1
|
Giraudo A, Bolchi C, Pallavicini M, Di Santo R, Costi R, Saccoliti F. Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy. Pharmaceuticals (Basel) 2024; 18:28. [PMID: 39861091 PMCID: PMC11768348 DOI: 10.3390/ph18010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Plasmodium, Leishmania, and Trypanosoma parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite's diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities. However, via this approach, no information on biological target(s) and mechanisms of action of compounds are provided. Among the target deconvolution strategies useful to fill this gap, photoaffinity labeling (PAL) has emerged as one of most suited to enable investigation in a complex cellular environment. More recently, PAL has been exploited to unravel the molecular basis of bioactive compounds' function in live parasites, allowing elucidation of the mechanism of action of both approved drugs and new chemical entities. Besides highlighting new potential drug targets, PAL can provide valuable information on efficacy and liabilities of small molecules at the molecular level, which could be exploited to greatly facilitate the rational optimization of compounds in terms of potency and safety. In this review, we will report the most recent studies that have leveraged PAL to disclose the biological targets and mechanism of action of phenotypically active compounds targeting kinetoplastid diseases (i.e., human African trypanosomiasis, leishmaniasis, and Chagas disease) and malaria. Moreover, we will comment on potential perspectives that this innovative approach can provide in aiding the discovery and development of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Alessandro Giraudo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Francesco Saccoliti
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi “Link Campus University”, Via del Casale di S. Pio V 44, I-00165 Rome, Italy
| |
Collapse
|
2
|
Sabet R, Hatam G, Emami L, Ataollahi E, Zare F, Zamani L, Kazemi B, Jahromi MM, Sadeghian S, Khabnadideh S. Pyrazole derivatives as antileishmanial agents: Biological evaluation, molecular docking study, DFT analysis and ADME prediction. Heliyon 2024; 10:e40444. [PMID: 39660189 PMCID: PMC11629218 DOI: 10.1016/j.heliyon.2024.e40444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Leishmaniasis is a parasitic disease that is commonly found in tropical and sub-tropical regions. Currently, there is no protective antileishmanial vaccine, and the available clinical drugs have serious side effects. On the other hand, due to the emergence of multidrug-resistant strains of the causative pathogens, the study and design of novel antileishmanial agents is urgently needed. Accordingly, fourteen previously synthesized pyrazole and pyrano [2,3-c] pyrazole derivatives (P 1 -P 14 ) were evaluated for antileishmanial efficacy against the protozoan parasite, Leishmania major. Among the tested compounds, seven derivatives including P 1 , P 3 , P 5 , P 8 , P 12 , P 13 , and P 14 exhibited promising antileishmanial activity with IC50 values in the range of 34.79-43.55 μg/mL, compared to the standard drug (Glucantime) with an IC50 value of 97.31 μg/mL. In the case of pyrazole derivatives, P 1 , P 5 , and P 8 exhibited significant antileishmanial activity with IC50 values of 35.53, 36.79, and 37.40 μg/mL, respectively. The most potent antileishmanial activity is belong to P 12 and P 14 , with IC50 values of 34.79 and 38.51 μg/mL, respectively. Molecular docking outputs presented that P 12 and P 14 formed favorable interactions with key residues in the active site of the 14-alpha demethylase enzyme, which is an important target for antileishmanial agents. Various DFT parameters were also calculated for compounds P 1 and P 12 , which were the most and least active compounds, respectively. The outputs indicated that compound P 1 was more thermodynamically stable than P 12 . Additionally, P 1 had higher hardness and a higher energy gap, resulting in greater stability. In addition, these compounds showed satisfactory theoretical ADME properties. The present results indicate that the investigated pyrazole and pyrano [2,3-c] pyrazole derivatives can be considered as promising agents for the development of antileishmaniasis treatments.
Collapse
Affiliation(s)
- Razieh Sabet
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in infectious diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Ataollahi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Zamani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnaz Kazemi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Mohabati Jahromi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Sadeghian
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Khabnadideh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
de Oliveira Viana J, Sena Mendes M, Santos Castilho M, Olímpio de Moura R, Guimarães Barbosa E. Spiro-Acridine Compound as a Pteridine Reductase 1 Inhibitor: in silico Target Fishing and in vitro Studies. ChemMedChem 2024; 19:e202300545. [PMID: 38445815 DOI: 10.1002/cmdc.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Among the many neglected tropical diseases, leishmaniasis ranks second in mortality rate and prevalence. In a previous study, acridine derivatives were synthesized and tested for their antileishmanial activity against L. chagasi. The most active compound identified in that study (1) showed a single digit IC50 value against the parasite (1.10 μg/mL), but its macromolecular target remained unknown. Aiming to overcome this limitation, this work exploited inverse virtual screening to identify compound 1's putative molecular mechanism of action. In vitro assays confirmed that compound 1 binds to Leishmania chagasi pteridine reductase 1 (LcPTR1), with moderate affinity (Kd=33,1 μM), according to differential scanning fluorimetry assay. Molecular dynamics simulations confirm the stability of LcPTR1-compound 1 complex, supporting a competitive mechanism of action. Therefore, the workflow presented in this work successfully identified PTR1 as a macromolecular target for compound 1, allowing the designing of novel potent antileishmanial compounds.
