1
|
Guida M, Tammaro C, Quaranta M, Salvucci B, Biava M, Poce G, Consalvi S. Amino Acid Biosynthesis Inhibitors in Tuberculosis Drug Discovery. Pharmaceutics 2024; 16:725. [PMID: 38931847 PMCID: PMC11206623 DOI: 10.3390/pharmaceutics16060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
According to the latest World Health Organization (WHO) report, an estimated 10.6 million people were diagnosed with tuberculosis (TB) in 2022, and 1.30 million died. A major concern is the emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) strains, fueled by the length of anti-TB treatment and HIV comorbidity. Innovative anti-TB agents acting with new modes of action are the only solution to counteract the spread of resistant infections. To escape starvation and survive inside macrophages, Mtb has evolved to become independent of the host by synthesizing its own amino acids. Therefore, targeting amino acid biosynthesis could subvert the ability of the mycobacterium to evade the host immune system, providing innovative avenues for drug discovery. The aim of this review is to give an overview of the most recent progress in the discovery of amino acid biosynthesis inhibitors. Among the hits discovered over the past five years, tryptophan (Trp) inhibitors stand out as the most advanced and have significantly contributed to demonstrating the feasibility of this approach for future TB drug discovery. Future efforts should be directed at prioritizing the chemical optimization of these hits to enrich the TB drug pipeline with high-quality leads.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (M.G.); (C.T.); (M.Q.); (B.S.); (M.B.)
| | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (M.G.); (C.T.); (M.Q.); (B.S.); (M.B.)
| |
Collapse
|
2
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
3
|
Abdelkhalek AS, Attia MS, Kamal MA. Triazolopyrimidine Derivatives: An Updated Review on Recent Advances in Synthesis, Biological Activities and Drug Delivery Aspects. Curr Med Chem 2024; 31:1896-1919. [PMID: 36852819 DOI: 10.2174/0929867330666230228120416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 03/01/2023]
Abstract
Molecules containing triazolopyrimidine core showed diverse biological activities, including anti-Alzheimer's, anti-diabetes, anti-cancer, anti-microbial, anti-tuberculosis, anti-viral, anti-malarial, anti-inflammatory, anti-parkinsonism, and anti-glaucoma activities. Triazolopyrimidines have 8 isomeric structures, including the most stable 1,2,4-triazolo[1,5- a] pyrimidine ones. Triazolopyrimidines were obtained by using various chemical reactions, including a) 1,2,4-triazole nucleus annulation to pyrimidine, b) pyrimidines annulation to 1,2,4-triazole structure, c) 1,2,4-triazolo[l,5-a] pyrimidines rearrangement, and d) pyrimidotetrazine rearrangement. This review discusses synthetic methods, recent pharmacological actions and drug delivery perspectives of triazolopyrimidines.
