1
|
Azimi F, Mahdavi M, Khoshneviszadeh M, Shafiee F, Azimi M, Hassanzadeh F, Haji Ashrafee F. Kinetic studies, molecular docking, and antioxidant activity of novel 1,3-diphenyl pyrazole-thiosemicarbazone with anti-tyrosinase and anti-melanogenesis properties. Bioorg Chem 2024; 152:107722. [PMID: 39213796 DOI: 10.1016/j.bioorg.2024.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study reports the Design Hypothesis of a novel series of 1,3-diphenyl pyrazole-thiosemicarbazone as novel tyrosinase inhibitors (TYRI). The designed compounds were prepared and their TYRI activity and mechanisms were studied. The results showed that the selected compounds exhibited potent tyrosinase inhibitory activities greater than that of kojic acid (KA). Lead candidates, denoted as 6g and 6n, with a para-hydroxyphenyl group attached to the 3-position of the pyrazole ring demonstrated IC50 values of 2.09 and 3.18 µM, respectively. The potency of these compounds was approximately 5-8 times higher than that of KA. The in vitro melanin content of 6g or 6n-treated melanoma cells resulted in significant efficacy in melanin reduction. The DPPH assay result revealed that the tyrosinase inhibition mechanism for these derivatives was independent of a redox effect and corresponded to the interaction with tyrosinase. According to the Lineweaver-Burk plot, the most potent compounds, 6g and 6n, exhibit a mixed type of inhibition, primarily noncompetitive inhibition. In silico molecular docking studies were employed to determine the binding mode and explore the Design Hypothesis in detail. The results suggested that these compounds could be considered promising leads for the further development of novel inhibitors to treat disorders related to tyrosinase.
Collapse
Affiliation(s)
- Fateme Azimi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shafiee
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | - Mahin Azimi
- Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Farshid Hassanzadeh
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | | |
Collapse
|
2
|
Mortada S, Guerrab W, Missioui M, Salhi N, Naceiri Mrabti H, Rouass L, Benkirane S, Hassane M, Masrar A, Mezzour H, Faouzi MEA, Ramli Y. Synthesis, design, in silico, in vitro and in vivo (streptozotocin-induced diabetes in mice) biological evaluation of novels N-arylacetamide derivatives. J Biomol Struct Dyn 2024; 42:6711-6725. [PMID: 37583282 DOI: 10.1080/07391102.2023.2246574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
The organic compounds 2-chloro-N-(aryl)acetamide (Ps13-Ps18) and 2-azido-N-(aryl)acetamide (148-153) were synthesized and analyzed using 1 H, 13C NMR. The acute oral toxicity study was carried out according to OECD guidelines, which approve that the compounds (Ps18 and 153) were nontoxic. In addition, the compounds were evaluated for its antidiabetic and antihyperglycemic properties (in vitro and in vivo) and for antioxidant activity by utilizing several tests as 1,1-diphenyl2-picrylhydrazyl DPPH, (2,2'-azino-bis(3-ethyl benzthiazoline-6-sulfonicacid) ABTS, reducing power test FRAP and hydrogen peroxide activity H2O2. The molecular docking studies were performed to investigate the antidiabetic activity of Ps18 and 153 and compared with the experimental results. These compounds are a potent antidiabetic from both the experimental and molecular docking results. Finally, the physicochemical, pharmacokinetic and toxicological properties of Ps18 and 153 have been evaluated by using in silico absorption, distribution, metabolism, excretion and toxicity analysis prediction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Salma Mortada
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Najoua Salhi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- The Higher Institute of Nursing Professions and Health Techniques (ISPITS), Casablanca, Morocco
| | - Lamiaa Rouass
- UPR D'anatomie et Cytologie Pathologiques, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Souad Benkirane
- Laboratoire Central D'hématologie, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Mamad Hassane
- Laboratoire Central D'hématologie, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Azlarab Masrar
- Laboratoire Central D'hématologie, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Hicham Mezzour
- Laboratoire de Biologie de Larache (LBL), Larache, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
| |
Collapse
|
3
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
4