Collapse
Affiliation(s)
- Jéssika de Oliveira Viana
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, University Campus I-Lagoa Nova, Natal, RN, 59078-970
| | - Marina Sena Mendes
- Department of Pharmacy, Federal University of Bahia, University Campus Ondina - Ondina, Salvador, BA, 40170-110
| | - Marcelo Santos Castilho
- Department of Pharmacy, Federal University of Bahia, University Campus Ondina - Ondina, Salvador, BA, 40170-110
| | - Ricardo Olímpio de Moura
- Department of Pharmacy, State University of Paraíba, University Campus I - Universitário, Campina, Grande - PB, 58429-500
| | - Euzébio Guimarães Barbosa
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, University Campus I-Lagoa Nova, Natal, RN, 59078-970
- Department of Pharmacy, Federal University of Rio Grande do Norte, University Campus I - Petrópolis, Natal, RN, 59012-570
| |
Collapse
|
4
|
Ciccone V, Diotallevi A, Gómez-Benmansour M, Maestrini S, Mantellini F, Mari G, Galluzzi L, Lucarini S, Favi G. Easy one-pot synthesis of multifunctionalized indole-pyrrole hybrids as a new class of antileishmanial agents. RSC Adv 2024; 14:15713-15720. [PMID: 38746834 PMCID: PMC11092366 DOI: 10.1039/d4ra02790f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 01/06/2025] Open
Abstract
A chemoselective one-pot synthesis of pharmaceutically prospective indole-pyrrole hybrids by the formal [3 + 2] cycloaddition of 3-cyanoacetyl indoles (CAIs) with 1,2-diaza-1,3-dienes (DDs) has been developed. The new indole-pyrrole hybrids were phenotypically screened for efficacy against Leishmania infantum promastigotes. The most active compounds 3c, 3d, and 3j showed IC50 < 20 μM and moderate cytotoxicity, lower than miltefosine. Compound 3d was the most active with IC50 = 9.6 μM and a selectivity index of 5. Consequently, 3d could be a new lead compound for the generation of a new class of antileishmanial hybrids.
Collapse
Affiliation(s)
- Vittorio Ciccone
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Miriam Gómez-Benmansour
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Sara Maestrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Fabio Mantellini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Giacomo Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| | - Gianfranco Favi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo 61029 Urbino (PU) Italy +39-0722303333 +39-0722303444
| |
Collapse
|
5
|
Duan SF, Song L, Guo HY, Deng H, Huang X, Shen QK, Quan ZS, Yin XM. Research status of indole-modified natural products. RSC Med Chem 2023; 14:2535-2563. [PMID: 38107170 PMCID: PMC10718587 DOI: 10.1039/d3md00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/19/2023] Open
Abstract
Indole is a heterocyclic compound formed by the fusion of a benzene ring and pyrrole ring, which has rich biological activity. Many indole-containing compounds have been sold on the market due to their excellent pharmacological activity. For example, vincristine and reserpine have been widely used in clinical practice. The diverse structures and biological activities of natural products provide abundant resources for the development of new drugs. Therefore, this review classifies natural products by structure, and summarizes the research progress of indole-containing natural product derivatives, their biological activities, structure-activity relationship and research mechanism which has been studied in the past 13 years, so as to provide a basis for the development of new drug development.
Collapse
Affiliation(s)
- Song-Fang Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Lei Song
- Yanbian University Hospital, Yanbian University Yanji 133002 People's Republic of China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xiu-Mei Yin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| |
Collapse
|
6
|
Recent advances on biologically active coumarin-based hybrid compounds. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Ahmadi S, Abdolmaleki A, Jebeli Javan M. In silico study of natural antioxidants. VITAMINS AND HORMONES 2022; 121:1-43. [PMID: 36707131 DOI: 10.1016/bs.vh.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antioxidants are the body's defense system against the damage of reactive oxygen species, which are usually produced in the body through various physiological processes. There are various sources of these antioxidants such as endogenous antioxidants in the body and exogenous food sources. This chapter provides important information on methods used to investigate antioxidant activity and sources of plant antioxidants. Over the past two decades, numerous studies have demonstrated the importance of in silico research in the development of novel natural and synthesized antioxidants. In silico methods such as quantitative structure-activity relationships (QSAR), pharmacophore, docking, and virtual screenings are play critical roles in designing effective antioxidants that may be synthesized and tested later. This chapter introduces the available in silico approaches for different classes of antioxidants. Many successful applications of in silico methods in the development and design of novel antioxidants are thoroughly discussed. The QSAR, pharmacophore, molecular docking techniques, and virtual screenings process summarized here would help readers to find out the proper mechanism for the interaction between the free radicals and antioxidant compounds. Furthermore, this chapter focuses on introducing new QSAR models in combination with other in silico methods to predict antioxidants activity and design more active antioxidants. In silico studies are essential to explore largely unknown plant tissue, food sources for antioxidant synthesis, as well as saving time and money in such studies.
