1
|
Ikram M, Shah I, Hussain H, Mughal EU, Naeem N, Sadiq A, Nazir Y, Ali Shah SW, Zahoor M, Ullah R, Ali EA, Umar MN. Synthesis, molecular docking evaluation for LOX and COX-2 inhibition and determination of in-vivo analgesic potentials of aurone derivatives. Heliyon 2024; 10:e29658. [PMID: 38694111 PMCID: PMC11058299 DOI: 10.1016/j.heliyon.2024.e29658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024] Open
Abstract
In the current study, seven (7) aurone derivatives (ADs) were synthesized and employed to in-vitro LOX and COX-2 assays, in-vivo models of acetic acid-induced mice writhing, formalin-induced mice paw licking and tail immersion test to evaluate their analgesic potential at the doses of 10 mg and 20 mg/kg body weight. Molecular docking was performed to know the active binding site at both LOX and COX-2 as compared to standard drugs. Among the ADs, 2-(3,4-dimethoxybenzylidene)benzofuran-3(2H)-one (WE-4)possessed optimal LOX and COX-2 inhibitory strength (IC50=0.30 μM and 0.22 μM) as compared to standard (ZileutonIC50 = 0.08 μM, CelecoxibIC50 = 0.05 μM). Similarly in various pain models compound WE-4 showed significantly (p < 0.05) highest percent analgesic potency as compared to control at a dose of 20 mg/kg i.e. 77.60 % analgesic effect in acetic acid model, 49.97 % (in Phase-1) and 70.93 % (inPhase-2) analgesic effect in formalin pain model and 74.71 % analgesic response in tail immersion model. By the administration of Naloxone, the tail flicking latencies were reversed (antagonized) in all treatments. The WE-4 (at 10 mg/kg and 20 mg/kg) was antagonized after 90 min from 11.23 ± 0.93 and 13.41 ± 1.21 to 5.30 ± 0.48 and 4.80 ± 0.61 respectively as compared to standard Tramadol (from 17.74 ± 1.33 to 3.70 ± 0.48), showing the opiodergic receptor involvement. The molecular docking study of ADs revealed that WE-4 had a higher affinity for LOX and COX-2 with docking scores of -4.324 and -5.843 respectively. As a whole, among the tested ADs, compound WE-4 demonstrated excellent analgesic effects that may have been caused by inhibiting the LOX and COX-2 pathways.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Pharmacy, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | - Ismail Shah
- Department of Pharmacy, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | - Haya Hussain
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal, Dir (Upper) 18000, Khyber Pakhtunkhwa, Pakistan
| | | | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University, Sialkot, 51300, Pakistan
| | - Yasir Nazir
- Department of Chemistry, University of Sialkot, Sialkot, 51300, Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Chakdara, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Dir Lower, KPK, 18800, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Al-U'datt DGF, Alu'datt MH, Tranchant CC, Al-Dwairi A, Al-Shboul O, Almajwal A, Elsalem L, Jaradat S, Alzoubi KH, Faleh BG, Ahmed YB, Alqbelat J. Royal jelly mediates fibrotic signaling, collagen cross-linking and cell proliferation in cardiac fibroblasts. Biomed Pharmacother 2023; 164:114922. [PMID: 37236025 DOI: 10.1016/j.biopha.2023.114922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Royal jelly (RJ) is a multifunctional bee product with a unique composition and wide-ranging biological properties, including antioxidant, anti-inflammatory and antiproliferative activities. Still, little is known about the possible myocardial protective properties of RJ. Considering that sonication could enhance RJ bioactivity, this study aimed to assess the effects of non-sonicated (NS) and sonicated (S) RJ on fibrotic signaling, cell proliferation, and collagen production in cardiac fibroblasts. S-RJ was produced by ultrasonication at 20 kHz. Ventricular fibroblasts isolated from neonatal rats were cultured and treated with different concentrations of NS-RJ or S-RJ (0, 50, 100, 150, 200, and 250 µg/well). S-RJ significantly depressed the expression levels of transglutaminase 2 (TG2) mRNA across all the concentrations tested and was inversely associated with the expression of this profibrotic marker. S-RJ and NS-RJ displayed distinct dose-dependent effects on mRNA expression of several other profibrotic, proliferation, and apoptotic markers. Unlike NS-RJ, S-RJ elicited strong negative dose-dependent relationships with the expression of profibrotic markers (TG2, COL1A1, COL3A1, FN1, CTGF, MMP-2, α-SMA, TGF-β1, CX43, periostin), as well as proliferation (CCND1) and apoptotic (BAX, BAX/BCL-2) markers, indicating that RJ dose-response effects were significantly modified by sonification. NS-RJ and S-RJ increased the content of soluble collagen, while decreasing collagen cross-linking. Collectively, these findings show that S-RJ has a greater range of action than NS-RJ for downregulating the expression of biomarkers associated with cardiac fibrosis. Reduced biomarker expression and collagen cross-linkages upon cardiac fibroblast treatment with specific concentrations of S-RJ or NS-RJ suggests putative roles and mechanisms by which RJ may confer some protection against cardiac fibrosis.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada.