|
Yang YS, Man RJ, Xu JF, Wang CY, Wang X, Li DD, Zhu HL. Discovery of novel 1,3-diaryl pyrazolyl ester derivatives as COX-2 inhibitory candidates with anti-tumor effect. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
6
|
Ismail MF, Madkour HMF, Salem MS, Mohamed AMM, Aly AF. Design, synthesis and insecticidal activity of new 1,3,4-thiadiazole and 1,3,4-thiadiazolo[3,2-a]pyrimidine derivatives under solvent-free conditions. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1945106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahmoud F. Ismail
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt Abbassia
| | - Hassan M. F. Madkour
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt Abbassia
| | - Marwa S. Salem
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt Abbassia
| | - Ali M. M. Mohamed
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt Abbassia
| | - Aly Fahmy Aly
- Central Agricultural Pesticide Lab., Pesticide Formulations Department, Agricultural research Center, Giza, Egypt Dokky
| |
Collapse
|
7
|
Kanso F, Khalil A, Noureddine H, El-Makhour Y. Therapeutic perspective of thiosemicarbazones derivatives in inflammatory pathologies: A summary of in vitro/in vivo studies. Int Immunopharmacol 2021; 96:107778. [PMID: 34162145 DOI: 10.1016/j.intimp.2021.107778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Following induction of inflammation, the nuclear factor kappa B (NF-κB) in activated macrophages induces the transcription of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase (COX), an inflammatory enzyme implicated in the synthesis of prostaglandins (PGs). The latter are involved in the transition and the maintenance of chronic inflammation underling various chronic disorders that require treatment. Concerning this, many anti-inflammatory drugs are available to treat the inflammatory disorders, but their therapeutic use is associated with a variety of side effects. Therefore, the discovery of new safer and potential anti-inflammatory drugs is necessary. In this regard, thiosemicarbazones (TSC) compounds and their metals complexes attracted high interest due to their wide range of biological activities, interestingly, the anti-inflammatory activity. They are formed by the action of thiosemicarbazide on an aldehyde or ketone, and contain a sulfur atom in place of the oxygen atom. Their ability to form a stable complex with transition metal is known to enhances the biological activity and reduces the side effects of the parent compound. Thus, this review article describes the inflammatory response mediated by NF-κB-COX-PGs and summarizes the anti-inflammatory activity of different thiosemicarbazones derivatives synthesized in research area.
Collapse
Affiliation(s)
- Fatima Kanso
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| | - Alia Khalil
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| | - Hiba Noureddine
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| | - Yolla El-Makhour
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| |
Collapse
|
8
|
Arshad M, Khan MS, Nami SAA. Norfloxacin Analogues: Drug Likeness, Synthesis, Biological, and Molecular Docking Assessment. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Design, synthesis and molecular docking of new pyrazole-thiazolidinones as potent anti-inflammatory and analgesic agents with TNF-α inhibitory activity. Bioorg Chem 2021; 111:104827. [PMID: 33798845 DOI: 10.1016/j.bioorg.2021.104827] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
A new set of derivatives bearing pyrazole-methylenehydrazono-thiazolidinone scaffold 4-23 was designed, synthesized and confirmed by different spectroscopic means and elemental analyses. In-vivo anti-inflammatory and ulcerogenic evaluation was performed for all the newly synthesized derivatives using indomethacin, celecoxib and diclofenac as standard drugs. The compounds 5, 10, 15, 17, 21, 22 appeared to be the most promising candidates producing rapid onset and long duration of anti-inflammatory activity as well as promising GIT safety profile. Furthermore, analgesic evaluation revealed that the compounds 5, 10, 15 and 22 produced potent and long acting analgesia accompanied with significant inhibition of the inflammatory cytokine TNF-α level in comparison with the standard drugs. Molecular docking study of the latter derivatives was also carried out to rationalize their binding affinities and their modes of interactions with the active site of TNF-α.