Collapse
Affiliation(s)
- Shahin Ahmadi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Azizeh Abdolmaleki
- Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | - Marjan Jebeli Javan
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Kalhor S, Yarie M, Torabi M, Zolfigol MA, Rezaeivala M, Gu Y. Synthesis of 2-Amino-6-(1 H-Indol-3-yl)-4-Phenylnicotinonitriles and Bis(Indolyl) Pyridines Using a Novel Acidic Nanomagnetic Catalyst via a Cooperative Vinylogous Anomeric-Based Oxidation Mechanism. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1887296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Mohmmad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedam, Iran
| | - Majid Rezaeivala
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Tapkir SR, Patil RH, Galave SA, Phadtare GR, Khedkar VM, Garud DR. Synthesis, biological evaluation and molecular docking studies of quinoline‐conjugated 1,2,
3‐triazole
derivatives as antileishmanial agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandeep R. Tapkir
- Department of Chemistry Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Tilak road Pune India
| | - Rajendra H. Patil
- Department of Biotechnology Savitribai Phule Pune University Pune India
| | - Sharad A. Galave
- Department of Chemistry Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Tilak road Pune India
| | - Ganesh R. Phadtare
- Department of Chemistry Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Tilak road Pune India
| | | | - Dinesh R. Garud
- Department of Chemistry Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University) Tilak road Pune India
| |
Collapse
|
10
|
Coumarins as Potential Antiprotozoal Agents: Biological Activities and Mechanism of Action. REVISTA BRASILEIRA DE FARMACOGNOSIA 2021. [DOI: 10.1007/s43450-021-00169-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Kourbeli V, Chontzopoulou E, Moschovou K, Pavlos D, Mavromoustakos T, Papanastasiou IP. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021; 26:molecules26154629. [PMID: 34361781 PMCID: PMC8348971 DOI: 10.3390/molecules26154629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".
Collapse
Affiliation(s)
- Violeta Kourbeli
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
| | - Eleni Chontzopoulou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Kalliopi Moschovou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Dimitrios Pavlos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Ioannis P. Papanastasiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
- Correspondence:
| |
Collapse
|
12
|
Gupta O, Pradhan T, Bhatia R, Monga V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur J Med Chem 2021; 223:113606. [PMID: 34171661 DOI: 10.1016/j.ejmech.2021.113606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Leishmaniasis is a parasitic neglected tropical disease caused by various species of Leishmania parasite. Despite tremendous advancements in the therapeutic sector and drug development strategies, still the existing anti-leishmanial agents are associated with some clinical issues like drug resistance, toxicity and selectivity. Therefore, several research groups are continuously working towards the development of new therapeutic candidates to overcome these issues. Many potential heterocyclic moieties have been explored for this purpose including triazoles, chalcones, chromone, thiazoles, thiosemicarbazones, indole, quinolines, etc. It is evident from the literature that the majority of anti-leishmanial agents act by interacting with key regulators including PTR-I, DHFR, LdMetAP1, MAPK, 14 α-demethylase and pteridine reductase-I, etc. Also, these tend to induce the production of ROS which causes damage to parasites. In the present compilation, authors have summarized various significant synthetic procedures for anti-leishmanial agents reported in recent years. A brief description of the pharmacological potentials of synthesized compounds along with important aspects related to structural activity relationship has been provided. Important docking outcomes highlighting the possible mode of interaction for the reported compounds have also been included. This review would be helpful to the scientific community to design newer strategies and also to develop novel therapeutic candidates against leishmaniasis.
Collapse
Affiliation(s)
- Ojasvi Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
13
|
Khatoon S, Aroosh A, Islam A, Kalsoom S, Ahmad F, Hameed S, Abbasi SW, Yasinzai M, Naseer MM. Novel coumarin-isatin hybrids as potent antileishmanial agents: Synthesis, in silico and in vitro evaluations. Bioorg Chem 2021; 110:104816. [PMID: 33799180 DOI: 10.1016/j.bioorg.2021.104816] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Leishmaniasis being one of the six major tropical diseases that affects nearly 0.7-1.3 million people annually, has so far limited and high toxic therapeutic options. Herein, we report the synthesis, in silico, and in vitro evaluations of novel coumarin-incorporated isatin hydrazones (Spf-1 - Spf-10) as highly potent and safe antileishmanial agents. Molecular docking was initially carried out to decipher the binding confirmation of lead molecules towards the active cavity of the target protein (Leishmanolysin gp63) of Leishmania tropica. Among all the docked compounds, only Spf-6, Spf-8, and Spf-10 showed high binding affinities due to a pattern of strong conventional hydrogen bonds and hydrophobic π-interactions. The molecular dynamics simulations showed the stable pattern of such bonding and structure-based confirmation with a time scale of 50 ns towards the top compound (Spf-10) and protein. These analyses affirmed the high stability of the system. Three out of ten compounds evaluated for their antileishmanial activity against Leishmania tropica promastigotes and amastigotes were found to be active at micromolar concentrations (IC50 range 0.1-4.13 μmol/L), and most importantly, they were also found to be highly biocompatible when screened for their toxicity in human erythrocytes.
