1
|
El-Wakil MH, Ghazala RA, El-Dershaby HA, Drozdowska D, Wróbel-Tałałaj A, Parzych C, Ratkiewicz A, Kolesińska B, Abd El-Razik HA, Soliman FSG. Rational design, synthesis, and molecular modelling insights of dual DNA binders/DHFR inhibitors bearing arylidene-hydrazinyl-1,3-thiazole scaffold with apoptotic and anti-migratory potential in breast MCF-7 cancer cells. J Enzyme Inhib Med Chem 2025; 40:2468353. [PMID: 40035286 PMCID: PMC11881662 DOI: 10.1080/14756366.2025.2468353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
In light of searching for new breast cancer therapies, DNA-targeted small molecules were rationally designed to simultaneously bind DNA and inhibit human dihydrofolate reductase (hDHFR). Fourteen new arylidene-hydrazinyl-1,3-thiazoles (5-18) were synthesised and their dual DNA groove binding potential and in vitro hDHFR inhibition were performed. Two compounds, 5 and 11, proved their dual efficacy. Molecular docking and molecular dynamics simulations were performed for those active derivatives to explore their mode of binding and stability of interactions inside DHFR active site. Anti-breast cancer activity was assessed for 5 and 11 on MCF-7 cells using MTX as reference. IC50 measurements revealed that both compounds were more potent and selective than MTX. Cytotoxicity was examined against normal skin fibroblasts to examine safety and selectivity Moreover, mechanistic studies including apoptosis induction and wound healing were performed. Further in silico ADMET assessment was conducted to determine their eligibility as drug leads suitable for future optimisation and development.
Collapse
Affiliation(s)
- Marwa H. El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rasha A. Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hadeel A. El-Dershaby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, Bialystok, Poland
| | | | - Cezary Parzych
- Department of Physical Chemistry, University of Bialystok, Institute of Chemistry, Bialystok, Poland
| | - Artur Ratkiewicz
- Department of Physical Chemistry, University of Bialystok, Institute of Chemistry, Bialystok, Poland
| | - Beata Kolesińska
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Heba A. Abd El-Razik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Farid S. G. Soliman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Siatka T, Mát'uš M, Moravcová M, Harčárová P, Lomozová Z, Matoušová K, Suwanvecho C, Krčmová LK, Mladěnka P. Biological, dietetic and pharmacological properties of vitamin B 9. NPJ Sci Food 2025; 9:30. [PMID: 40075081 PMCID: PMC11904035 DOI: 10.1038/s41538-025-00396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Humans must obtain vitamin B9 (folate) from plant-based diet. The sources as well as the effect of food processing are discussed in detail. Industrial production, fortification and biofortification, kinetics, and physiological role in humans are described. As folate deficiency leads to several pathological states, current opinions toward prevention through fortification are discussed. Claimed risks of increased folate intake are mentioned as well as analytical ways for measurement of folate.
Collapse
Affiliation(s)
- Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Marek Mát'uš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232, Bratislava, Slovak Republic
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Patrícia Harčárová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Zuzana Lomozová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Chaweewan Suwanvecho
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Abdelmonsef AH, El-Naggar M, Ibrahim AOA, Abdelgeliel AS, Shehadi IA, Mosallam AM, Khodairy A. Evaluation of Quinazolin-2,4-Dione Derivatives as Promising Antibacterial Agents: Synthesis, In Vitro, In Silico ADMET and Molecular Docking Approaches. Molecules 2024; 29:5529. [PMID: 39683688 DOI: 10.3390/molecules29235529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2a-c, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3a-d and 4a-d. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and cyanoacetic acid hydrazide. The reaction of 1 with strong electrophiles, namely, o-aminophenol, o-amino thiophenol, and/or o-phenylene diamine, resulted in corresponding quinazolin-2,4-dione derivatives incorporating eight-membered nitrogen-heterocycles 2a-d. Compounds 3a-d and 4a-d were synthesized in good-to-excellent yield through a one-pot multi-component reaction (MCR) of 1 with carbon disulfide and/or phenyl isocyanate under mild alkaline conditions, followed by ethyl chloroacetate, ethyl iodide, methyl iodide, and/or concentrated HCl, respectively. The obtained products were physicochemically characterized by melting points, elemental analysis, and spectroscopic techniques, such as FT-IR, 1H-NMR, 13C-NMR, and MS. The antibacterial efficacy of the obtained eleven molecules was examined in vitro against two Gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus haemolyticus). Furthermore, Computer-Aided Drug Design (CADD) was performed on the synthesized derivatives, standard drug (Methotrexate), and reported antibacterial drug with the target enzymes of bacterial strains (S. aureus and S. haemolyticus) to explain their binding mode of actions. Notably, our findings highlight compounds 2b and 2c as showing both the best antibacterial activity and docking scores against the targets. Finally, according to ADMET predictions, compounds 2b and 2c possessed acceptable pharmacokinetics properties and drug-likeness properties.