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Belal G Faleh
- General Surgery Department, Princess Basma Teaching Hospital, Irbid, Jordan
| | - Yaman B Ahmed
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Jenan Alqbelat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
3
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
4
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
5
|
Bhosale M, Jeelani I, Nawaz A, Abe H, Padhye S. Site-Specific Binding of Anticancer Drugs to Human Serum Albumin. Anticancer Agents Med Chem 2022; 22:2876-2884. [PMID: 35331098 DOI: 10.2174/1871520622666220324094033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
Abstract
The interaction of drugs with proteins plays a very important role in the distribution of the drug. Human serum albumin (HSA) is the most abundant protein in the human body and showing great binding characteristics has gained a lot of importance pharmaceutically. It plays an essential role in the pharmacokinetics of a number of drugs and hence several reports are available on the interaction of drugs with HSA. It can bind to cancer drugs and thus it is crucial to look at the binding characteristics of these drugs with HSA. Herein we summarize the binding properties of some anti-cancer drugs by specifically looking into the binding site with HSA. The number of drugs binding at Sudlow's site I situated in subdomain II A is more than the drugs binding at Sudlow's site II.
Collapse
Affiliation(s)
- Mrinalini Bhosale
- Department of Chemistry, Abeda Inamdar Senior College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune 411001, India
| | - Ishtiaq Jeelani
- Graduate School of Innovative Life Science, University of Toyama, Toyama, 3190 Gofuku 930-8555, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 2630 Sugitani 930-0194, Japan
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 2630 Sugitani 930-0194, Japan
| | - Hitoshi Abe
- Faculty of Engineering, University of Toyama, Toyama, 3190 Gofuku 930-8555, Japan
| | - Subhash Padhye
- Department of Chemistry, Abeda Inamdar Senior College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune 411001, India
| |
Collapse
|
6
|
Maniak H, Talma M, Giurg M. Inhibitory Potential of New Phenolic Hydrazide-Hydrazones with a Decoy Substrate Fragment towards Laccase from a Phytopathogenic Fungus: SAR and Molecular Docking Studies. Int J Mol Sci 2021; 22:ijms222212307. [PMID: 34830189 PMCID: PMC8617976 DOI: 10.3390/ijms222212307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023] Open
Abstract
Laccase from pathogenic fungi participates in both the delignification and neutralization of phytoantibiotics. Furthermore, it interferes with the hormone signaling in plants and catalyzes melanization. Infections of these pathogens contribute to loss in forestry, agriculture, and horticulture. As there is still a need to expand knowledge on efficient defense strategies against phytopathogenic fungi, the present study aimed to reveal more information on the molecular mechanisms of laccase inhibition with natural and natural-like carboxylic acid semi-synthetic derivatives. A set of hydrazide-hydrazones derived from carboxylic acids, generally including electron-rich arene units that serve as a decoy substrate, was synthesized and tested with laccase from Trametes versicolor. The classic synthesis of the title inhibitors proceeded with good to almost quantitative yield. Ninety percent of the tested molecules were active in the range of KI = 8–233 µM and showed different types of action. Such magnitude of inhibition constants qualified the hydrazide-hydrazones as strong laccase inhibitors. Molecular docking studies supporting the experimental data explained the selected derivatives’ interactions with the enzyme. The results are promising in developing new potential antifungal agents mitigating the damage scale in the plant cultivation, gardening, and horticulture sectors.
Collapse
Affiliation(s)
- Halina Maniak
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
- Correspondence: (H.M.); (M.G.); Tel.: +48-713203314 (H.M.); +48-713203616 (M.G.)