Collapse
Affiliation(s)
- Saira Khatoon
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aiman Aroosh
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Arshad Islam
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan; Department of Pathology, Government Lady Reading Hospital Medical Teaching Institution, Peshawar, KPK, Pakistan
| | - Saima Kalsoom
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Masoom Yasinzai
- Suleiman Bin Abdullah Aba Akhail - Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| |
Collapse
|
14
|
Boniface PK, Sano CM, Elizabeth FI. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods. Curr Drug Targets 2021; 21:681-712. [PMID: 32003668 DOI: 10.2174/1389450121666200128112948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease associated with several clinical manifestations, including cutaneous, mucocutaneous, and visceral forms. As currently available drugs have some limitations (toxicity, resistance, among others), the target-based identification has been an important approach to develop new leads against leishmaniasis. The present study aims to identify targets involved in the pharmacological action of potent antileishmanial compounds. METHODS The literature information regarding molecular interactions of antileishmanial compounds studied over the past half-decade is discussed. The information was obtained from databases such as Wiley, SciFinder, Science Direct, National Library of Medicine, American Chemical Society, Scientific Electronic Library Online, Scopus, Springer, Google Scholar, Web of Science, etc. Results: Numerous in vitro antileishmanial compounds showed affinity and selective interactions with enzymes such as arginase, pteridine reductase 1, trypanothione reductase, pyruvate kinase, among others, which are crucial for the survival and virulence of the Leishmania parasite. CONCLUSION The in-silico activity of small molecules (enzymes, proteins, among others) might be used as pharmacological tools to develop candidate compounds for the treatment of leishmaniasis. As some pharmacologically active compounds may act on more than one target, additional studies of the mechanism (s) of action of potent antileishmanial compounds might help to better understand their pharmacological action. Also, the optimization of promising antileishmanial compounds might improve their biological activity.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cinthya M Sano
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Gonçalves GA, Spillere AR, das Neves GM, Kagami LP, von Poser GL, Canto RFS, Eifler-Lima V. Natural and synthetic coumarins as antileishmanial agents: A review. Eur J Med Chem 2020; 203:112514. [DOI: 10.1016/j.ejmech.2020.112514] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
|
16
|
Albino SL, da Silva JM, de C Nobre MS, de M E Silva YMS, Santos MB, de Araújo RSA, do C A de Lima M, Schmitt M, de Moura RO. Bioprospecting of Nitrogenous Heterocyclic Scaffolds with Potential Action for Neglected Parasitosis: A Review. Curr Pharm Des 2020; 26:4112-4150. [PMID: 32611290 DOI: 10.2174/1381612826666200701160904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
Neglected parasitic diseases are a group of infections currently considered as a worldwide concern. This fact can be attributed to the migration of these diseases to developed and developing countries, associated with therapeutic insufficiency resulted from the low investment in the research and development of new drugs. In order to overcome this situation, bioprospecting supports medicinal chemistry in the identification of new scaffolds with therapeutically appropriate physicochemical and pharmacokinetic properties. Among them, we highlight the nitrogenous heterocyclic compounds, as they are secondary metabolites of many natural products with potential biological activity. The objective of this work was to review studies within a 10-year timeframe (2009- 2019), focusing on the pharmacological application of nitrogen bioprospectives (pyrrole, pyridine, indole, quinoline, acridine, and their respective derivatives) against neglected parasitic infections (malaria, leishmania, trypanosomiases, and schistosomiasis), and their application as a template for semi-synthesis or total synthesis of potential antiparasitic agents. In our studies, it was observed that among the selected articles, there was a higher focus on the attempt to identify and obtain novel antimalarial compounds, in a way that an extensive amount of studies involving all heterocyclic nitrogen nuclei were found. On the other hand, the parasites with the lowest number of publications up until the present date have been trypanosomiasis, especially those caused by Trypanosoma cruzi, and schistosomiasis, where some heterocyclics have not even been cited in recent years. Thus, we conclude that despite the great biodiversity on the planet, little attention has been given to certain neglected tropical diseases, especially those that reach countries with a high poverty rate.