Collapse
|
10
|
Prasher P, Sharma M. "Azole" as privileged heterocycle for targeting the inducible cyclooxygenase enzyme. Drug Dev Res 2020; 82:167-197. [PMID: 33137216 DOI: 10.1002/ddr.21753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
An over-expression of COX-2 isoenzyme belonging to the Cyclooxygenase Enzyme Family triggers the overproduction of pro-inflammatory prostaglandins that instigate the development of chronic inflammation and related disorders. Hence, the rationally designed drugs for mitigating over-activity of COX-2 isoenzyme play a regulatory role toward the alleviation of the progression of these disorders. However, a selective COX-2 inhibition chemotherapy prompts several side effects that necessitate the identification of novel molecular scaffolds for deliberating state-of-the-art drug designing strategies. The heterocyclic "azole" scaffold, being polar and hydrophilic, possesses remarkable physicochemical advantages for designing physiologically active molecules capable of interacting with a wide range of biological components, including enzymes, peptides, and metabolites. The substituted derivatives of azole nuclei enable a comprehensive SAR analysis for the appraisal of bioactive profile of the deliberated molecules for obtaining the rationally designed compounds with prominent activities. The comprehensive SAR analysis readily prompted the identification of Y-shaped molecules and the eminence of bulkier group for COX-2 selective inhibition. This review presents an epigrammatic collation of the pharmacophore-profile of the chemotherapeutics based on azole motif for a selective targeting of the COX-2 isoenzyme.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun, India
| |
Collapse
|
11
|
Ebenezer O, Singh-Pillay A, Koorbanally NA, Singh P. Antibacterial evaluation and molecular docking studies of pyrazole-thiosemicarbazones and their pyrazole-thiazolidinone conjugates. Mol Divers 2020; 25:191-204. [PMID: 32086698 DOI: 10.1007/s11030-020-10046-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/31/2020] [Indexed: 01/07/2023]
Abstract
A library of pyrazole-thiazolidinone conjugates was synthesized using a molecular hybridization approach through a Vilsmeier-Haack reaction. The compounds were tested for anti-microbial activity against two Gram-positive bacteria (Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) and four Gram-negative bacteria (Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia and Pseudomonas aeruginosa). Among the compounds tested, 3-((2,4-dichlorophenyl)-1-(2,4-dinitrophenyl)-1H-pyrazol-yl)methylene)hydrazinecarbothioamide (3a) and 2-((3-(2-chlorophenyl)-1-(2,4 dinitrophenyl)-1H-pyrazol-4-yl)methyleneamino)thiazolidin-4-one (4b) emerged as the most potent anti-microbial compounds with minimum bactericidal concentrations of < 0.2 µM against MRSA and S. aureus. Structure-activity relationship analysis further revealed that the presence of 2,4-dichloro moiety surprisingly influenced the activity of the compounds. Molecular docking studies of the compounds into the crystal structure of topoisomerase II and topoisomerase IV suggest that compounds 3a and 4b preferably interact with the targets through hydrogen bonding.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Ashona Singh-Pillay
- School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Neil A Koorbanally
- School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.
| | - Parvesh Singh
- School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
12
|
Recyclization of 4H-chromen-4-imine derivatives under the influence of dinucleophiles with the formation of functionally substituted pyrazoles. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
A synthesis of N-(1H-pyrazol-5-yl)-1,3,4-thiadiazol-2(3H)-imines from nitrile imines and Erlenmeyer thioazlactones. Mol Divers 2019; 24:727-735. [PMID: 31350636 DOI: 10.1007/s11030-019-09981-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Erlenmeyer thioazlactones are reacted with hydrazonoyl chlorides in the presence of Et3N to afford functionalized N-(1H-pyrazol-5-yl)-1,3,4-thiadiazol-2(3H)-imines in excellent yields. This strategy is based on a domino double 1,3-dipolar cycloaddition reaction of nitrile imines to Erlenmeyer thioazlactones, followed by the elimination of carbon monoxide and phenylmethanthiol from the initially formed cycloadducts. This method provides fast access to a variety of structurally diverse N-(1H-pyrazol-5-yl)-1,3,4-thiadiazol-2(3H)-imines. The structure of a typical product was established by X-ray crystallography.