Collapse
Affiliation(s)
- Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Novel Global Community Educational Foundation, Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| |
Collapse
|
4
|
Dekir A, Berredjem M, Benzaid C, Djouad SE, Iqbal N, Laichi Y, Bachari K, Bhat AR, Bouzina A, Aissaoui M, Bouchareb F. Novel N-acylsulfonamides: Synthesis, in silico prediction, molecular docking dynamic simulation, antimicrobial and anti-inflammatory activities. J Biomol Struct Dyn 2023; 41:9232-9244. [PMID: 37897194 DOI: 10.1080/07391102.2022.2148751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
Microbial resistance to drugs currently traded in the market is a serious problem in modern medicine. In this field of research, we synthesized a novel N-acylsulfonamides (NAS) derivatives starting from commercially available compounds; morpholine, isocyanate of chlorosulfonyl and alcohols. The in vitro antimicrobial potential of synthesized compounds was screened against 04 Gram-negative bacteria; Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, 02 Gram-positive bacteria: Streptococcus sp, Staphylococcus aureus and 07 yeasts and fungi: Candida albicans, Candida spp, Penicillum spp, Aspegillus sp, Aspergillus flavus, Fusarium sp, and Cladosporium spp. The results of inhibition growth were compared with standard antimicrobial drugs with the goal of exploring their potential antimicrobial activity. In addition, the anti-inflammatory activity of the synthesized compounds was determined in-vitro by protein denaturation method. The obtained bioactivity results were further validated by in silico DFT (Density Functional Theory), ADME (Absorption-Distribution-Métabolisation-Excrétion), molecular docking studies and molecular dynamics simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Dekir
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Chahrazed Benzaid
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Seif-Eddine Djouad
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
- Laboratory of Therapeutic Chemistry of Hospitalo-University Center Benflis Touhami Batna, Batna, Algeria
| | - Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yacine Laichi
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Bou-Ismail, Algeria
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Bou-Ismail, Algeria
| | | | - Abdeslem Bouzina
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Mohamed Aissaoui
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Fouzia Bouchareb
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| |
Collapse
|
5
|
Liu J, Lin W, Sorochinsky AE, Butler G, Landa A, Han J, Soloshonok VA. Successful trifluoromethoxy-containing pharmaceuticals and agrochemicals. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Francisco KR, Varricchio C, Paniak TJ, Kozlowski MC, Brancale A, Ballatore C. Structure property relationships of N-acylsulfonamides and related bioisosteres. Eur J Med Chem 2021; 218:113399. [PMID: 33823393 DOI: 10.1016/j.ejmech.2021.113399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022]
Abstract
The N-acylsulfonamide functional group is a feature of the pharmacophore of several biologically active molecules, including marketed drugs. Although this acidic moiety presents multiple points of attachments that could be exploited to introduce structural diversification, depending on the circumstances, the replacement of the functional group itself with a suitable surrogate, or bioisostere, may be desirable. A number of N-acylsulfonamide bioisosteres have been developed over the years that provide opportunities to modulate both structure and physicochemical properties of this important structural motif. To enable an assessment of the relative impact on physicochemical properties that these replacements may have compared to the N-acylsulfonamide group, we conducted a structure-property relationship study based on matched molecular pairs, in which the N-acylsulfonamide moiety of common template reference structures is replaced with a series of bioisosteres. The data presented, which include an assessment of relative changes in acidity, permeability, lipophilicity and intrinsic solubility, provides a basis for informed decisions when deploying N-acylsulfonamides, or surrogates thereof, in analog design.
Collapse
Affiliation(s)
- Karol R Francisco
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF103NB, UK
| | - Thomas J Paniak
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, PA, 19104, USA
| | - Marisa C Kozlowski
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, PA, 19104, USA
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF103NB, UK
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Abstract
After several years of limited success, an effective regimen for the treatment of both drug-sensitive and multiple-drug-resistant tuberculosis is in place. However, this success is still incomplete, as we need several more novel combinations to treat extensively drug-resistant tuberculosis, as well newer emerging resistance. Additionally, the goal of a shortened therapy continues to evade us. A systematic analysis of the tuberculosis drug discovery approaches employed over the last two decades shows that the lead identification path has been largely influenced by the improved understanding of the biology of the pathogen Mycobacterium tuberculosis. Interestingly, the drug discovery efforts can be grouped into a few defined approaches that predominated over a period of time. This review delineates the key drivers during each of these periods. While doing so, the author’s experiences at AstraZeneca R&D, Bangalore, India, on the discovery of new antimycobacterial candidate drugs are used to exemplify the concept. Finally, the review also discusses the value of validated targets, promiscuous targets, the current anti-TB pipeline, the gaps in it, and the possible way forward.