Collapse
Affiliation(s)
- Sonaly L Albino
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Jamire M da Silva
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Michelangela S de C Nobre
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Yvnni M S de M E Silva
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Mirelly B Santos
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Rodrigo S A de Araújo
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Maria do C A de Lima
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Martine Schmitt
- Universite de Strasbourg, CNRS, LIT UMR 7200, Laboratoire d'innovation therapeutique, Illkirch, France
| | - Ricardo O de Moura
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
17
|
Pasricha S, Gahlot P. Synthetic Strategies and Biological Potential of Coumarin-Chalcone Hybrids: A New Dimension to Drug Design. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200219091830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Privileged scaffolds are ubiquitous as effective templates in drug discovery regime.
Natural and synthetically derived hybrid molecules are one such attractive scaffold
for therapeutic agent development due to their dual or multiple modes of action, minimum
or no side effects, favourable pharmacokinetics and other advantages. Coumarins and
chalcone are two important classes of natural products affording diverse pharmacological
activities which make them ideal templates for building coumarin-chalcone hybrids as effective
biological scaffold for drug discovery research. Provoked by the promising medicinal
application of hybrid molecules as well as those of coumarins and chalcones, the
medicinal chemists have used molecular hybridisation strategy to report dozens of coumarin-
chalcone hybrids with a wide spectrum of biological properties including anticancer,
antimicrobial, antimalarial, antioxidant, anti-tubercular and so on. The present review provides a systematic
summary on synthetic strategies, biological or chemical potential, SAR studies, some mechanisms of action
and some plausible molecular targets of synthetic coumarin-chalcone hybrids published from 2001 till
date. The review is expected to assist medicinal chemists in the effective and successful development of coumarin-
chalcone hybrid based drug discovery regime.
Collapse
Affiliation(s)
- Sharda Pasricha
- Department of Chemistry, Sri Venkateswara College, University of Delhi, P.O. Box: 110021, New Delhi, India
| | - Pragya Gahlot
- Department of Chemistry, Sri Venkateswara College, University of Delhi, P.O. Box: 110021, New Delhi, India
| |
Collapse
|
18
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
19
|
Lee SM, Kim MS, Hayat F, Shin D. Recent Advances in the Discovery of Novel Antiprotozoal Agents. Molecules 2019; 24:E3886. [PMID: 31661934 PMCID: PMC6864685 DOI: 10.3390/molecules24213886] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Parasitic diseases have serious health, social, and economic impacts, especially in the tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of protozoan diseases is increasing and is been exacerbated because of a lack of effective medication due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have prompted many researchers to search for new drugs against protozoan parasites. In this review, we have compiled the latest information (2012-2017) on the structures and pharmacological activities of newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis, malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the discovery of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Seong-Min Lee
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Min-Sun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Faisal Hayat
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
20
|
Pilli G, Dumala N, Sreeja JS, John R, Sengupta S, Grover P, Prakash M. J. Design, Synthesis and Pharmacological Evaluation of 4‐Hydroxycoumarin Derivatives as Antiproliferative Agents. ChemistrySelect 2019. [DOI: 10.1002/slct.201902089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Govindaiah Pilli
- Department of ChemistryNational Institute of Technology Rourkela- 769008 Odisha India
| | - Naresh Dumala
- Toxicology LaboratoryApplied Biology DepartmentCSIR-Indian Institute of Chemical Technology Hyderabad 500007, Telangana India
| | - Jamuna S. Sreeja
- Rajiv Gandhi Center for Biotechnology Trivndrum- 695014, Kerala India
| | - Rince John
- Rajiv Gandhi Center for Biotechnology Trivndrum- 695014, Kerala India
| | - Suparna Sengupta
- Rajiv Gandhi Center for Biotechnology Trivndrum- 695014, Kerala India
| | - Paramjit Grover
- Toxicology LaboratoryApplied Biology DepartmentCSIR-Indian Institute of Chemical Technology Hyderabad 500007, Telangana India
| | - Jaya Prakash M.
- Department of ChemistryNational Institute of Technology Rourkela- 769008 Odisha India
| |
Collapse
|
21
|
Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery. Future Med Chem 2019; 11:2107-2130. [DOI: 10.4155/fmc-2018-0512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Leishmaniasis is one of the major neglected tropical diseases in the world and it is considered endemic in 88 countries. This disease is transmitted by a Leishmania spp. infected sandfly and it may lead to cutaneous or systemic manifestations. The preconized treatment has low efficacy and there are cases of resistance to some drugs. Therefore, the search for new efficient molecular targets that can lead to the preparation of new drugs must be pursued. This review aims to evaluate both Leishmania enzymes PTR1 and DHFR-TS as potential drug targets, highlight their inhibitors and to discuss critically the use of chemoinformatics to elucidate interactions and propose new molecules against these enzymes.