Collapse
Affiliation(s)
| | - Mohamed El-Naggar
- Pure and Applied Chemistry Group, Chemistry Department, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amal O A Ibrahim
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Asmaa S Abdelgeliel
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Ihsan A Shehadi
- Pure and Applied Chemistry Group, Chemistry Department, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed M Mosallam
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Ahmed Khodairy
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
4
|
Saeed A, Soliman AM, Abdullah MMS, Abdel-Latif E, El-Demerdash A. Synthesis and Molecular Docking of some new Thiazolidinone and Thiadiazole Derivatives as Anticancer Agents. Chem Biodivers 2024; 21:e202301870. [PMID: 38538544 DOI: 10.1002/cbdv.202301870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 06/27/2024]
Abstract
New sets of functionalized thiazolidinone and thiadiazole derivatives were synthesized, and their cytotoxicity was evaluated on HepG2, MCF-7, HTC-116, and WI38 cells. The synthetic approach is based on the preparation of 4-(4-acetamidophenyl)thiosemicarbazide (4) and their thiosemicarbazones 5 a-e, which are converted to the corresponding thiazoldin-4-one compounds 6 a-e upon cyclization with ethyl bromoacetate. The thiadiazole compounds 9 and 12 were obtained by reacting 4-(4-acetamidophenyl)thiosemicarbazide with isothiocyanates and/or ethyl 2-cyano-3,3-bis(methylthio)acrylate, respectively. The thiazolidinone compounds 6 c and 6 e exhibited strong cytotoxicity against breast cancer cells, with an IC50 (6.70±0.5 μM) and IC50 (7.51±0.8 μM), respectively, very close to that of doxorubicin (IC50: 4.17±0.2 μM). In addition, the anti-cancer properties of the tested thiazolidinone and thiadiazole scaffolds were further explored by the molecular docking program (MOE)-(PDB Code-1DLS). Compounds 5 d, 5 e, 6 d, 6 e, and 7 have the best binding affinity, ranging from -8.5386 kcal.mol-1 to -8.2830 kcal.mol-1.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Ahbarah M Soliman
- Department of Chemistry, Faculty of Science, Omar Al-Mukhtar University, 919, El-Bayda, Libya
| | - Mahmood M S Abdullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Amr El-Demerdash
- Metabolic Biology & Biological Chemistry Department, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| |
Collapse
|
5
|
El Rhabori S, El Aissouq A, Daoui O, Elkhattabi S, Chtita S, Khalil F. Design of new molecules against cervical cancer using DFT, theoretical spectroscopy, 2D/3D-QSAR, molecular docking, pharmacophore and ADMET investigations. Heliyon 2024; 10:e24551. [PMID: 38318045 PMCID: PMC10839811 DOI: 10.1016/j.heliyon.2024.e24551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Cervical cancer is a major health problem of women. Hormone therapy, via aromatase inhibition, has been proposed as a promising way of blocking estrogen production as well as treating the progression of estrogen-dependent cancer. To overcome the challenging complexities of costly drug design, in-silico strategy, integrating Structure-Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD), was applied to large representative databases of 39 quinazoline and thioquinazolinone compound derivatives. Quantum chemical and physicochemical descriptors have been investigated using density functional theory (DFT) and MM2 force fields, respectively, to develop 2D-QSAR models, while CoMSIA and CoMFA descriptors were used to build 3D-QSAR models. The robustness and predictive power of the reliable models were verified, via several validation methods, leading to the design of 6 new drug-candidates. Afterwards, 2 ligands were carefully selected using virtual screening methods, taking into account the applicability domain, synthetic accessibility, and Lipinski's criteria. Molecular docking and pharmacophore modelling studies were performed to examine potential interactions with aromatase (PDB ID: 3EQM). Finally, the ADMET properties were investigated in order to select potential drug-candidates against cervical cancer for experimental in vitro and in vivo testing.
Collapse
Affiliation(s)
- Said El Rhabori
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| | - Abdellah El Aissouq
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Morocco
| | - Fouad Khalil
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| |
Collapse
|
6
|
El-Gazzar YI, Ghaiad HR, El Kerdawy AM, George RF, Georgey HH, Youssef KM, El-Subbagh HI. New quinazolinone-based derivatives as DHFR/EGFR-TK inhibitors: Synthesis, molecular modeling simulations, and anticancer activity. Arch Pharm (Weinheim) 2023; 356:e2200417. [PMID: 36257809 DOI: 10.1002/ardp.202200417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023]
Abstract
New 2-mercapto-quinazolin-4-one analogs were synthesized and tested for their in vitro anticancer activity, dihydrofolate reductase (DHFR) inhibition, and epidermal growth factor tyrosine kinase (EGFR-TK) inhibition activities. Compound 24, which is characterized by a 2-benzyl-thio function, showed broad-spectrum anticancer activity with high safety profile and selectivity index. The concentrations of 24 causing 50% growth inhibition (GI50 ) and total cell growth inhibition (TGI) and its lethal concentration 50 (LC50 ) were 15.1, 52.5, and 91.2 µM, respectively, using 5-fluorouracil as a positive control. Also, it showed EGFR-TK inhibitory activity with IC50 = 13.40 nM compared to gefitinib (IC50 = 18.14 nM) and DHFR inhibitory potency with 0.30 μM compared to methotrexate (MTX; IC50 = 0.08 μM). In addition, compound 24 caused cell cycle arrest and apoptosis on COLO-205 colon cancer cells. Compounds 37, 21, and 54 showed remarkable DHFR inhibitory activity with IC50 values of 0.03, 0.08, and 0.08 μM, respectively. The inhibitory properties of these compounds are due to an electron-withdrawing group on the quinazolinone ring, except for compound 54. In a molecular modeling study, compound 24 showed the same binding mode as gefitinib as it interacted with the amino acid Lys745 via π-π interaction. Compound 37 showed a similar binding mode as MTX through the binding interaction with Lys68, Asn64 via hydrogen bond acceptor, and Phe31 via arene-arene interaction. The obtained model and substitution pattern could be used for further development.