Collapse
|
8
|
Pinheiro S, Pinheiro EMC, Muri EMF, Pessôa JC, Cadorini MA, Greco SJ. Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02609-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Wang T, Yang S, Li H, Lu A, Wang Z, Yao Y, Wang Q. Discovery, Structural Optimization, and Mode of Action of Essramycin Alkaloid and Its Derivatives as Anti-Tobacco Mosaic Virus and Anti-Phytopathogenic Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:471-484. [PMID: 31841334 DOI: 10.1021/acs.jafc.9b06006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant diseases seriously affect crop yield and quality and are difficult to control. Marine natural products (MNPs) have become an important source of drug candidates with new biological mechanisms. Marine natural product essramycin (1) was found to have good anti-tobacco mosaic virus (TMV) and anti-phytopathogenic fungus activities for the first time. A series of essramycin derivatives were designed, synthesized, and evaluated for their bioactivity. Most of these compounds exhibited antiviral effects that are greater than that of the control ribavirin. Compounds 7e and 8f displayed antiviral activities that are greater than that of ningnanmycin (the most widely used antiviral agent at present), thus emerging as novel antiviral lead compounds. As the lead compound, 7e was selected for further antiviral mechanism research. The results indicated that 7e could inhibit virus assembly and promote 20S disk protein aggregation. Fungicidal activity tests against 14 kinds of phytopathogenic fungi revealed that essramycin analogues displayed broad-spectrum fungicidal activities. Compound 5b displayed more than 50% inhibition rate against most of the 14 kinds of phytopathogenic fungi at 50 μg/mL. The current research lays a solid foundation for the application of essramycin alkaloids in crop protection.
Collapse
Affiliation(s)
- Tienan Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Shan Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Hongyan Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Aidang Lu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , China
| | - Yingwu Yao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| |
Collapse
|
10
|
Singh PK, Choudhary S, Kashyap A, Verma H, Kapil S, Kumar M, Arora M, Silakari O. An exhaustive compilation on chemistry of triazolopyrimidine: A journey through decades. Bioorg Chem 2019; 88:102919. [DOI: 10.1016/j.bioorg.2019.102919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
|
11
|
Ammazzalorso A, Carradori S, Angeli A, Akdemir A, De Filippis B, Fantacuzzi M, Giampietro L, Maccallini C, Amoroso R, Supuran CT. Fibrate-based N-acylsulphonamides targeting carbonic anhydrases: synthesis, biochemical evaluation, and docking studies. J Enzyme Inhib Med Chem 2019; 34:1051-1061. [PMID: 31074307 PMCID: PMC6522927 DOI: 10.1080/14756366.2019.1611801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A large library of fibrate-based N-acylsulphonamides was designed, synthesised, and fully characterised in order to propose them as zinc binders for the inhibition of human carbonic anhydrase (hCA) enzymatic activity. Synthesised compounds were tested against four hCAs (I, II, IX, and XII) revealing a promising submicromolar inhibitory activity characterised by an isozyme selectivity pattern. Structural modifications explored within this scaffold are: presence of an aryl ring on the sulphonamide, p-substitution of this aryl ring, benzothiazole or benzophenone as core nuclei, and an n-propyl chain or a geminal dimethyl at Cα carbon. Biological results fitted well with molecular modelling analyses, revealing a putative direct interaction with the zinc ion in the active site of hCA I, II and IX. These findings supported the exploration of less investigated secondary sulphonamides as potential hCA inhibitors.