Collapse
|
14
|
Gonzaga DTG, Oliveira FH, von Ranke NL, Pinho GQ, Salles JP, Bello ML, Rodrigues CR, Castro HC, de Souza HVCM, Reis CRC, Leme RPP, Mafra JCM, Pinheiro LCS, Hoelz LVB, Boechat N, Faria RX. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New Thiadiazole Derivatives as Potent P2X7 Receptor Inhibitors. Front Chem 2019; 7:261. [PMID: 31134177 PMCID: PMC6511888 DOI: 10.3389/fchem.2019.00261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
Twenty new 2-(1H-pyrazol-1-yl)-1,3,4-thiadiazole analogs were synthetized to develop P2X7 receptor (P2X7R) inhibitors. P2X7R inhibition in vitro was evaluated in mouse peritoneal macrophages, HEK-293 cells transfected with hP2X7R (dye uptake assay), and THP-1 cells (IL-1β release assay). The 1-(5-phenyl-1,3,4-thiadiazol-2-yl)-1H-pyrazol-5-amine derivatives 9b, 9c, and 9f, and 2-(3,5-dimethyl-1H-pyrazol-1-yl)-5-(4-fluorophenyl)-1,3,4-thiadiazole (11c) showed inhibitory effects with IC50 values ranging from 16 to 122 nM for reduced P2X7R-mediated dye uptake and 20 to 300 nM for IL-1β release. In addition, the in vitro ADMET profile of the four most potent derivatives was determined to be in acceptable ranges concerning metabolic stability and cytotoxicity. Molecular docking and molecular dynamics simulation studies of the molecular complexes human P2X7R/9f and murine P2X7R/9f indicated the putative intermolecular interactions. Compound 9f showed affinity mainly for the Arg268, Lys377, and Asn266 residues. These results suggest that 2-(1H-pyrazol-1-yl)-1,3,4-thiadiazole analogs may be promising novel P2X7R inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Daniel T G Gonzaga
- Departamento de Síntese de Fármacos Manguinhos, Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil.,Instituto Biomédico, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, Brazil
| | - Felipe H Oliveira
- Laboratório de Toxoplasmose e Outras Protozooses, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - N L von Ranke
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Q Pinho
- Laboratório de Toxoplasmose e Outras Protozooses, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Juliana P Salles
- Laboratório de Toxoplasmose e Outras Protozooses, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Murilo L Bello
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos R Rodrigues
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena C Castro
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular-LABiEMol, Universidade Federal Fluminense, Niterói, Brazil
| | - Hellen V C M de Souza
- Departamento de Síntese de Fármacos Manguinhos, Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Caroline R C Reis
- Departamento de Síntese de Fármacos Manguinhos, Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Rennan P P Leme
- Departamento de Síntese de Fármacos Manguinhos, Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - João C M Mafra
- Departamento de Síntese de Fármacos Manguinhos, Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Luiz C S Pinheiro
- Departamento de Síntese de Fármacos Manguinhos, Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Lucas V B Hoelz
- Departamento de Síntese de Fármacos Manguinhos, Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Nubia Boechat
- Departamento de Síntese de Fármacos Manguinhos, Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Robson X Faria
- Instituto Biomédico, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Gouda AM, Almalki FA. Carprofen: a theoretical mechanistic study to investigate the impact of hydrophobic interactions of alkyl groups on modulation of COX-1/2 binding selectivity. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0335-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
16
|
Karaca Gençer H, Acar Çevik U, Kaya Çavuşoğlu B, Sağlık BN, Levent S, Atlı Ö, Ilgın S, Özkay Y, Kaplancıklı ZA. Design, synthesis, and evaluation of novel 2-phenylpropionic acid derivatives as dual COX inhibitory-antibacterial agents. J Enzyme Inhib Med Chem 2019; 32:732-745. [PMID: 28413890 PMCID: PMC6445163 DOI: 10.1080/14756366.2017.1310726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Hülya Karaca Gençer
- a Department of Pharmaceutical Microbiology, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Ulviye Acar Çevik
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey.,c Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Betül Kaya Çavuşoğlu