Collapse
Affiliation(s)
- Yomna I El-Gazzar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Heba R Ghaiad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Khairia M Youssef
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Pérez-Fehrmann M, Kesternich V, Puelles A, Quezada V, Salazar F, Christen P, Castillo J, Cárcamo JG, Castro-Alvarez A, Nelson R. Synthesis, antitumor activity, 3D-QSAR and molecular docking studies of new iodinated 4-(3 H)-quinazolinones 3 N-substituted. RSC Adv 2022; 12:21340-21352. [PMID: 35975048 PMCID: PMC9344282 DOI: 10.1039/d2ra03684c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
A novel series of 6-iodo-2-methylquinazolin-4-(3H)-one derivatives, 3a–n, were synthesized and evaluated for their in vitro cytotoxic activity. Compounds 3a, 3b, 3d, 3e, and 3h showed remarkable cytotoxic activity on specific human cancer cell lines when compared to the anti-cancer drug, paclitaxel. Compound 3a was found to be particularly effective on promyelocytic leukaemia HL60 and non-Hodgkin lymphoma U937, with IC50 values of 21 and 30 μM, respectively. Compound 3d showed significant activity against cervical cancer HeLa (IC50 = 10 μM). The compounds 3e and 3h were strongly active against glioblastoma multiform tumour T98G, with IC50 values of 12 and 22 μM, respectively. These five compounds showed an interesting cytotoxic activity on four human cancer cell types of high incidence. The molecular docking results reveal a good correlation between experimental activity and calculated binding affinity on dihydrofolate reductase (DHFR). Docking studies proved 3d as the most potent compound. In addition, the three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis exhibited activities that may indicate the existence of electron-withdrawing and lipophilic groups at the para-position of the phenyl ring and hydrophobic interactions of the quinazolinic ring in the DHFR active site. New iodinated 4-(3H)-quinazolinones 3N-substituted with antitumor activity and 3D-QSAR and molecular docking studies as dihydrofolate reductase (DHFR) inhibitors.![]()
Collapse
Affiliation(s)
- Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Arturo Puelles
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Fernanda Salazar
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Philippe Christen
- School of Pharmaceutical Sciences University of Geneva 1211 Geneva 4 Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva 1211 Geneva 4 Switzerland
| | - Jonathan Castillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile
| | - Juan Guillermo Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR) Chile
| | - Alejandro Castro-Alvarez
- Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera Av. Francisco Salazar 01145 Temuco 4780000 Chile.,Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| |
Collapse
|
8
|
Rizk HF, El-Borai MA, Ragab A, Ibrahim SA, Sadek ME. A Novel of Azo-Thiazole Moiety Alternative for Benzidine-Based Pigments: Design, Synthesis, Characterization, Biological Evaluation, and Molecular Docking Study. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hala F. Rizk
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Seham A. Ibrahim
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed E. Sadek
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Ewida MA, Ewida HA, Ahmed MS, Allam HA, ElBagary RI, George RF, Georgey HH, El-Subbagh HI. Nanomolar potency of imidazo[2,1-b]thiazole analogs as indoleamine 2,3-dioxygenase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100202. [PMID: 34313342 DOI: 10.1002/ardp.202100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Novel series of imidazo[2,1-b]thiazole analogs were designed, synthesized, and biologically evaluated as indoleamine 2,3-dioxygenase (IDO1) inhibitors. Imidazo[2,1-b]thiazoles 6, 7, and 8 showed inhibitory profiles against IDO1 at IC50 values of 68.48, 82.39, and 48.48 nM, respectively, compared with IDO5L at IC50 67.40 nM. Benzo[d]imidazo[2,1-b]thiazoles 17, 20, and 22 showed promising IDO1 inhibition at IC50 values of 53.58, 53.16, and 57.95 nM, respectively. Compound 7 showed a growth-inhibitory profile at GI of 39.33% against the MCF7 breast cancer cell line, while 8 proved lethal to ACHN renal cancer cells. Cells treated with compounds 17 and 22 showed a typical apoptosis pattern of DNA fragments that reflected the G0/G1, S, and G2/M phases of the cell cycle, together with a pre-G1 phase corresponding to apoptotic cells, which indicates that cell growth arrest occurred at the S phase. Molecular modeling simulations validated the potential of benzo[d]imidazo[2,1-b]thiazole analogs to chelate iron(III) within the IDO1 binding pocket and, hence, to have a better binding affinity via hydrophobic-hydrophobic interactions.
Collapse
Affiliation(s)
- Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Mahmoud S Ahmed
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ramzia I ElBagary
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
3-Methyl-imidazo[2,1-b]thiazole derivatives as a new class of antifolates: Synthesis, in vitro/in vivo bio-evaluation and molecular modeling simulations. Bioorg Chem 2021; 115:105205. [PMID: 34329992 DOI: 10.1016/j.bioorg.2021.105205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022]
Abstract
Inhibiting the Dihydrofolate reductase (DHFR) enzyme has been validated in multiple clinical manifestations related to bacterial infection, malaria, and multiple types of cancer. Herein, novel series of 3-methyl-imidazo[2,1-b] thiazole-based analogs were synthesized and biologically evaluated for their in vitro inhibitory profile towards DHFR. Compounds 22 and 23 exhibited potent inhibitory profile targeting DHFR (IC50 0.079 and 0.085 µM, respectively comparable to MTX IC50 0.087 µM). Compounds 22 and 23 showed promising cytotoxicity against MCF7 breast cancer cell lines inducing cell cycle arrest and apoptosis. Furthermore, Compound 23 showed its potential to reduce body weight and tumor volume significantly, using Ehrlich ascites carcinoma (EAC) solid tumor animal model of breast cancer, compared to control-treated groups. Further, molecular modeling simulations validated the potential of 22 and 23 to have high affinity binding towards Arg22 and Phe31 residues via π-π interaction and hydrogen bonding within DHFR binding pocket. Computer-assisted ADMET study suggested that the newly synthesized analogs could have high penetration to the blood brain barrier (BBB), better intestinal absorption, non-inhibitors of CYP2D6, adequate plasma protein binding and good passive oral absorption. The obtained model and pattern of substitution could be used for further development of DHFR inhibitors.