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Mirosław Giurg
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Correspondence: (H.M.); (M.G.); Tel.: +48-713203314 (H.M.); +48-713203616 (M.G.)
| |
Collapse
|
7
|
Adam MSS, Makhlouf M, Ullah F, El-Hady OM. Mononucleating nicotinohydazone complexes with VO2+, Cu2+, and Ni2+ ions. Characteristic, catalytic, and biological assessments. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Teixeira DF, Santos AM, Oliveira AMS, Nascimento Júnior JAC, Frank LA, Santana Souza MTD, Camargo EA, Serafini MR. Pharmaceuticals agents for preventing NSAID-induced gastric ulcers: a patent review. Expert Rev Clin Pharmacol 2021; 14:677-686. [PMID: 33843400 DOI: 10.1080/17512433.2021.1909475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Nonsteroidal anti-inflammatory drugs (NSAIDs) are a class of drugs widely used due to their pharmacological potential, demonstrating anti-inflammatory, analgesic, or antipyretic activity. However, prolonged use of these medications can lead to the development of gastric ulcers in patients. This review aimed to find patents for drugs with an anti-inflammatory and gastroprotective character to treat NSAID-induced gastric ulcers. AREAS COVERED For the treatment of NSAID-induced gastric ulcers, formulations with different action mechanisms were found, including donors of nitric oxide, heterocyclic compounds, and natural products. EXPERT OPINION Many of the structures found have already been used in clinic settings and others, and according to the results found, they are promising for the treatment of gastric ulcers.
Collapse
Affiliation(s)
| | | | | | | | - Luiza Abrahão Frank
- College of Pharmacy, Department of Pharmacy, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.,Escola De Saúde E Bem Estar UniRitter; Faculdade De Farmácia Laureate International Universities; Porto Alegre; Brazil
| | | | | | - Mairim Russo Serafini
- Federal University of Sergipe, Department of Pharmacy, São Cristovão, Sergipe, Brazil
| |
Collapse
|
9
|
Mahboubi-Rabbani M, Zarghi A. Lipoxygenase Inhibitors as Cancer Chemopreventives: Discovery, Recent Developments and Future Perspectives. Curr Med Chem 2021; 28:1143-1175. [PMID: 31820690 DOI: 10.2174/0929867326666191210104820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leukotrienes (LTs) constitute a bioactive group of Polyunsaturated Fatty Acid (PUFA) metabolites molded by the enzymatic activity of lipoxygenase (LO) and have a pivotal role in inflammation and allergy. Evidence is accumulating both by in vitro cell culture experiments and animal tumor model studies in support of the direct involvement of aberrant metabolism of arachidonic acid (ACD) in the development of several types of human cancers such as lung, prostate, pancreatic and colorectal malignancies. Several independent experimental data suggest a correlation between tumoral cells viability and LO gene expression, especially, 5-lipoxygenase (5-LO). Overexpressed 5-LO cells live longer, proliferate faster, invade more effectively through extracellular matrix destruction and activate the anti-apoptotic signaling mechanisms more intensively compared to the normal counterparts. Thus, some groups of lipoxygenase inhibitors may be effective as promising chemopreventive agents. METHODS A structured search of bibliographic databases for peer-reviewed research literature regarding the role of LO in the pathogenesis of cancer was performed. The characteristics of screened papers were summarized and the latest advances focused on the discovery of new LO inhibitors as anticancer agents were discussed. RESULTS More than 180 papers were included and summarized in this review; the majority was about the newly designed and synthesized 5-LO inhibitors as anti-inflammatory and anticancer agents. The enzyme's structure, 5-LO pathway, 5-LO inhibitors structure-activity relationships as well as the correlation between these drugs and a number of most prevalent human cancers were described. In most cases, it has been emphasized that dual cyclooxygenase-2/5-lipoxygenase (COX-2/5-LO) or dual 5-lipoxygenase/microsomal prostaglandin E synthase-1 (5-LO/mPGES-1) inhibitors possess considerable inhibitory activities against their target enzymes as well as potent antiproliferative effects. Several papers disclosing 5-lipoxygenase activating protein (FLAP) antagonists as a new group of 5-LO activity regulators are also subject to this review. Also, the potential of 12-lipoxygenase (12- LO) and 15-lipoxygenase (15-LO) inhibitors as chemopreventive agents was outlined to expand the scope of new anticancer agents discovery. Some peptides and peptidomimetics with anti-LT activities were described as well. In addition, the cytotoxic effects of lipoxygenase inhibitors and their adverse effects were discussed and some novel series of natural-product-derived inhibitors of LO was also discussed in this review. CONCLUSION This review gives insights into the novel lipoxygenase inhibitors with anticancer activity as well as the different molecular pharmacological strategies to inhibit the enzyme effectively. The findings confirm that certain groups of LO inhibitors could act as promising chemopreventive agents.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Radan M, Bošković J, Dobričić V, Čudina O, Nikolić K. Current computer-aided drug design methodologies in discovery of novel drug candidates for neuropsychiatric and inflammatory diseases. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-32523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Drug discovery and development is a very challenging, expensive and time-consuming process. Impressive technological advances in computer sciences and molecular biology have made it possible to use computer-aided drug design (CADD) methods in various stages of the drug discovery and development pipeline. Nowadays, CADD presents an efficacious and indispensable tool, widely used in medicinal chemistry, to lead rational drug design and synthesis of novel compounds. In this article, an overview of commonly used CADD approaches from hit identification to lead optimization was presented. Moreover, different aspects of design of multitarget ligands for neuropsychiatric and anti-inflammatory diseases were summarized. Apparently, designing multi-target directed ligands for treatment of various complex diseases may offer better efficacy, and fewer side effects. Antipsychotics that act through aminergic G protein-coupled receptors (GPCRs), especially Dopamine D2 and serotonin 5-HT2A receptors, are the best option for treatment of various symptoms associated with neuropsychiatric disorders. Furthermore, multi-target directed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors are also a successful approach to aid the discovery of new anti-inflammatory drugs with fewer side effects. Overall, employing CADD approaches in the process of rational drug design provides a great opportunity for future development, allowing rapid identification of compounds with the optimal polypharmacological profile.
