROS accumulation, increased LDH release, and decreased ATP and Δψm confirmed the cell death. The oncotic related protein calpain was found to increase time-dependently in QC2-treated HCC cells, while its inhibitor PD150606 attenuated the cytotoxicity. Conclusions. Dehydroabietic acid derivative QC2 activated oncosis related protein calpain to induce the damage of cytomembrane and organelles which finally lead to oncosis in HCC cells.
Collapse
|