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Begüm Nurpelin Sağlık
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey.,c Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Serkan Levent
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey.,c Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Özlem Atlı
- d Department of Pharmaceutical Toxicology, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Sinem Ilgın
- d Department of Pharmaceutical Toxicology, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Yusuf Özkay
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey.,c Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Zafer Asım Kaplancıklı
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| |
Collapse
|
17
|
Gondru R, Peddi SR, Manga V, Khanapur M, Gali R, Sirassu N, Bavantula R. One-pot synthesis, biological evaluation and molecular docking studies of fused thiazolo[2,3-b]pyrimidinone-pyrazolylcoumarin hybrids. Mol Divers 2018; 22:943-956. [PMID: 29968120 DOI: 10.1007/s11030-018-9845-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/14/2018] [Indexed: 11/27/2022]
Abstract
As a part of our endeavor toward the synthesis of a new class of biologically potent heterocyclic hybrids, a series of newly fused thiazolo[2,3-b]pyrimidinones bearing a pyrazolylcoumarin moiety (6a-p) were synthesized in acceptable yields. Anticipated structures of all titled compounds were in agreement with spectral and analytical (C, H and N) analyses. The compounds were screened for in vitro antibacterial activity against both G+ and G- bacterial strains and antiproliferative activity against K562 (chronic myelogenous leukemia), MCF-7 (breast cancer), MDA-MB-231 (breast cancer), COLO 205 (colorectal adenocarcinoma), HepG2 (hepatocellular carcinoma) cell lines. Further, potent antibacterial compounds were subjected to molecular docking studies in order to gain insight into their plausible binding modes and mechanism of action against MurB. The modeling results were in agreement with the experimental data.
Collapse
Affiliation(s)
- Ramesh Gondru
- Department of Chemistry, National Institute of Technology, Warangal, Telangana State, 506004, India
| | - Saikiran Reddy Peddi
- Department of Chemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Vijjulatha Manga
- Department of Chemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Manjulatha Khanapur
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India
| | - Rajitha Gali
- Department of Chemistry, National Institute of Technology, Warangal, Telangana State, 506004, India
| | - Narsimha Sirassu
- Department of Chemistry, Kakatiya University, Warangal, Telangana State, 506 009, India
| | - Rajitha Bavantula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana State, 506004, India.
| |
Collapse
|
18
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 458] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
19
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
20
|
Garg V, Kumar P, Verma AK. Chemo-, Regio-, and Stereoselective N-Alkenylation of Pyrazoles/Benzpyrazoles Using Activated and Unactivated Alkynes. J Org Chem 2017; 82:10247-10262. [PMID: 28861995 DOI: 10.1021/acs.joc.7b01746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transition-metal-free chemo-, regio-, and stereoselective synthesis of (Z) and (E) styryl pyrazoles and benzpyrazoles by the addition of N-heterocycles onto functionalized terminal and internal alkynes using a super basic solution of KOH/DMSO has been described. The stereochemical outcome of the reaction was governed by time and quantity of the base. The reaction of pyrazoles and benzpyrazoles onto alkynes takes place chemoselectively without affecting the free -NH2 group of pyrazoles and -OH group of alkynes. The designed protocol was well implemented on alkynes bearing long alkyl chain, an alicyclic ring, hydroxy, ether, and ester functionality, which offer the N-alkenylated products in good yields. This developed methodology also provides easy access for the synthesis of bis-vinylated heterocycles. The presence of free -NH2, -OH, -COOR, and halo group in styryl pyrazoles, could be further utilized for synthetic elaboration, which is advantageous for biological evaluation. For the first time, we have disclosed the base-mediated conversion of (Z)-styryl pyrazoles to (E)-styryl pyrazoles in KOH/DMSO system. The cis-trans isomerization was supported by the control experiments and deuterium labeling studies.