Collapse
|
11
|
Synthesis, in vivo anti-inflammatory, COX-1/COX-2 and 5-LOX inhibitory activities of new 2,3,4-trisubstituted thiophene derivatives. Bioorg Chem 2020; 102:103890. [DOI: 10.1016/j.bioorg.2020.103890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
12
|
Manz TD, Sivakumaren SC, Ferguson FM, Zhang T, Yasgar A, Seo HS, Ficarro SB, Card JD, Shim H, Miduturu CV, Simeonov A, Shen M, Marto JA, Dhe-Paganon S, Hall MD, Cantley LC, Gray NS. Discovery and Structure-Activity Relationship Study of ( Z)-5-Methylenethiazolidin-4-one Derivatives as Potent and Selective Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. J Med Chem 2020; 63:4880-4895. [PMID: 32298120 DOI: 10.1021/acs.jmedchem.0c00227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to their role in many important signaling pathways, phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are attractive targets for the development of experimental therapeutics for cancer, metabolic, and immunological disorders. Recent efforts to develop small molecule inhibitors for these lipid kinases resulted in compounds with low- to sub-micromolar potencies. Here, we report the identification of CVM-05-002 using a high-throughput screen of PI5P4Kα against our in-house kinase inhibitor library. CVM-05-002 is a potent and selective inhibitor of PI5P4Ks, and a 1.7 Å X-ray structure reveals its binding interactions in the ATP-binding pocket. Further investigation of the structure-activity relationship led to the development of compound 13, replacing the rhodanine-like moiety present in CVM-05-002 with an indole, a potent pan-PI5P4K inhibitor with excellent kinome-wide selectivity. Finally, we employed isothermal cellular thermal shift assays (CETSAs) to demonstrate the effective cellular target engagement of PI5P4Kα and -β by the inhibitors in HEK 293T cells.
Collapse
Affiliation(s)
- Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States.,Department of Pharmaceutical and Medicinal Chemistry, Saarland University, 66123 Saarbruecken, Germany
| | - Sindhu Carmen Sivakumaren
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Scott B Ficarro
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Joseph D Card
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hyeseok Shim
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York 10065, United States
| | - Chandrasekhar V Miduturu
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York 10065, United States
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
13
|
Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg Med Chem 2020; 28:115403. [DOI: 10.1016/j.bmc.2020.115403] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
|
14
|
Ullah H, Mousavi B, Younus HA, Khattak ZA, Suleman S, Jan MT, Yu B, Chaemchuen S, Verpoort F. ONO pincer type ligand complexes of Al(III) as efficient catalyst for chemical fixation of CO2 to epoxides at atmospheric pressure. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Qin Z, Xi Y, Zhang S, Tu G, Yan A. Classification of Cyclooxygenase-2 Inhibitors Using Support Vector Machine and Random Forest Methods. J Chem Inf Model 2019; 59:1988-2008. [PMID: 30762371 DOI: 10.1021/acs.jcim.8b00876] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work reports the classification study conducted on the biggest COX-2 inhibitor data set so far. Using 2925 diverse COX-2 inhibitors collected from 168 pieces of literature, we applied machine learning methods, support vector machine (SVM) and random forest (RF), to develop 12 classification models. The best SVM and RF models resulted in MCC values of 0.73 and 0.72, respectively. The 2925 COX-2 inhibitors were reduced to a data set of 1630 molecules by removing intermediately active inhibitors, and 12 new classification models were constructed, yielding MCC values above 0.72. The best MCC value of the external test set was predicted to be 0.68 by the RF model using ECFP_4 fingerprints. Moreover, the 2925 COX-2 inhibitors were clustered into eight subsets, and the structural features of each subset were investigated. We identified substructures important for activity including halogen, carboxyl, sulfonamide, and methanesulfonyl groups, as well as the aromatic nitrogen atoms. The models developed in this study could serve as useful tools for compound screening prior to lab tests.