Collapse
|
11
|
Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem 2021; 28:910-939. [PMID: 31622199 DOI: 10.2174/0929867326666191016151018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity. METHODS The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. RESULTS This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. CONCLUSION Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| |
Collapse
|
12
|
Ibrahim TS, Almalki AJ, Moustafa AH, Allam RM, Abuo-Rahma GEDA, El Subbagh HI, Mohamed MFA. Novel 1,2,4-oxadiazole-chalcone/oxime hybrids as potential antibacterial DNA gyrase inhibitors: Design, synthesis, ADMET prediction and molecular docking study. Bioorg Chem 2021; 111:104885. [PMID: 33838559 DOI: 10.1016/j.bioorg.2021.104885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/19/2023]
Abstract
New antibacterial drugs are urgently needed to tackle the rapid rise in multi-drug resistant bacteria. DNA gyrase is a validated target for the development of new antibacterial drugs. Thus, in the present investigation, a novel series of 1,2,4-oxadiazole-chalcone/oxime (6a-f) and (7a-f) were synthesized and characterized by IR, NMR (1H and 13C) and elemental analyses. The title compounds were evaluated for their in-vitro antimicrobial activity by the modified agar diffusion method as well as their E. coli DNA gyrase inhibitory activity. The minimum inhibitory concentration (MIC) and the structure activity relationships (SARs) were evaluated. Among all, compounds 6a, 6c-e, 7b and 7e were the most potent and proved to possess broad spectrum activity against the tested Gram-positive and Gram-negative organisms. Additionally, compounds 6a (against S. aureus), 6c (against B. subtilis and E. hirae), 6e (against E. hirae), 6f, 7a and 7c (against E. coli) and 7d (against B. subtilis), with MIC value of 3.12 μM were two-fold more potent than the standard ciprofloxacin (MIC = 6.25 μM). Mechanistically, compounds 6c, 7c, 7e and 7b had good inhibitory activity against E. coli gyrase with IC50 values of 17.05, 13.4, 16.9, and 19.6 µM, respectively, in comparison with novobiocin (IC50 = 12.3 µM) and ciprofloxacin (IC50 = 10.5 µM). The molecular docking results at DNA gyrase active site revealed that the most potent compounds 6c and 7c have binding mode and docking scores comparable to that of ciprofloxacin and novobiocin suggesting their antibacterial activity via inhibition of DNA gyrase. Finally, the predicted parameters of Lipinski's rule of five and ADMET analysis showed that 6c and 7c had good drug-likeness and acceptable physicochemical properties. Therefore, the hybridization of the chalcone and oxadiazole moieties could be promising lead as antibacterial candidate which merit further future structural optimizations.
Collapse
Affiliation(s)
- Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amr H Moustafa
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Rasha M Allam
- Pharmacology Department, National Research Centre, Cairo 12622 (ID: 60014618), Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt
| | - Hussein I El Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
| |
Collapse
|
13
|
Synthesis, in vitro, and in silico studies of newly functionalized quinazolinone analogs for the identification of potent α-glucosidase inhibitors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02159-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Sharafian S, Hossaini Z, Rostami-Charati F, Khalilzadeh MA. Green synthesis of novel phosphonate derivatives using ultrasonic irradiation. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02812-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Chen T, Xiong H, Yang JF, Zhu XL, Qu RY, Yang GF. Diaryl Ether: A Privileged Scaffold for Drug and Agrochemical Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9839-9877. [PMID: 32786826 DOI: 10.1021/acs.jafc.0c03369] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antibacterial, antimalarial, herbicidal, fungicidal, insecticidal, and so on. In this review, we highlight the medicinal and agrochemical versatility of the DE motif according to the published information in the past decade and comprehensively give a summary of the target recognition, structure-activity relationship (SAR), and mechanism of action of its analogues. It is expected that this profile may provide valuable guidance for the discovery of new active ingredients both in drug and pesticide research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
16
|
Synthetic approaches, anticancer potential, HSP90 inhibition, multitarget evaluation, molecular modeling and apoptosis mechanistic study of thioquinazolinone skeleton: Promising antibreast cancer agent. Bioorg Chem 2020; 101:103987. [DOI: 10.1016/j.bioorg.2020.103987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022]
|
17
|
Ezzatzadeh E, Hossaini Z. 2D ZnO/Fe
3
O
4
nanocomposites as a novel catalyst‐promoted green synthesis of novel quinazoline phosphonate derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elham Ezzatzadeh
- Department of Chemistry, Ardabil BranchIslamic Azad University Ardabil Iran
| | | |
Collapse
|
18
|
El-Shafey HW, Gomaa RM, El-Messery SM, Goda FE. Quinazoline Based HSP90 Inhibitors: Synthesis, Modeling Study and ADME Calculations Towards Breast Cancer Targeting. Bioorg Med Chem Lett 2020; 30:127281. [PMID: 32527460 DOI: 10.1016/j.bmcl.2020.127281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
A new 2-thioquinazolinones series was designed and synthesized as HSP90 inhibitors based on the structure of hit compound VII obtained by virtual screening approach. Their in vitro anti-proliferative activity was evaluated against three human cancer cell lines rich in HSP90 namely; colorectal carcinoma (HCT-116), and cervical carcinoma (Hela), breast carcinoma (MCF-7). Compounds 5a, 5d, 5e and 9h showed a significant broad spectrum anti-proliferative activity against all tested cell lines. They were characterized by potent effect against breast cancer in particular with IC50 of 11.73, 8.56, 7.35 and 9.48 μM, respectively against Doxorubicin (IC50 4.17 μM). HSP90 ATPase activity inhibition assay were conducted where compound 5d exhibited the best IC50 with 1.58 μM compared to Tanespimycin (IC50 = 2.17 μM). Compounds 5a and 9h showed higher IC50 values of 3.21 and 3.41 μM, respectively. The effects of 5a, 5d and 9h on Her2 (a client proteins of HSP90) and HSP70 were evaluated in MCF-7 cells. All tested compounds were found to reduce Her2 protein expression levels and induce Hsp70 protein expression levels significantly, emphasizing that antibreast cancer effect is a consequence of HSP90 chaperone inhibition. Cell cycle analysis of MCF-7 cells treated with 5d showed cell cycle arrest at G2/M phase 38.89% and pro-apoptotic activity as indicated by annexin V-FITC staining by 22.42%. Molecular docking studies suggested mode of interaction to HSP90 via hydrogen bonding. ADME properties prediction of the active compounds suggested that they could be used as orally absorbed anticancer drug candidates.