Collapse
Affiliation(s)
- Vineeta Garg
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi , Delhi 110007, India
| | - Pradeep Kumar
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi , Delhi 110007, India
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi , Delhi 110007, India
| |
Collapse
|
21
|
Potential anti-inflammatory effect of LQFM-021 in carrageenan-induced inflammation: The role of nitric oxide. Nitric Oxide 2017; 69:35-44. [DOI: 10.1016/j.niox.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
|
22
|
Pogaku V, Eslavath RK, Dayakar G, Singh SS, Basavoju S. Synthesis and biological evaluation of novel triazole substituted pyrazolyl-methylenehydrazinyl-5-arylidene thiazolidinone derivatives as antibacterial and cytotoxic agents. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2978-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Design and Synthesis of Novel Pyrazole-Substituted Different Nitrogenous Heterocyclic Ring Systems as Potential Anti-Inflammatory Agents. Molecules 2017; 22:molecules22040512. [PMID: 28338602 PMCID: PMC6154115 DOI: 10.3390/molecules22040512] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
With the aim of developing novel anti-inflammatory scaffolds, a new series of pyrazole-substituted various nitrogenous heterocyclic ring systems at C-4 position were synthesized through different chemical reactions and validated by means of spectral and elemental data. The new obtained compounds were investigated for their anti-inflammatory activity using the carrageenan-induced paw edema standard technique and revealed that, compound 6b showed increased potency with % inhibition of edema 85.23 ± 1.92 and 85.78 ± 0.99, respectively, higher than the standard reference drugs indomethacin and celebrex (72.99% and 83.76%). Molecular modeling studies were initiated herein to validate the attained pharmacological data and provide understandable evidence for the observed anti-inflammatory behavior.
Collapse
|
24
|
Synthesis and biological evaluation of 1,3,4-trisubstituted pyrazole analogues as anti-mycobacterial agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1821-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Abstract
INTRODUCTION Four isomeric structures of thiadiazole motifs have outstanding pharmacological inhibitory applications are reported in this review. Thiadiazole nucleus is present in several biologically active natural products and commercial drugs. Most of thiadiazoles reported herein are emphasized to have broad spectrum of medicinal activities. Areas covered: This review represents the recent inhibitory activities of thiadiazole isomeric scaffolds and their broad-spectrum biological applications published as full texts during 2010-2016 as well as the patents published during 2005-2016. The inhibition areas covered included anti-inflammatory, antimicrobial, antitumor, antioxidant, antitubercular, antiviral, antileishmanial, anticonvulsant, herbicidal and algicidal activities in addition to enzymes, human platelet aggregation and neuroprotective inhibitors. Expert opinion: This survey revealed very interesting data about the applications of thiadiazoles, where some synthetic or natural thiadiazole derivatives were components of drugs available in the market. Many thiadiazole derivatives can be considered as lead compounds for drug synthesis. The most inhibitory active 1,3,4-thiadiazole compounds are those incorporating secondary alkyl(aryl)amido- and/or benzylthio(mercapto) groups at positions 2 and 5. Several thiadiazole derivatives demonstrated higher antibacterial, antitumor and antiviral activities than the standard drugs. Some thiadiazole derivatives exhibited high selective enzymes inhibitory activities based on the electronic properties of the substituents at positions 2 or 5.