Collapse
|
22
|
Synthesis and biological evaluation of novel 4,7-dihydroxycoumarin derivatives as anticancer agents. Bioorg Med Chem Lett 2019; 29:1819-1824. [DOI: 10.1016/j.bmcl.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/21/2023]
|
23
|
Novel 6a,12b-Dihydro-6 H,7 H-chromeno[3,4-c] chromen-6-ones: Synthesis, Structure and Antifungal Activity. Molecules 2019; 24:molecules24091745. [PMID: 31060338 PMCID: PMC6539249 DOI: 10.3390/molecules24091745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 11/24/2022] Open
Abstract
A new series of coumarin derivatives, 7-hydroxy-7-(trifluoromethyl)-6a,12b-dihydro-6H,7H-chromeno[3,4-c]chromen-6-ones 3a–p, were synthesized via Michael addition, transesterification and nucleophilic addition from the reaction of 3-trifluoroacetyl coumarins and phenols in the presence of an organic base. The products were characterized by infrared spectroscopy (IR), hydrogen nuclear magnetic resonance spectroscopy (1H-NMR), carbon nuclear magnetic resonance spectroscopy (13C-NMR) and high-resolution mass spectrometer (HRMS). Single crystal X-ray analysis of compounds 3a and 3n clearly confirmed their assigned chemical structures and their twisted conformations. Compound 3a crystallized in the orthorhombic system, Pbca, in which a = 8.6244(2) Å, b = 17.4245(4) Å, c = 22.5188(6) Å, α = 90°, β = 90°, γ = 90°, v = 3384.02(14) Å3, and z = 8. In addition, the mycelial growth rate method was used to examine the in vitro antifungal activities of the title compounds 3a–p against Fusarium graminearum and Fusarium monitiforme at 500 µg/mL. The results showed that compound 3l exhibited significant anti-Fusarium monitiforme activity with inhibitory index of 84.6%.
Collapse
|
24
|
Luo J, Lai T, Guo T, Chen F, Zhang L, Ding W, Zhang Y. Synthesis and Acaricidal Activities of Scopoletin Phenolic Ether Derivatives: QSAR, Molecular Docking Study and in Silico ADME Predictions. Molecules 2018; 23:E995. [PMID: 29695088 PMCID: PMC6102537 DOI: 10.3390/molecules23050995] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 01/27/2023] Open
Abstract
Thirty phenolic ether derivatives of scopoletin modified at the 7-hydroxy position were synthesized, and their structures were confirmed by IR, ¹H-NMR, 13C-NMR, MS and elemental analysis. Preliminary acaricidal activities of these compounds against female adults of Tetranychus cinnabarinus (Boisduval) were evaluated using the slide-dip method. The results indicated that some of these compounds exhibit more pronounced acaricidal activity than scopoletin, especially compounds 32, 20, 28, 27 and 8 which exhibited about 8.41-, 7.32-, 7.23-, 6.76-, and 6.65-fold higher acaricidal potency. Compound 32 possessed the the most promising acaricidal activity and exhibited about 1.45-fold higher acaricidal potency against T. cinnabarinus than propargite. Statistically significant 2D-QSAR model supports the observed acaricidal activities and reveals that polarizability (HATS5p) was the most important parameter controlling bioactivity. 3D-QSAR (CoMFA: q² = 0.802, r² = 0.993; CoMSIA: q² = 0.735, r² = 0.965) results show that bulky substituents at R₄, R₁, R₂ and R₅ (C₆, C₃, C₄, and C₇) positions, electron positive groups at R₅ (C₇) position, hydrophobic groups at R₁ (C₃) and R₂ (C₄), H-bond donors groups at R₁ (C₃) and R₄ (C₆) will increase their acaricidal activity, which provide a good insight into the molecular features relevant to the acaricidal activity for further designing novel acaricidal agents. Molecular docking demonstrates that these selected derivatives display different bide modes with TcPMCA1 from lead compound and they interact with more key amino acid residues than scopoletin. In silico ADME properties of scopoletin and its phenolic ether derivatives were also analyzed and showed potential to develop as good acaricidal candidates.