Collapse
Affiliation(s)
| | - Simone Carradori
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Andrea Angeli
- b Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy
| | - Atilla Akdemir
- c Department of Pharmacology, Faculty of Pharmacy, Computer-Aided Drug Discovery Laboratory , Bezmialem Vakif University , Istanbul , Turkey
| | - Barbara De Filippis
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Marialuigia Fantacuzzi
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Letizia Giampietro
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Cristina Maccallini
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Rosa Amoroso
- a Department of Pharmacy , "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Claudiu T Supuran
- b Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy.,d Neurofarba Department , Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze , Florence , Italy
| |
Collapse
|
12
|
Synthesis, spectroscopic characterization, thermal, XRD crystal structure, the PLATON structural analysis, and theoretical studies of a new 1,2,4-triazolo-[1,5-a]pyrimidines derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Fischer G. Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Cao J, Yang F, Sun J, Huang Y, Yan CG. Construction of Unique Eight- or Nine-Membered Polyheterocyclic Systems via Multicomponent Reaction of l-Proline, Alkyl Propiolate, and Isatin. J Org Chem 2018; 84:622-635. [DOI: 10.1021/acs.joc.8b02457] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jun Cao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Fan Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Huang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
15
|
Maheswari CS, Sivaguru P, Grzegorz Malecki J, Lalitha A. Glacial Acetic Acid-Assisted One-Pot Synthesis of Diverse Octahydroacridin-4-Methylbenzenesulfonamides via Tandem Cascade Reactions. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1521846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | | | | | - Appaswami Lalitha
- Department of Chemistry, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
16
|
Abstract
After decades of relative inactivity, a large increase in efforts to discover antitubercular therapeutics has brought insights into the biology of Mycobacterium tuberculosis (Mtb) and promising new drugs such as bedaquiline, which inhibits ATP synthase, and the nitroimidazoles delamanid and pretomanid, which inhibit both mycolic acid synthesis and energy production. Despite these advances, the drug discovery pipeline remains underpopulated. The field desperately needs compounds with novel mechanisms of action capable of inhibiting multi- and extensively drug -resistant Mtb (M/XDR-TB) and, potentially, nonreplicating Mtb with the hope of shortening the duration of required therapy. New knowledge about Mtb, along with new methods and technologies, has driven exploration into novel target areas, such as energy production and central metabolism, that diverge from the classical targets in macromolecular synthesis. Here, we review new small molecule drug candidates that act on these novel targets to highlight the methods and perspectives advancing the field. These new targets bring with them the aspiration of shortening treatment duration as well as a pipeline of effective regimens against XDR-TB, positioning Mtb drug discovery to become a model for anti-infective discovery.
Collapse
Affiliation(s)
- Samantha Wellington
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
17
|
Amorim Franco TM, Blanchard JS. Bacterial Branched-Chain Amino Acid Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry 2017; 56:5849-5865. [PMID: 28977745 DOI: 10.1021/acs.biochem.7b00849] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eight enzymes responsible for the biosynthesis of the three branched-chain amino acids (l-isoleucine, l-leucine, and l-valine) were identified decades ago using classical genetic approaches based on amino acid auxotrophy. This review will highlight the recent progress in the determination of the three-dimensional structures of these enzymes, their chemical mechanisms, and insights into their suitability as targets for the development of antibacterial agents. Given the enormous rise in bacterial drug resistance to every major class of antibacterial compound, there is a clear and present need for the identification of new antibacterial compounds with nonoverlapping targets to currently used antibacterials that target cell wall, protein, mRNA, and DNA synthesis.
Collapse
Affiliation(s)
- Tathyana M Amorim Franco
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10805, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10805, United States
| |
Collapse
|
18
|
Zuniga ES, Korkegian A, Mullen S, Hembre EJ, Ornstein PL, Cortez G, Biswas K, Kumar N, Cramer J, Masquelin T, Hipskind PA, Odingo J, Parish T. The synthesis and evaluation of triazolopyrimidines as anti-tubercular agents. Bioorg Med Chem 2017; 25:3922-3946. [PMID: 28576632 PMCID: PMC5513444 DOI: 10.1016/j.bmc.2017.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 11/12/2022]
Abstract
We identified a di-substituted triazolopyrimidine with anti-tubercular activity against Mycobacterium tuberculosis. Three segments of the scaffold were examined rationally to establish a structure-activity relationship with the goal of improving potency and maintaining good physicochemical properties. A number of compounds displayed sub-micromolar activity against Mycobacterium tuberculosis with no cytotoxicity against eukaryotic cells. Non-substituted aromatic rings at C5 and a two-carbon chain connecting a terminal aromatic at C7 were preferred features; the presence of NH at C7 and a lack of substituent at C2 were essential for potency. We identified compounds with acceptable metabolic stability in rodent and human liver microsomes. Our findings suggest that the easily-synthesized triazolopyrimidines are a promising class of potent anti-tubercular agents and warrant further investigation in our search for new drugs to fight tuberculosis.