Collapse
Affiliation(s)
- Kamal M Dawood
- a Department of Chemistry, Faculty of Science , Kuwait University , Safat , Kuwait.,b Department of Chemistry, Faculty of Science , Cairo University , Giza , Egypt
| | - Thoraya A Farghaly
- b Department of Chemistry, Faculty of Science , Cairo University , Giza , Egypt.,c Department of Chemistry, Faculty of Applied Science , Umm Al-Qura University , Makkah Almukkarramah , Saudi Arabia
| |
Collapse
|
26
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
27
|
Arylhydrazone derivatives of naproxen as new analgesic and anti-inflammatory agents: Design, synthesis and molecular docking studies. J Mol Graph Model 2016; 67:127-36. [DOI: 10.1016/j.jmgm.2016.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/10/2016] [Accepted: 05/20/2016] [Indexed: 11/19/2022]
|
28
|
de Oliveira JF, Nonato FR, Zafred RRT, Leite NMS, Ruiz ALTG, de Carvalho JE, da Silva AL, de Moura RO, Alves de Lima MDC. Evaluation of anti-inflammatory effect of derivative ( E )- N -(4-bromophenyl)-2-(thiophen-2-ylmethylene)-thiosemicarbazone. Biomed Pharmacother 2016; 80:388-392. [DOI: 10.1016/j.biopha.2016.03.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 11/26/2022] Open
|
29
|
Pires Gouvea D, Vasconcellos FA, Dos Anjos Berwaldt G, Neto ACPS, Fischer G, Sakata RP, Almeida WP, Cunico W. 2-Aryl-3-(2-morpholinoethyl)thiazolidin-4-ones: Synthesis, anti-inflammatory in vivo, cytotoxicity in vitro and molecular docking studies. Eur J Med Chem 2016; 118:259-65. [PMID: 27131068 DOI: 10.1016/j.ejmech.2016.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/16/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
Seven new 4-thiazolidinones bearing the morpholino moiety were easily synthesized by one-pot reactions of 4-(2-aminoethyl)morpholine (2-morpholinoethylamine), arenealdehydes and mercaptoacetic acid refluxing toluene for 19 h with moderate to good yields (45-97%). These novel compounds were fully identified and characterized by NMR spectroscopy and mass spectrometry. Thiazolidin-4-ones in vivo anti-inflammatory activities were determined using a croton oil-induced ear edema model of inflammation in BALB C mice. The best results were found for compounds 4c (49.20 mmol/kg), 4d (49.20 mmol/kg) and 4f (52.48 mmol/kg), which showed the ability to decrease the ear edema in mice by 50%, 48% and 54%, respectively, when compared to the standard drug indomethacin. In addition, the in vitro cytotoxicity activity of thiazolidin-4-ones against Vero cells was also performed and four compounds (4a, 4c, 4d and 4f) showed no toxic effect at 500 μg/mL. A docking simulation of compounds into the 1Q4G (COX-1) and 4PH9 (COX-2) enzymes binding site was conducted. This preliminary result will guide us in for further studies to improve the anti-inflammatory activity.
Collapse
Affiliation(s)
- Daniela Pires Gouvea
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimento, Universidade Federal de Pelotas, Brazil
| | - Flávia Aleixo Vasconcellos
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimento, Universidade Federal de Pelotas, Brazil.
| | - Gabriele Dos Anjos Berwaldt
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimento, Universidade Federal de Pelotas, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Laboratório do Grupo de Estudos em Doenças Transmitidas por Animais, Faculdade de Veterinária, Universidade Federal de Pelotas, Brazil
| | - Gerferson Fischer
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal de Pelotas, Brazil
| | - Renata Parruca Sakata
- Laboratório de Desenvolvimento de Fármacos, Instituto de Química e Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Brazil
| | - Wanda Pereira Almeida
- Laboratório de Desenvolvimento de Fármacos, Instituto de Química e Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Brazil
| | - Wilson Cunico
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimento, Universidade Federal de Pelotas, Brazil.