Collapse
Affiliation(s)
- Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Yao Xi
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Shengde Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Guiping Tu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| |
Collapse
|
16
|
Mahboubi Rabbani SMI, Zarghi A. Selective COX-2 inhibitors as anticancer agents: a patent review (2014-2018). Expert Opin Ther Pat 2019; 29:407-427. [PMID: 31132889 DOI: 10.1080/13543776.2019.1623880] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION COX-2 is a key enzyme in the process of prostaglandins (PGs) synthesis. The products of this enzyme could play a major role as the mediators of the inflammatory response and some other medical states such as cancer. The design and synthesis of novel selective COX-2 inhibitors have always been attractive to researchers. This review discusses the structures of novel COX-2 inhibitors synthesized during the last five years and describes their efficacy as anticancer agents. AREAS COVERED It is well established that COX-2 is overexpressed in many different cancers and treatment with selective COX-2 inhibitors could relieve their symptoms and limit their adverse sequences. EXPERT OPINION The diversity of selective COX-2 inhibitors is mainly related to the types of scaffolds. Monocyclic, bicyclic, tricyclic, and acyclic scaffolds with different pharmacological effects and toxicological profiles could be found in the family of selective COX-2 inhibitors. The great interest of the researchers in this field is due to the importance of selective COX-2 inhibitors as a relatively safe and effective set of compounds which could present different properties such as antirheumatic, anti-inflammatory, antiplatelet, anti-Alzheimer's disease, anti-Parkinson's disease, and anticancer.
Collapse
Affiliation(s)
| | - Afshin Zarghi
- a Department of Medicinal Chemistry, School of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
17
|
Kuhnert R, Sárosi MB, George S, Lönnecke P, Hofmann B, Steinhilber D, Steinmann S, Schneider-Stock R, Murganić B, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Carborane-Based Analogues of 5-Lipoxygenase Inhibitors Co-inhibit Heat Shock Protein 90 in HCT116 Cells. ChemMedChem 2018; 14:255-261. [DOI: 10.1002/cmdc.201800651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/12/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Robert Kuhnert
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry; Universität Leipzig; Johannisallee 29 04103 Leipzig Germany
| | - Menyhárt-Botond Sárosi
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry; Universität Leipzig; Johannisallee 29 04103 Leipzig Germany
| | - Sven George
- Institut für Pharmazeutische Chemie; Johann-Wolfgang-Goethe-Universität Frankfurt; Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry; Universität Leipzig; Johannisallee 29 04103 Leipzig Germany
| | - Bettina Hofmann
- Institut für Pharmazeutische Chemie; Johann-Wolfgang-Goethe-Universität Frankfurt; Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Dieter Steinhilber
- Institut für Pharmazeutische Chemie; Johann-Wolfgang-Goethe-Universität Frankfurt; Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Sara Steinmann
- Pathologisches Institut; Universität Erlangen; Universitätsstraße 22 91054 Erlangen Germany
| | - Regine Schneider-Stock
- Pathologisches Institut; Universität Erlangen; Universitätsstraße 22 91054 Erlangen Germany
| | - Blagoje Murganić
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”; University of Belgrade; Bul. despota Stefana 142 11060 Belgrade Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”; University of Belgrade; Bul. despota Stefana 142 11060 Belgrade Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”; University of Belgrade; Bul. despota Stefana 142 11060 Belgrade Serbia
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry; Universität Leipzig; Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
18
|
Zhu XC, Zhang T. Antitumor mechanisms of cyclooxygenase and lipoxygenase. Shijie Huaren Xiaohua Zazhi 2018; 26:2029-2035. [DOI: 10.11569/wcjd.v26.i35.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eicosanoids, as the metabolic product of arachidonic acid, play an important role in tumor development and metastasis. Cyclooxygenase (COX)-2 and lipoxygenase (LOX) are two key enzymes that mediate the metabolism of arachidonic acid. So far, great progress has been made on the research of COX-2 and prostaglandins, and it has been demonstrated that they can induce the imbalance between cell growth and apoptosis as well as tumor angiogenesis. LOX and its metabolites, such as hydroxyeicosatetraenoic acid (HETE) and leukotriene (LT), have received more and more attention for their role in tumor development. Research has proved that LT-B4 and 5-HETE participate in the occurrence and development of multiple tumors. Therefore, COX and LOX dual inhibitors prove a new approach to anti-tumor therapy.