Collapse
Affiliation(s)
- Edison S Zuniga
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Aaron Korkegian
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Steven Mullen
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Erik J Hembre
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Paul L Ornstein
- Roosevelt University College of Pharmacy, Schaumburg, IL 60173, USA
| | - Guillermo Cortez
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | - Naresh Kumar
- Jubilant Chemsys Limited, B-34, Sector 58, Noida 201301, India
| | - Jeffrey Cramer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Thierry Masquelin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip A Hipskind
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Joshua Odingo
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Seattle, WA 98102, USA.
| |
Collapse
|
19
|
Ammazzalorso A, De Filippis B, Giampietro L, Amoroso R. N-acylsulfonamides: Synthetic routes and biological potential in medicinal chemistry. Chem Biol Drug Des 2017. [PMID: 28632928 DOI: 10.1111/cbdd.13043] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sulfonamide is a common structural motif in naturally occurring and synthetic medicinal compounds. The rising interest in sulfonamides and N-acyl derivatives is attested by the large number of drugs and lead compounds identified in last years, explored in different fields of medicinal chemistry and showing biological activity. Many acylsulfonamide derivatives were designed and synthesized as isosteres of carboxylic acids, being the characteristics of these functional groups very close. Starting from chemical routes to N-acylsulfonamides, this review explores compounds of pharmaceutical interest, developed as enzymatic inhibitors or targeting receptors.
Collapse
Affiliation(s)
| | | | | | - Rosa Amoroso
- Dipartimento di Farmacia, Università G. d'Annunzio, Chieti, Italy
| |
Collapse
|
20
|
Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents. Molecules 2017; 22:molecules22040535. [PMID: 28350331 PMCID: PMC6154292 DOI: 10.3390/molecules22040535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
Infections caused by Mycobacterium tuberculosis (Mtb.) and nontuberculous mycobacteria (NTM) are considered to be a global health problem; current therapeutic options are limited. Sulfonamides have exhibited a wide range of biological activities including those against mycobacteria. Based on the activity of 4-(3-heptylureido)-N-(5-methylisoxazol-3-yl)benzenesulfonamide against NTM, we designed a series of homologous sulfamethoxazole-based n-alkyl ureas (C1–C12), as well as several related ureas and an oxalamide. Fifteen ureas and one oxalamide were synthesized by five synthetic procedures and characterized. They were screened for their activity against Mtb. and three NTM strains (M. avium, M. kansasii). All of them share antimycobacterial properties with minimum inhibitory concentration (MIC) values starting from 2 µM. The highest activity showed 4,4′-[carbonylbis(azanediyl)]bis[N-(5-methylisoxazol-3-yl)benzenesulfonamide] with MIC of 2–62.5 µM (i.e., 1.07–33.28 µg/mL). Among n-alkyl ureas, methyl group is optimal for the inhibition of both Mtb. and NTM. Generally, longer alkyls led to increased MIC values, heptyl being an exception for NTM. Some of the novel derivatives are superior to parent sulfamethoxazole. Several urea and oxalamide derivatives are promising antimycobacterial agents with low micromolar MIC values.