Collapse
Affiliation(s)
- Hamed W El-Shafey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O.Box 35516 Mansoura, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O.Box 35516 Mansoura, Egypt
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O.Box 35516 Mansoura, Egypt.
| | - Fatma E Goda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O.Box 35516 Mansoura, Egypt
| |
Collapse
|
19
|
He J, Qiao W, An Q, Yang T, Luo Y. Dihydrofolate reductase inhibitors for use as antimicrobial agents. Eur J Med Chem 2020; 195:112268. [PMID: 32298876 DOI: 10.1016/j.ejmech.2020.112268] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023]
Abstract
Drug-resistant bacteria pose an increasingly serious threat to mankind all over the world. However, the currently available clinical treatments do not meet the urgent demand.Therefore, it is desirable to find new targets and inhibitors to overcome the problems of antibiotic resistance. Dihydrofolate reductase (DHFR) is an important enzyme required to maintain bacterial growth, and hence inhibitors of DHFR have been proven as effective agents for treating bacterial infections. This review provides insights into the recent discovery of antimicrobial agents targeting DHFR. In particular, three pathogens, Escherichia coli (E. coli), Mycobacterium tuberculosis(Mtb) and Staphylococcus aureus(S. aureus), and research strategies are emphasized. DHFR inhibitors are expected to be good alternatives to fight bacterial infections.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University
| | - Qi An
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
20
|
Auti PS, George G, Paul AT. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv 2020; 10:41353-41392. [PMID: 35516563 PMCID: PMC9057921 DOI: 10.1039/d0ra06642g] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Due to the pharmacological activities of quinazoline and quinazolinone scaffolds, it has aroused great interest in medicinal chemists for the development of new drugs or drug candidates. The pharmacological activities of quinazoline and its related scaffolds include anti-cancer, anti-microbial, anti-convulsant, and antihyperlipidaemia. Recently, molecular hybridization technology is used for the development of hybrid analogues with improved potency by combining two or more pharmacophores of bioactive scaffolds. The molecular hybridization of various biologically active pharmacophores with quinazoline derivatives resulted in lead compounds with multi-faceted biological activity wherein specific as well as multiple targets were involved. The present review summarizes the advances in lead compounds of quinazoline hybrids and their related heterocycles in medicinal chemistry. Moreover, the review also helps to intensify the drug development process by providing an understanding of the potential role of these hybridized pharmacophoric features in exhibiting various pharmacological activities. Recent advances in quinazoline/quinazolinone hybrid heterocycles in medicinal chemistry and their pharmacological diversification.![]()
Collapse
Affiliation(s)
- Prashant S. Auti
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| | - Ginson George
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| | - Atish T. Paul
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| |
Collapse
|
21
|
Sabry MA, Ewida HA, Hassan GS, Ghaly MA, El-Subbagh HI. Synthesis, antitumor testing and molecular modeling study of some new 6-substituted amido, azo or thioureido-quinazolin-4(3H)-ones. Bioorg Chem 2019; 88:102923. [PMID: 30991189 DOI: 10.1016/j.bioorg.2019.102923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023]
Abstract
A new series of 6-substituted amido, azo or thioureido-quinazolin-4(3H)-one was synthesized and tested for their in-vitro antitumor activity. Compounds 21, 53 and 60 showed broad spectrum antitumor activity with average IC50 values of 6.7, 7.6 and 9.1 μM, respectively compared with methotrexate (1, IC50 19.26 μM). As an attempt to reveal the mechanism of the antitumor potency, cell cycle analysis and DHFR inhibition were performed. Compounds 59 and 61 induced their cytotoxicity in Hela (IC50 10.6 μM) and HCT-116 (IC50 15.5 μM) cell lines, respectively through Pre-G1 apoptosis, inhibiting cell growth at G2-M phase. Compounds 29, 33, 59 and 61 showed DHFR inhibitory potency at IC50 0.2, 0.2, 0.3 and 0.3 μM, respectively. The active DHFR inhibitors showed high affinity binding toward the amino acid residues Thr56, Ser59 and Ser118. The active compounds obeyed Lipinski's rule of five and could be used as template model for further optimization.
Collapse
Affiliation(s)
- Mohamed A Sabry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt.