Collapse
Affiliation(s)
- Xiao-Chao Zhu
- Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China
| | - Tuo Zhang
- Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China
| |
Collapse
|
19
|
Chimmalagi GH, Kendur U, Patil SM, Frampton CS, Gudasi KB, Barretto DA, Mangannavar CV, Muchchandi IS. Mononuclear Co(III), Ni(II) and Cu(II) complexes of 2-(2,4-dichlorobenzamido)-N'
-(3,5-di-tert
-butyl-2-hydroxybenzylidene)benzohydrazide: Structural insight and biological assay. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Geeta H. Chimmalagi
- Department of Chemistry; Karnatak University; Dharwad 580003 Karnataka India
| | - Umashri Kendur
- Department of Chemistry; Karnatak University; Dharwad 580003 Karnataka India
| | - Sunil M. Patil
- Department of Chemistry; Karnatak University; Dharwad 580003 Karnataka India
| | - Christopher S. Frampton
- Institute of Materials & Manufacturing, Wolfson Centre for Materials Processing; Brunel University; London Uxbridge UK
| | - Kalagouda B. Gudasi
- Department of Chemistry; Karnatak University; Dharwad 580003 Karnataka India
| | - Delicia A. Barretto
- Department of Biotechnology and Microbiology; Karnatak University; Dharwad 580003 Karnataka India
| | | | | |
Collapse
|
20
|
Theoduloz C, Alzate-Morales J, Jiménez-Aspee F, Isla MI, Alberto MR, Pertino MW, Schmeda-Hirschmann G. Inhibition of key enzymes in the inflammatory pathway by hybrid molecules of terpenes and synthetic drugs: In vitro and in silico studies. Chem Biol Drug Des 2018; 93:290-299. [PMID: 30294891 DOI: 10.1111/cbdd.13415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/17/2018] [Accepted: 09/12/2018] [Indexed: 11/28/2022]
Abstract
The aim of this work was to compare the anti-inflammatory activity of compounds prepared from terpenes and the synthetic drugs ibuprofen and naproxen. The anti-inflammatory activity of the hybrid compounds was compared with the activity of the parent compounds. This was accomplished using in vitro inhibition of lipoxygenases (LOX) and COX-2, and in silico docking studies in 15-LOX and COX-2. The synthesized hybrids showed an inhibition of COX-2 and LOX between 9.8%-57.4% and 0.0%-97.7%, respectively. None of the hybrids showed an improvement in the inhibitory effect toward these pro-inflammatory enzymes, compared to the parent terpenes and non-steroidal anti-inflammatory drugs. The docking studies allowed us to predict the potential binding modes of hybrids 6-15 within COX-2 and 15-LOX active sites. The relative affinity of the compounds inside the binding sites could be explained by forming non-covalent interactions with most important and known amino acids reported for those enzymes. A good correlation (r2 = 0.745) between docking energies and inhibition percentages against COX-2 was found. The high inhibition obtained for compound 10 against COX-2 was explained by hydrogen bond interactions at the enzyme binding site. New synthetic possibilities could be obtained from our in silico models, improving the potency of these hybrid compounds.
Collapse
Affiliation(s)
- Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile.,Programa de Investigación de Excelencia Interdisciplinaria en Química y Bio-orgánica de Recursos Naturales (PIEI-QUIM-BIO), Universidad de Talca, Talca, Chile
| | - Jans Alzate-Morales
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Felipe Jiménez-Aspee
- Programa de Investigación de Excelencia Interdisciplinaria en Química y Bio-orgánica de Recursos Naturales (PIEI-QUIM-BIO), Universidad de Talca, Talca, Chile.,Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile.,Núcleo Científico Multidisciplinario, Dirección de Investigación, Universidad de Talca, Talca, Chile
| | - Maria Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Facultad de Ciencias Naturales e IML, Instituto de Química del NOA (INQUINOA-CONICET), Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - María Rosa Alberto
- Laboratorio de Investigación de Productos Naturales (LIPRON), Facultad de Ciencias Naturales e IML, Instituto de Química del NOA (INQUINOA-CONICET), Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Mariano Walter Pertino
- Programa de Investigación de Excelencia Interdisciplinaria en Química y Bio-orgánica de Recursos Naturales (PIEI-QUIM-BIO), Universidad de Talca, Talca, Chile.,Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - Guillermo Schmeda-Hirschmann
- Programa de Investigación de Excelencia Interdisciplinaria en Química y Bio-orgánica de Recursos Naturales (PIEI-QUIM-BIO), Universidad de Talca, Talca, Chile.,Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
21
|
El-Nagar MK, Abdu-Allah HH, Salem OI, Kafafy AHN, Farghaly HS. Novel N-substituted 5-aminosalicylamides as dual inhibitors of cyclooxygenase and 5-lipoxygenase enzymes: Synthesis, biological evaluation and docking study. Bioorg Chem 2018; 78:80-93. [DOI: 10.1016/j.bioorg.2018.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
|
22
|
Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur J Pharm Sci 2018; 121:356-381. [PMID: 29883727 DOI: 10.1016/j.ejps.2018.06.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