Collapse
Affiliation(s)
- Jinxiang Luo
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Ting Lai
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Tao Guo
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Fei Chen
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Linli Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Yongqiang Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
25
|
Synthesis, antioxidant, antibacterial, solvatochromism and molecular docking studies of indolyl-4H-chromene-phenylprop-2-en-1-one derivatives. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Purohit P, Pandey AK, Singh D, Chouhan PS, Ramalingam K, Shukla M, Goyal N, Lal J, Chauhan PMS. An insight into tetrahydro-β-carboline-tetrazole hybrids: synthesis and bioevaluation as potent antileishmanial agents. MEDCHEMCOMM 2017; 8:1824-1834. [PMID: 30108893 DOI: 10.1039/c7md00125h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
A series of 2,3,4,9-tetrahydro-β-carboline tetrazole derivatives (14a-u) have been synthesized utilizing the Ugi multicomponent reaction and were identified as potential antileishmanial chemotypes. Most of the screened derivatives exhibited significant in vitro activity against the promastigote (IC50 from 0.59 ± 0.35 to 31 ± 1.27 μM) and intracellular amastigote forms (IC50 from 1.57 ± 0.12 to 17.6 ± 0.2 μM) of L. donovani, and their activity is comparable with standard drugs miltefosine and sodium stibogluconate. The most active compound 14t was further studied in vivo against the L. donovani/golden hamster model at a dose of 50 mg kg-1 through the intraperitoneal route for 5 consecutive days, which displayed 75.04 ± 7.28% inhibition of splenic parasite burden. Pharmacokinetics of compound 14t was studied in the golden Syrian hamster, and following a 50 mg kg-1 oral dose, the compound was detected in hamster serum for up to 24 h. It exhibited a large volume of distribution (651.8 L kg-1), high clearance (43.2 L h-1 kg-1) and long mean residence time (10 h).
Collapse
Affiliation(s)
- Pooja Purohit
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India . ; ; ; Tel: +522 2771940, Extn: 4659, 4660
| | - Anand Kumar Pandey
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India . ; ; ; Tel: +522 2771940, Extn: 4659, 4660
| | - Deepti Singh
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India . ; ; ; Tel: +522 2771940, Extn: 4659, 4660
| | - Pradeep Singh Chouhan
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India . ; ; ; Tel: +522 2771940, Extn: 4659, 4660
| | - Karthik Ramalingam
- Division of Biochemistry , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India
| | - Mahendra Shukla
- Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Neena Goyal
- Division of Biochemistry , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India
| | - Jawahar Lal
- Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Prem M S Chauhan
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India . ; ; ; Tel: +522 2771940, Extn: 4659, 4660
| |
Collapse
|
27
|
Patil SR, Asrondkar A, Patil V, Sangshetti JN, Kalam Khan FA, Damale MG, Patil RH, Bobade AS, Shinde DB. Antileishmanial potential of fused 5-(pyrazin-2-yl)-4H-1,2,4-triazole-3-thiols: Synthesis, biological evaluations and computational studies. Bioorg Med Chem Lett 2017; 27:3845-3850. [PMID: 28693910 DOI: 10.1016/j.bmcl.2017.06.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 11/17/2022]
Abstract
A series of newer 1,2,4-triazole-3-thiol derivatives 5(a-m) and 6(a-i) containing a triazole fused with pyrazine moiety of pharmacological significance have been synthesized. All the synthesized compounds were screened for their in vitro antileishmanial and antioxidant activities. Compounds 5f (IC50=79.0µM) and 6f (IC50=79.0µM) were shown significant antileishmanial activity when compared with standard sodium stibogluconate (IC50=490.0µM). Compounds 5b (IC50=13.96µM) and 6b (IC50=13.96µM) showed significant antioxidant activity. After performing molecular docking study and analyzing overall binding modes it was found that the synthesized compounds had potential to inhibit L. donovani pteridine reductase 1 enzyme. In silico ADME and metabolic site prediction studies were also held out to set an effective lead candidate for the future antileishmanial and antibacterial drug discovery initiatives.
Collapse
Affiliation(s)
- Sanjeev R Patil
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, MS, India; Haffkine Institute for Training, Research and Testing, Parel, Mumbai 400 012, MS, India
| | - Ashish Asrondkar
- Haffkine Institute for Training, Research and Testing, Parel, Mumbai 400 012, MS, India
| | - Vrushali Patil
- Haffkine Institute for Training, Research and Testing, Parel, Mumbai 400 012, MS, India
| | | | - Firoz A Kalam Khan
- Oriental College of Pharmacy, Sanpada (West), Navi Mumbai 400705, MS, India
| | - Manoj G Damale
- Shri Bhagwan College of Pharmacy, Aurangabad 431 003, MS, India
| | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, MS, India
| | - Anil S Bobade
- Haffkine Institute for Training, Research and Testing, Parel, Mumbai 400 012, MS, India
| | | |
Collapse
|
28
|
Masood MM, Hasan P, Tabrez S, Ahmad MB, Yadava U, Daniliuc CG, Sonawane YA, Azam A, Rub A, Abid M. Anti-leishmanial and cytotoxic activities of amino acid-triazole hybrids: Synthesis, biological evaluation, molecular docking and in silico physico-chemical properties. Bioorg Med Chem Lett 2017; 27:1886-1891. [PMID: 28359789 DOI: 10.1016/j.bmcl.2017.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 11/17/2022]
Abstract
According to WHO, leishmaniasis is a major tropical disease, ranking second after malaria. Significant efforts have been therefore invested into finding potent inhibitors for the treatment. In this work, eighteen novel 1,2,3-triazoles appended with l-amino acid (Phe/Pro/Trp) tail were synthesized via azide-alkyne click chemistry with moderate to good yield, and evaluated for their anti-leishmanial activity against promastigote form of Leishmania donovani (Dd8 strain). Among all, compounds 40, 43, and 53 were identified with promising anti-leishmanial activity with IC50=88.83±2.93, 96.88±12.88 and 94.45±6.51μM respectively and displayed no cytotoxicity towards macrophage cells. Moreover, compound 43 showed highest selectivity index (SI=8.05) among all the tested compounds. Supported by docking studies, the lead inhibitors (40, 43 and 53) showed interactions with key residues in the catalytic site of trypanothione reductase. The results of pharmacokinetic parameters suggest that these selected inhibitors can be carried forward for further structural optimization and pharmacological investigation.