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Mariam A Ghaly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt.
| |
Collapse
|
22
|
DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Molecules 2019; 24:molecules24061140. [PMID: 30909399 PMCID: PMC6471984 DOI: 10.3390/molecules24061140] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
Collapse
|
23
|
Harer S, Bhatia M, Kawade V. Synthesis, Antimicrobial Evaluation and Molecular Docking of Some Potential 2,6-disubstituted 1H-Benzimidazoles; Non-Classical Antifolates. Med Chem 2019; 15:813-832. [PMID: 30727904 DOI: 10.2174/1573406415666190206231555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/06/2018] [Accepted: 12/21/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dihydrofolate reductase is one of the important enzymes for thymidylate and purine synthesis in micro-organisms. A large number of drugs have been designed to inhibit microbial DHFR but over the period of time, some drugs have developed resistance and cross reactivity towards the enzyme. Over the past few decades, benzimidazoles, triazoles and their derivatives have been grabbing the attention of the synthetic chemists for their wide gamut of antibacterial and antifungal activities targeting microbial protein DHFR. OBJECTIVE Our goal behind present investigation is to explore benzimidazoles class of drugs as microbial DHFR inhibitors by studying ligand-receptor binding interactions, in vitro enzyme inhibition assay and confirmation of anti-microbial activity against selected pathogenic microorganisms. METHODS A library containing thirty novel 2,6-disubstituted 1H-benzimidazoles was synthesized by one pot condensation of o-nitro aniline or 2,4-dinitro aniline with series of aldehydes or acetophenones using Na2S2O4 or SnCl2 respectively and reflux for 5-6hr. Structures of compounds have been confirmed by spectroscopic methods as 1H and 13C NMR, FT-IR and MS. In vitro DHFR inhibition study was performed by using Epoch microplate reader and IC50 of the test compounds was compared with Trimethoprim. In vitro antimicrobial activity was performed against selected clinical pathogens by agar disk diffusion method and MIC (µg/mL) was reported. RESULTS Moderate to good level of DHFR inhibition was observed with IC50 values in the range of 7-23 µM. Compounds B1, B19, B22, B24 and B30 expressed 1.1 to 1.4 folds more prominent DHFR inhibitory activity as compared to standard Trimethoprim. Remarkable antimicrobial activity was exhibited by B1, B19, B22, B24 and B30. Molecular docking study revealed perfect binding of test ligands with key amino acids of DHFR as Phe31, Ile94, Ile5, Asp27, Gln32 and Phe36. CONCLUSION Nature of 1H-benzimidazole substituents at position 2 and 6 had influence over magnitude and type of molecular binding and variation in the biological activity. The present series of 1H-benzimidazoles could be considered promising broad-spectrum antimicrobial candidates that deserve in future for preclinical antimicrobial evaluation and development of newer antimicrobial agents targeting microbial DHFR.
Collapse
Affiliation(s)
- Sunil Harer
- Department of Pharmaceutical Chemistry, Sharadchandra Pawar College of Pharmacy, Faculty of Pharmaceutical Sciences, Savitribai Phule Pune University, Pune (MS), India
| | - Manish Bhatia
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Faculty of Pharmaceutical Sciences, Shivaji University, Kolhapur (MS), India
| | - Vikram Kawade
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Faculty of Pharmaceutical Sciences, Shivaji University, Kolhapur (MS), India
| |
Collapse
|
24
|
Ewida MA, Abou El Ella DA, Lasheen DS, Ewida HA, El-Gazzar YI, El-Subbagh HI. Imidazo[2',1':2,3]thiazolo[4,5-d]pyridazinone as a new scaffold of DHFR inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg Chem 2018; 80:11-23. [PMID: 29864684 DOI: 10.1016/j.bioorg.2018.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/31/2023]
Abstract
New series of thiazolo[4,5-d]pyridazin and imidazo[2',1':2,3]thiazolo[4,5-d]pyridazin analogues were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activity. Compounds 13 and 43 proved to be DHFR inhibitors with IC50 0.05 and 0.06 μM, respectively. 43 proved lethal to OVCAR-3 Ovarian cancer and MDA-MB-435 Melanoma at IC50 0.32 and 0.46 μM, respectively. The active compounds formed hydrogen bond at DHFR binding site between N1-nitrogen of the pyridazine ring with Glu30; the carbonyl group with Trp24, Arg70 or Lys64; π-cation interaction with Arg22 and π-π interaction with Phe31 residues. Ring annexation of the active 1,3-thiazole ring analogue 13 into the bicyclic thiazolo[4,5-d]pyridazine (18,19) or imidazo[2,1-b]thiazoles (23-25) decreased the DHFR inhibition activity; while the formation of the tricyclic imidazo[2',1':2,3]-thiazolo[4,5-d]pyridazine (43-54) increased potency. The obtained model could be useful for the development of new class of DHFR inhibitors.
Collapse
Affiliation(s)
- Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Dalal A Abou El Ella
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, 62511 Benisuef, Egypt
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Yomna I El-Gazzar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
25
|
Zhan X, Xu Y, Qi Q, Wang Y, Shi H, Mao Z. Synthesis, Cytotoxic, and Antibacterial Evaluation of Quinazolinone Derivatives with Substituted Amino Moiety. Chem Biodivers 2018; 15:e1700513. [PMID: 29333734 DOI: 10.1002/cbdv.201700513] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
Abstract
A series of novel quinazolinone derivatives containing a substituted amino moiety were synthesized, evaluated for their cytotoxic and antibacterial activities. The results of MTT assay showed that all synthesized target compounds 5A - 5O showed potent cytotoxicity against SGC-7901 (IC50 , 0.72 - 1.41 μm). Moreover, the compounds 5D, 5I, and 5K showed better selectivity as compared with positive controls pemetrexed and MTX due to weak cytotoxicity against normal tissue cell line HUVSMC. Among synthesized compounds, the compounds 5E, 5J, 5L, and 5N showed broad-spectrum cytotoxic activities against at least four cancer cell lines at a micromolar level. The results of antibacteria evaluation revealed that all synthesized compounds showed good to moderate antibacterial activities against Gram-negative bacteria Escherichia coli. Among them, the MIC values of the compounds 5C, 5F, and 5M were 0.31 μg/mL.