Inflammatory mediators of the arachidonic acid cascade from cyclooxygenase (COX) and lipoxygenase (LOX) pathways are primarily responsible for many diseases in human beings. Chronic inflammation is associated with the pathogenesis and progression of cancer, arthritis, autoimmune, cardiovascular and neurological diseases. Traditional non-steroidal anti-inflammatory agents (tNSAIDs) inhibit cyclooxygenase pathway non-selectively and produce gastric mucosal damage due to COX-1 inhibition and allergic reactions and bronchospasm resulting from increased leukotriene levels. 'Coxibs' which are selective COX-2 inhibitors cause adverse cardiovascular events. Inhibition of any of these biosynthetic pathways could switch the metabolism to the other, which can lead to fatal side effects. Hence, there is undoubtedly an urgent need for new anti-inflammatory agents having dual mechanism that prevent release of both prostaglandins and leukotrienes. Though several molecules have been synthesized with this objective, their unfavourable toxicity profile prevented them from being used in clinics. Here, this integrative review attempts to identify the promising pharmacophore that serves as dual inhibitors of COX-2/5-LOX enzymes with improved safety profile. A better acquaintance of structural features that balance safety and efficacy of dual inhibitors would be a different approach to the process of understanding and interpreting the designing of novel anti-inflammatory agents.
Collapse
|
23
|
Purines and triazolo[4,3-e]purines containing pyrazole moiety as potential anticancer and antioxidant agents. Future Med Chem 2018; 10:1449-1464. [PMID: 29788781 DOI: 10.4155/fmc-2017-0227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Targeting apoptosis regulators such as caspases aiming at inducing apoptosis is an attractive strategy in cancer therapy. MATERIALS & METHODS 8-substituted purine incorporating pyrazole moiety were designed, synthesized and evaluated for their anticancer and antioxidant activities. RESULTS Compounds 7a and 8a displayed potent and selective anticancer activity against lung cancer A549 cell line with low cytotoxicity on peripheral blood mononuclear normal cells. Compounds 7a and 8a induced caspase dependent apoptotic death and DNA damage in all cancer cell lines. In addition, compounds 2, 5, 6a, 7a, 8a, 8c, 11a, 11b and 12b showed good antioxidant activity higher than that of the standard ascorbic acid. CONCLUSION Compounds 7a and 8a can be considered promising dual anticancer and antioxidant leads inducing caspase-dependent apoptotic death and DNA damage.
Collapse
|
24
|
Chimmalagi GH, Kendur U, Patil SM, Gudasi KB, Frampton CS, Budri MB, Mangannavar CV, Muchchandi IS. Mononuclear Co(III), Ni(II) and Cu(II) complexes of tridentate di-tert
-butylphenylhydrazone: Synthesis, characterization, X-ray crystal structures, Hirshfeld surface analysis, molecular docking and in vivo
anti-inflammatory activity. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Geeta H. Chimmalagi
- Department of Chemistry; Karnatak University; Dharwad-580003 Karnataka India
| | - Umashri Kendur
- Department of Chemistry; Karnatak University; Dharwad-580003 Karnataka India
| | - Sunil M. Patil
- Department of Chemistry; Karnatak University; Dharwad-580003 Karnataka India
| | - Kalagouda B. Gudasi
- Department of Chemistry; Karnatak University; Dharwad-580003 Karnataka India
| | - Christopher S. Frampton
- Institute of Materials and Manufacturing, Wolfson Centre for Materials Processing; Brunel University; London UK
| | - Mahantesh B. Budri
- Department of Chemistry; Karnatak University; Dharwad-580003 Karnataka India
| | | | | |
Collapse
|
25
|
Liaras K, Fesatidou M, Geronikaki A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules 2018; 23:E685. [PMID: 29562646 PMCID: PMC6017610 DOI: 10.3390/molecules23030685] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a natural process that is connected to various conditions and disorders such as arthritis, psoriasis, cancer, infections, asthma, etc. Based on the fact that cyclooxygenase isoenzymes (COX-1, COX-2) are responsible for the production of prostaglandins that play an important role in inflammation, traditional treatment approaches include administration of non-steroidal anti-inflammatory drugs (NSAIDs), which act as selective or non-selective COX inhibitors. Almost all of them present a number of unwanted, often serious, side effects as a consequence of interference with the arachidonic acid cascade. In search for new drugs to avoid side effects, while maintaining high potency over inflammation, scientists turned their interest to the synthesis of dual COX/LOX inhibitors, which could provide numerous therapeutic advantages in terms of anti-inflammatory activity, improved gastric protection and safer cardiovascular profile compared to conventional NSAIDs. Τhiazole and thiazolidinone moieties can be found in numerous biologically active compounds of natural origin, as well as synthetic molecules that possess a wide range of pharmacological activities. This review focuses on the biological activity of several thiazole and thiazolidinone derivatives as COX-1/COX-2 and LOX inhibitors.