Collapse
|
21
|
Yu Z, Dong H, Xie X, Liu J, Su W. Continuous-Flow Diazotization for Efficient Synthesis of Methyl 2-(Chlorosulfonyl)benzoate: An Example of Inhibiting Parallel Side Reactions. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhiqun Yu
- National
Engineering Research Center for Process Development of Active Pharmaceutical
Ingredients, Collaborative Innovation Center of Yangtze River Delta
Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hei Dong
- National
Engineering Research Center for Process Development of Active Pharmaceutical
Ingredients, Collaborative Innovation Center of Yangtze River Delta
Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoxuan Xie
- National
Engineering Research Center for Process Development of Active Pharmaceutical
Ingredients, Collaborative Innovation Center of Yangtze River Delta
Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiming Liu
- Key
Laboratory for Green Pharmaceutical Technologies and Related Equipment
of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weike Su
- National
Engineering Research Center for Process Development of Active Pharmaceutical
Ingredients, Collaborative Innovation Center of Yangtze River Delta
Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key
Laboratory for Green Pharmaceutical Technologies and Related Equipment
of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
22
|
Jung IP, Ha NR, Lee SC, Ryoo SW, Yoon MY. Development of potent chemical antituberculosis agents targeting Mycobacterium tuberculosis acetohydroxyacid synthase. Int J Antimicrob Agents 2016; 48:247-58. [DOI: 10.1016/j.ijantimicag.2016.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 10/21/2022]
|
23
|
Liu L, Chen L, Zhang YH, Wei L, Cheng S, Kong X, Zheng M, Huang T, Cai YD. Analysis and prediction of drug-drug interaction by minimum redundancy maximum relevance and incremental feature selection. J Biomol Struct Dyn 2016; 35:312-329. [PMID: 26750516 DOI: 10.1080/07391102.2016.1138142] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Drug-drug interaction (DDI) defines a situation in which one drug affects the activity of another when both are administered together. DDI is a common cause of adverse drug reactions and sometimes also leads to improved therapeutic effects. Therefore, it is of great interest to discover novel DDIs according to their molecular properties and mechanisms in a robust and rigorous way. This paper attempts to predict effective DDIs using the following properties: (1) chemical interaction between drugs; (2) protein interactions between the targets of drugs; and (3) target enrichment of KEGG pathways. The data consisted of 7323 pairs of DDIs collected from the DrugBank and 36,615 pairs of drugs constructed by randomly combining two drugs. Each drug pair was represented by 465 features derived from the aforementioned three categories of properties. The random forest algorithm was adopted to train the prediction model. Some feature selection techniques, including minimum redundancy maximum relevance and incremental feature selection, were used to extract key features as the optimal input for the prediction model. The extracted key features may help to gain insights into the mechanisms of DDIs and provide some guidelines for the relevant clinical medication developments, and the prediction model can give new clues for identification of novel DDIs.
Collapse
Affiliation(s)
- Lili Liu
- a Intelligence Research Department, Information Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , P. R. China
| | - Lei Chen
- b College of Information Engineering, Shanghai Maritime University , Shanghai 201306 , P. R. China
| | - Yu-Hang Zhang
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| | - Lai Wei
- b College of Information Engineering, Shanghai Maritime University , Shanghai 201306 , P. R. China
| | - Shiwen Cheng
- b College of Information Engineering, Shanghai Maritime University , Shanghai 201306 , P. R. China
| | - Xiangyin Kong
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| | - Mingyue Zheng
- d State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , P. R. China
| | - Tao Huang
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| | - Yu-Dong Cai
- e School of Life Sciences, Shanghai University , Shanghai 200444 , P. R. China
| |
Collapse
|
24
|
Akbarzadeh M, Bakavoli M, Eshghi H, Shiri A. Synthesis of Oxazolo[5,4-d][1,2,4]triazolo[4,3-a]pyrimidines as a New Class of Heterocyclic Compounds. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mehdi Bakavoli
- Department of Chemistry, School of Sciences; Ferdowsi University of Mashhad; 91775-1436 Mashhad Iran
| | | | - Ali Shiri
- Department of Chemistry, School of Sciences; Ferdowsi University of Mashhad; 91775-1436 Mashhad Iran
| |
Collapse
|