Collapse
Affiliation(s)
- Xiaoping Zhan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yun Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qi Qi
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yaolin Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Huiying Shi
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhenmin Mao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
26
|
Ewida MA, Abou El Ella DA, Lasheen DS, Ewida HA, El-Gazzar YI, El-Subbagh HI. Thiazolo[4,5-d]pyridazine analogues as a new class of dihydrofolate reductase (DHFR) inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg Chem 2017; 74:228-237. [PMID: 28865294 DOI: 10.1016/j.bioorg.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/12/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
A new series of 1,3-thiazoles and thiazolo[4,5-d]pyridazine both bearing the 2-thioureido function were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activities. Compound 26 proved to be the most active DHFR inhibitor (IC50 of 0.06μM). Compound 4, 20 and 21 showed in vitro antitumor activity against a collection of cancer cell lines. Compound 26 proved lethal to HS 578T breast cancer cell line with IC50 value of 0.8μM, inducing cell cycle arrest and apoptosis. Molecular modeling studies concluded that recognition with key amino acids Phe 31 and Arg 22 is essential for DHFR binding. The obtained model could be useful for the development of new class of DHFR inhibitors.
Collapse
Affiliation(s)
- Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Dalal A Abou El Ella
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Yomna I El-Gazzar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, 12311 Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
27
|
Syntheses and antiproliferative evaluation of 6-thienyl, 6-polyphenyl aryl and 6-naphthyl derivatives of 2,4-diaminopyrido[3,2-d]pyramidine as non-classical antifolate targeting DHFR. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7153-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
El-Gazzar YI, Georgey HH, El-Messery SM, Ewida HA, Hassan GS, Raafat MM, Ewida MA, El-Subbagh HI. Synthesis, biological evaluation and molecular modeling study of new (1,2,4-triazole or 1,3,4-thiadiazole)-methylthio-derivatives of quinazolin-4(3 H )-one as DHFR inhibitors. Bioorg Chem 2017; 72:282-292. [DOI: 10.1016/j.bioorg.2017.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
29
|
Zhang GP, Pan JK, Zhang J, Wu ZX, Liu DY, Zhao L. Design, Synthesis, Antiviral Activities of Novel Phosphonate Derivatives Containing Quinazoline Based on Chalone Motif. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guo-Ping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang 550025 China
- Department of Chemistry; Huaibei Normal University; Huaibei 235000 China
| | - Jian-Ke Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang 550025 China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang 550025 China
| | - Zeng-Xue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang 550025 China
| | - Deng-Yue Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang 550025 China
| | - Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang 550025 China
| |
Collapse
|
30
|
Singla P, Luxami V, Paul K. Quinazolinone-benzimidazole conjugates: Synthesis, characterization, dihydrofolate reductase inhibition, DNA and protein binding properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:156-164. [DOI: 10.1016/j.jphotobiol.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
31
|
Abstract
INTRODUCTION Four isomeric structures of thiadiazole motifs have outstanding pharmacological inhibitory applications are reported in this review. Thiadiazole nucleus is present in several biologically active natural products and commercial drugs. Most of thiadiazoles reported herein are emphasized to have broad spectrum of medicinal activities. Areas covered: This review represents the recent inhibitory activities of thiadiazole isomeric scaffolds and their broad-spectrum biological applications published as full texts during 2010-2016 as well as the patents published during 2005-2016. The inhibition areas covered included anti-inflammatory, antimicrobial, antitumor, antioxidant, antitubercular, antiviral, antileishmanial, anticonvulsant, herbicidal and algicidal activities in addition to enzymes, human platelet aggregation and neuroprotective inhibitors. Expert opinion: This survey revealed very interesting data about the applications of thiadiazoles, where some synthetic or natural thiadiazole derivatives were components of drugs available in the market. Many thiadiazole derivatives can be considered as lead compounds for drug synthesis. The most inhibitory active 1,3,4-thiadiazole compounds are those incorporating secondary alkyl(aryl)amido- and/or benzylthio(mercapto) groups at positions 2 and 5. Several thiadiazole derivatives demonstrated higher antibacterial, antitumor and antiviral activities than the standard drugs. Some thiadiazole derivatives exhibited high selective enzymes inhibitory activities based on the electronic properties of the substituents at positions 2 or 5.
Collapse
Affiliation(s)
- Kamal M Dawood
- a Department of Chemistry, Faculty of Science , Kuwait University , Safat , Kuwait.,b Department of Chemistry, Faculty of Science , Cairo University , Giza , Egypt
| | - Thoraya A Farghaly
- b Department of Chemistry, Faculty of Science , Cairo University , Giza , Egypt.,c Department of Chemistry, Faculty of Applied Science , Umm Al-Qura University , Makkah Almukkarramah , Saudi Arabia
| |
Collapse
|
32
|
El-Messery SM, Hassan GS, Nagi MN, Habib ESE, Al-Rashood ST, El-Subbagh HI. Synthesis, biological evaluation and molecular modeling study of some new methoxylated 2-benzylthio-quinazoline-4(3H)-ones as nonclassical antifolates. Bioorg Med Chem Lett 2016; 26:4815-4823. [PMID: 27554444 DOI: 10.1016/j.bmcl.2016.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 11/26/2022]
Abstract
A new series of 2,3,6-substituted-quinazolin-4-ones was designed, synthesized, and evaluated for their in vitro DHFR inhibition, antimicrobial, and antitumor activities. Compounds 28 and 61 proved to be active DHFR inhibitors with IC50 0.02 and 0.01μM, respectively. Molecular modeling studies concluded that recognition with the key amino acid Phe34 is essential for binding and hence DHFR inhibition. Compounds 34, 56 and 66 showed broad spectrum antimicrobial activity comparable to Gentamicin and Ciprofloxacin. Compounds 40 and 64 showed broad spectrum antitumor activity toward several tumor cell lines and proved to be 10 fold more active than 5-FU, with GI50 MG-MID values of 2.2 and 2.4μM, respectively.