Collapse
Affiliation(s)
- Konstantinos Liaras
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Maria Fesatidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| |
Collapse
|
26
|
Zhang M, Xia Z, Yan A. Computer modeling in predicting the bioactivity of human 5-lipoxygenase inhibitors. Mol Divers 2016; 21:235-246. [PMID: 27904990 DOI: 10.1007/s11030-016-9709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/14/2016] [Indexed: 01/04/2023]
Abstract
5-Lipoxygenase (5-LOX) is a key enzyme in the inflammatory path. Inhibitors of 5-LOX are useful for the treatment of diseases like arthritis, cancer, and asthma. We have collected a dataset including 220 human 5-LOX inhibitors for classification. A self-organizing map (SOM), a support vector machine (SVM), and a multilayer perceptron (MLP) algorithm were used to build models with selected descriptors for classifying 5-LOX inhibitors into active and weakly active ones. MACCS fingerprints were used in this model building process. The accuracy (Q) and Matthews correlation coefficient (MCC) of the best SOM model (Model 1A) were 86.49% and 0.73 on the test set, respectively. The Q and MCC of the best SVM model (Model 2A) were 82.67% and 0.64 on the test set, respectively. The Q and MCC of the best MLP model (Model 3B) were 84.00% and 0.67 on the test set, respectively. In addition, 180 inhibitors with bioactivities measured by fluorescence method were further used for a quantitative prediction. Multiple linear regression (MLR) and SVM algorithms were used to build models to predict the [Formula: see text] values. The correlation coefficients (R) of the MLR model (Model Q1) and the SVM model (Model Q2) were 0.72 and 0.74 on the test set, respectively.
Collapse
Affiliation(s)
- Mengdi Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Zhonghua Xia
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
27
|
Saura P, Maréchal JD, Masgrau L, Lluch JM, González-Lafont À. Computational insight into the catalytic implication of head/tail-first orientation of arachidonic acid in human 5-lipoxygenase: consequences for the positional specificity of oxygenation. Phys Chem Chem Phys 2016; 18:23017-35. [DOI: 10.1039/c6cp03973a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using a multi-scale approach to search for the arachidonic acid binding modes that determine the catalytic specificity of human 5-LOX.
Collapse
Affiliation(s)
- Patricia Saura
- Departament de Química
- Universitat Autonòma de Barcelona
- 08193 Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
| | | | - Laura Masgrau
- Institut de Biotecnologia i de Biomedicina (IBB)
- Universitat Autonòma de Barcelona
- 08193 Bellaterra
- Spain
| | - José M. Lluch
- Departament de Química
- Universitat Autonòma de Barcelona
- 08193 Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
| | - Àngels González-Lafont
- Departament de Química
- Universitat Autonòma de Barcelona
- 08193 Bellaterra
- Spain
- Institut de Biotecnologia i de Biomedicina (IBB)
| |
Collapse
|
28
|
Experimental, theoretical and docking studies of 2-hydroxy Schiff base type compounds derived from 2-amino-4-chlorobenzenethiol. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Aksakal F, Shvets N, Dimoglo A. The study of dual COX-2/5-LOX inhibitors by using electronic-topological approach based on data on the ligand–receptor interactions. J Mol Graph Model 2015; 60:79-88. [DOI: 10.1016/j.jmgm.2015.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022]
|
30
|
Kim KJ, Choi MJ, Shin JS, Kim M, Choi HE, Kang SM, Jin JH, Lee KT, Lee JY. Synthesis, biological evaluation, and docking analysis of a novel family of 1-methyl-1H-pyrrole-2,5-diones as highly potent and selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem Lett 2014; 24:1958-62. [DOI: 10.1016/j.bmcl.2014.02.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/15/2014] [Accepted: 02/28/2014] [Indexed: 12/20/2022]
|