| |
Collapse
|
30
|
Abstract
INTRODUCTION The hybridization of biologically active molecules is a powerful tool for drug discovery used to target a variety of diseases. It offers the prospect of better drugs for the treatment of a number of illnesses including cancer, malaria, tuberculosis and AIDS. Hybrid drugs can provide combination therapies in a single multi-functional agent and, by doing so, be more specific and powerful than conventional classic treatments. This research field is in great expansion and attracts many researchers worldwide. AREA COVERED This review covers the main research published between early 2013 to mid-2015 and takes into account several previous reviews on the subject. Its intention is to showcase the most recent advances reported towards the development of molecular hybrids in drug discovery. Particular attention is given to anticancer hybrids throughout the review. EXPERT OPINION Current advances show that molecular hybrids of biologically active molecules can lead to powerful therapeutics. Natural products play a key role in this field. It is also believed that toxin hybrids present a great opportunity for future progress and should be further explored. Furthermore, the synthesis of hybrid organometallics should be systematically studied as it can lead to potent drugs. The crucial requirement for growth still remains the efficacy of synthesis. Hence, the development of efficient synthetic methods allowing rapid access to diverse series of hybrids must be further investigated by researchers.
Collapse
Affiliation(s)
- Gervais Bérubé
- a Département de Chimie, Biochimie et Physique , Université du Québec à Trois-Rivières , Québec , Canada
| |
Collapse
|
31
|
Andleeb H, Tehseen Y, Ali Shah SJ, Khan I, Iqbal J, Hameed S. Identification of novel pyrazole–rhodanine hybrid scaffolds as potent inhibitors of aldose reductase: design, synthesis, biological evaluation and molecular docking analysis. RSC Adv 2016. [DOI: 10.1039/c6ra14531k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel pyrazole–rhodanine derivatives was designed, synthesized, and biologically evaluated for their potential inhibitory effect on both aldehyde reductase (ALR1) and aldose reductase (ALR2).
Collapse
Affiliation(s)
- Hina Andleeb
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Yildiz Tehseen
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Syed Jawad Ali Shah
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Imtiaz Khan
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
| | - Shahid Hameed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad-45320
- Pakistan
| |
Collapse
|
32
|
Ren ZL, Zhang J, Li HD, Chu MJ, Zhang LS, Yao XK, Xia Y, Lv XH, Cao HQ. Design, Synthesis and Biological Evaluation of α-Aminophosphonate Derivatives Containing a Pyrazole Moiety. Chem Pharm Bull (Tokyo) 2016; 64:1755-1762. [DOI: 10.1248/cpb.c16-00622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zi-Li Ren
- School of Plant Protection, Anhui Agricultural University
| | - Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Hai-dong Li
- School of Materials, The University of Manchester
| | - Ming-Jie Chu
- School of Plant Protection, Anhui Agricultural University
| | - Li-Song Zhang
- School of Plant Protection, Anhui Agricultural University
| | - Xiao-Kang Yao
- School of Plant Protection, Anhui Agricultural University
| | - Yong Xia
- School of Plant Protection, Anhui Agricultural University
| | - Xian-Hai Lv
- School of Plant Protection, Anhui Agricultural University
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University
| |
Collapse
|
33
|
Thabet HK, Ubeid MT, El-Feky SA. Synthesis of Novel 4-Thiazolidinones Linked by an Aryl Spacer to a 1,2,4-Triazine Moiety. JOURNAL OF CHEMICAL RESEARCH 2015. [DOI: 10.3184/174751915x14412838239915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of potentially biologically active hydrazones, Schiff's base and hybrid thiazolidine-triazine derivatives have been prepared from 4-[(5,6-diphenyl-1,2,4-triazin-3-yl)thio]-benzaldehyde. The latter was prepared by reacting 5,6-diphenyl-1,2,4-triazine-3(2H)-thione with 4-fluorobenzaldehyde. The derivatives were then prepared by condensation of the aldehyde with hydrazines, aniline and various thiazolidin-4-ones. Their structures were established by C,H,N analyses, IR and NMR spectra.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, 91911, PO 840, Saudi Arabia
- Department of Chemistry, Faculty of Science, Al-Azhar University, 11284, Nasr City, Cairo, Egypt
| | - Mustafa Turki Ubeid
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, 91911, PO 840, Saudi Arabia
| | - Said Ahmed El-Feky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, 91911, PO 840, Saudi Arabia
| |
Collapse
|