Collapse
Affiliation(s)
- Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| | - Ghada S Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mahmoud N Nagi
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - El-Sayed E Habib
- Department of Pharmaceutics and Pharmaceutical Technology (Microbiology), College of Pharmacy, Taibah University, Almadinah Almunawwarah 344, Saudi Arabia; Department of Microbiology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Sarah T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University, 12311 Cairo, Egypt.
| |
Collapse
|
33
|
Marzaro G, Castagliuolo I, Schirato G, Palu' G, Dalla Via M, Chilin A, Brun P. Substituted quinazolinones as kinase inhibitors endowed with anti-fibrotic properties. Eur J Med Chem 2016; 115:416-25. [DOI: 10.1016/j.ejmech.2016.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/30/2022]
|
34
|
Singla P, Luxami V, Paul K. Synthesis, in vitro antitumor activity, dihydrofolate reductase inhibition, DNA intercalation and structure-activity relationship studies of 1,3,5-triazine analogues. Bioorg Med Chem Lett 2015; 26:518-523. [PMID: 26670841 DOI: 10.1016/j.bmcl.2015.11.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/27/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
A series of triazine-benzimidazoles with 4-fluoroaniline substitution has been designed and synthesized. These compounds were further substituted with different primary and secondary amines. The structures of newly synthesized compounds were confirmed by (1)H, (13)C NMR, mass spectrometry and, in case of compound 18, by single crystal X-ray diffraction analysis. The newly synthesized compounds were evaluated against 60 human tumor cell lines at one dose and five dose concentration levels. Compounds 7, 8 and 22 have been found to be the most active antitumor agents with GI50 values of 1.77, 1.94 and 2.87μM, respectively. The synthesized compounds were then evaluated for their inhibitory activity to mammalian dihydrofolate reductase. Compound 22 was depicted as the most active compound for the inhibition of dihydrofolate reductase with IC50 value of 2.0nM. DNA binding studies were also revealed strong interacting properties of triazine derivatives towards calf thymus-DNA.
Collapse
Affiliation(s)
- Prinka Singla
- School of Chemistry and Biochemistry, Thapar University, Patiala 147001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar University, Patiala 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar University, Patiala 147001, India.
| |
Collapse
|
35
|
Synthesis, antiviral activity, 3D-QSAR, and interaction mechanisms study of novel malonate derivatives containing quinazolin-4(3H)-one moiety. Bioorg Med Chem Lett 2015; 26:168-73. [PMID: 26598463 DOI: 10.1016/j.bmcl.2015.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 11/22/2022]
Abstract
A series of novel malonate derivatives containing quinazolin-4(3H)-one moiety were synthesized and evaluated for their antiviral activities against cucumber mosaic virus (CMV). Results indicated that the title compounds exhibited good antiviral activities. Notably, compounds g15, g16, g17, and g18 exhibited excellent curative activities in vivo against CMV, with 50% effective concentration (EC50) values of 208.36, 153.78, 181.47, and 164.72μg/mL, respectively, which were better than that of Ningnanmycin (256.35μg/mL) and Ribavirin (523.34μg/mL). Moreover, statistically valid three-dimensional quantitative structure-activity relationship (3D-QSAR) models with good correlation and predictive power were obtained with comparative molecular field analysis (CoMFA) steric and electrostatic fields (r(2)=0.990, q(2)=0.577) and comparative molecular similarity indices analysis (CoMSIA) with combined steric, electrostatic, hydrophobic and hydrogen bond acceptor fields (r(2)=0.977, q(2)=0.516), respectively. Based on those models, compound g25 was designed, synthesized, and showed better curative activity (146.30μg/mL) than that of compound g16. The interaction of between cucumber mosaic virus coat protein (CMV CP) and g25 with 1:1.83 ratio is typically spontaneous and exothermic with micromole binding affinity by isothermal titration calorimetry (ITC) and fluorescence spectroscopy investigation.
Collapse
|
36
|
Li Y, Ganesh T, Diebold BA, Zhu Y, McCoy JW, Smith SME, Sun A, Lambeth JD. Thioxo-dihydroquinazolin-one Compounds as Novel Inhibitors of Myeloperoxidase. ACS Med Chem Lett 2015; 6:1047-52. [PMID: 26487910 DOI: 10.1021/acsmedchemlett.5b00287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/31/2015] [Indexed: 01/25/2023] Open
Abstract
Myeloperoxidase (MPO) is a key antimicrobial enzyme, playing a normal role in host defense, but also contributing to inflammatory conditions including neuroinflammatory diseases such as Parkinson's and Alzheimer's. We synthesized and characterized more than 50 quinazolin-4(1H)-one derivatives and showed that this class of compounds inhibits MPO with IC50 values as low as 100 nM. Representative compounds showed partially reversible inhibition that was competitive with respect to Amplex Red substrate and did not result in the accumulation of MPO Compound II. Members of this group show promise for therapeutic development for the treatment of diseases in which inflammation plays a pathogenic role.
Collapse
Affiliation(s)
- Yang Li
- Department
of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Thota Ganesh
- Department
of Pharmacology, Emory University, Atlanta, Georgia 30322, United States
| | - Becky A. Diebold
- Department
of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Yerun Zhu
- Department
of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - James W. McCoy
- Department
of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Susan M. E. Smith
- Department
of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia 30144, United States
| | - Aiming Sun
- Department
of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - J. David Lambeth
- Department
of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|