Collapse
Affiliation(s)
- Mir Mohammad Masood
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Phool Hasan
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Chemistry, TNB College, TM Bhagalpur University, Bhagalpur 812007, Bihar, India
| | - Shams Tabrez
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Bilal Ahmad
- Department of Chemistry, TNB College, TM Bhagalpur University, Bhagalpur 812007, Bihar, India
| | - Umesh Yadava
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, UP 273009, India
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelm-Universität Münster, 48149, Germany
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Amir Azam
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| |
Collapse
|
29
|
Antileishmanial evaluation of clubbed bis(indolyl)-pyridine derivatives: One-pot synthesis, in vitro biological evaluations and in silico ADME prediction. Bioorg Med Chem Lett 2017; 27:567-573. [DOI: 10.1016/j.bmcl.2016.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 11/19/2022]
|
30
|
Khan FAK, Patil RH, Patil M, Arote R, Shinde DB, Sangshetti JN. Bacterial Peptide Deformylase Inhibition of Tetrazole-Substituted Biaryl Acid Analogs: Synthesis, Biological Evaluations, and Molecular Docking Study. Arch Pharm (Weinheim) 2016; 349:934-943. [DOI: 10.1002/ardp.201600254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | - Rajendra H. Patil
- Department of Biotechnology; Savitribai Phule Pune University; Pune India
| | - Manjiri Patil
- Department of Biotechnology; Savitribai Phule Pune University; Pune India
| | - Rohidas Arote
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry; Seoul National University; Seoul Republic of Korea
| | | | | |
Collapse
|
31
|
Synthesis and anti-leishmanial evaluation of 1-phenyl-2,3,4,9-tetrahydro-1 H -β-carboline derivatives against Leishmania infantum. Eur J Med Chem 2016; 123:814-821. [DOI: 10.1016/j.ejmech.2016.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022]
|
32
|
Mandlik V, Patil S, Bopanna R, Basu S, Singh S. Biological Activity of Coumarin Derivatives as Anti-Leishmanial Agents. PLoS One 2016; 11:e0164585. [PMID: 27768694 PMCID: PMC5074534 DOI: 10.1371/journal.pone.0164585] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022] Open
Abstract
Cutaneous leishmaniasis affects nearly 0.7 to 1.3 million people annually. Treatment of this disease is difficult due to lack of appropriate medication and the growing problem of drug resistance. Natural compounds such as coumarins serve as complementary therapeutic agents in addition to the current treatment modalities. In this study, we have performed an in-silico screening of the coumarin derivatives and their anti-leishmanial properties has been explored both in-vitro and in-vivo. One of the compounds (compound 2) exhibited leishmanicidal activity and to further study its properties, nanoliposomal formulation of the compound was developed. Treatment of cutaneous lesions in BALB/c mice with compound 2 showed significantly reduced lesion size as compared to the untreated mice (p<0.05) suggesting that compound 2 may possess anti-leishmanial properties.
Collapse
Affiliation(s)
- Vineetha Mandlik
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, India
| | - Sohan Patil
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Pashan, Pune, India
| | - Ramanamurthy Bopanna
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Pashan, Pune, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, India
- * E-mail: ,
| |
Collapse
|
33
|
Khan FA, Jadhav KS, Patil RH, Shinde DB, Arote RB, Sangshetti JN. Biphenyl tetrazole-thiazolidinediones as novel bacterial peptide deformylase inhibitors: Synthesis, biological evaluations and molecular docking study. Biomed Pharmacother 2016; 83:1146-1153. [DOI: 10.1016/j.biopha.2016.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/27/2016] [Accepted: 08/11/2016] [Indexed: 11/27/2022] Open
|
34
|
Antileishmanial activity of new thiophene–indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies. Bioorg Med Chem 2016; 24:3972-3977. [DOI: 10.1016/j.bmc.2016.04.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
35
|
Khan FAK, Patil RH, Shinde DB, Sangshetti JN. Bacterial Peptide deformylase inhibition of cyano substituted biaryl analogs: Synthesis, in vitro biological evaluation, molecular docking study and in silico ADME prediction. Bioorg Med Chem 2016; 24:3456-63. [DOI: 10.1016/j.bmc.2016.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
|