1
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
2
|
Cheng J, He S, Xu J, Huang M, Dong G, Sheng C. Making Protein Degradation Visible: Discovery of Theranostic PROTACs for Detecting and Degrading NAMPT. J Med Chem 2022; 65:15725-15737. [PMID: 36442664 DOI: 10.1021/acs.jmedchem.2c01243] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteolysis-targeting chimera (PROTAC) is emerging as a promising technology in targeted protein degradation and drug discovery. However, there is still a lack of effective chemical tools to real-time detect and track the protein degradation. Herein, the first fluorescent and theranostic PROTACs were designed for imaging the degradation of nicotinamide phosphoribosyltransferase (NAMPT) in living cells. Compound B4 was proven to be an environmentally sensitive fluorescent PROTAC, which efficiently degraded NAMPT (DC50 = 8.4 nM) and enabled the visualization of degradation in A2780 cells. As a theranostic agent, PROTAC B4 led to significant reduction of nicotinamide adenine dinucleotide (NAD+) and exerted potent antitumor activities both in vitro and in vivo. Collectively, this proof-of-concept study provides a new strategy for the real-time visualization of the process of protein degradation and the improvement of diagnosis and therapeutic efficacy of PROTACs.
Collapse
Affiliation(s)
- Junfei Cheng
- School of Pharmacy, Second Military Medical University (Navy Medical University), Shanghai 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Jun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University (Navy Medical University), Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University (Navy Medical University), Shanghai 200433, China
| |
Collapse
|
3
|
Song Y, Zhang G, Zhang Y, Zhang H, Meng X, Zhang L. Leaving-group controlled N- or C-cyclization of azadienes via domino sequences: synthesis, mechanism, and chemoselectivity. Org Chem Front 2022. [DOI: 10.1039/d2qo01002j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We reported a leaving-group controlled N- or C-cyclization of azadienes bearing a benzothiophene moiety. Density functional calculations revealed that the competition of two cyclizations was governed by the nature of the leaving group on the partner.
Collapse
Affiliation(s)
- Yuping Song
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Gaoting Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Youlai Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Huan Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
| |
Collapse
|
4
|
Abstract
Benzo[b]thiophenes are aromatic heterocyclic compounds containing benzene
and thiophene rings. This class of heterocycles is present in a large number of natural and
non-natural compounds. Benzo[b]thiophene derivatives have a broad range of applications in
medicinal chemistry such as antimicrobial, anticancer, antioxidant, anti-HIV and antiinflammatory
activities. The use of benzo[b]thiophene derivatives in other fields has also been
reported. Various benzo[b]thiophenes compounds have been employed as organic photoelectric
materials, while several benzo[b]thiophenes have been used as organic semiconductors.
Benzo[b]thiophenes have also been used as building blocks or intermediates for the synthesis
of pharmaceutically important molecules.
:
Due to such a wide range of applicability, the synthesis of benzo[b]thiophene derivatives has
attracted intensive research. Numerous mild and efficient approaches for the synthesis of
benzo[b]thiophenes have been developed over the years. Different catalysts and substrates have been applied for
benzo[b]thiophene synthesis. This review will focus on the studies in the construction of benzo[b]thiophene skeleton,
which date back from 2012.
Collapse
Affiliation(s)
- Dau Xuan Duc
- Department of Chemistry, Vinh University, Vinh City, Vietnam
| |
Collapse
|
5
|
Barakat A, Alshahrani S, Al-Majid AM, Ali M, Altowyan MS, Islam MS, Alamary AS, Ashraf S, Ul-Haq Z. Synthesis of a New Class of Spirooxindole-Benzo[ b]Thiophene-Based Molecules as Acetylcholinesterase Inhibitors. Molecules 2020; 25:E4671. [PMID: 33066293 PMCID: PMC7594047 DOI: 10.3390/molecules25204671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
A series of new oxindole-based spiro-heterocycles bearing the benzo[b]thiophene motif were synthesized via a 1,3-dipolar cycloaddition reaction and their acetylcholinesterase (AChE) inhibitory activity was evaluated. All the synthesized compounds exhibited moderate inhibitory activities against AChE, while IIc was found to be the most active analog with an IC50 value of 20,840 µM·L-1. Its molecular structure was a 5-chloro-substituted oxindole bearing benzo[b]thiophene and octahydroindole moieties. Based on molecular docking studies, IIc was strongly bound to the catalytic and peripheral anionic sites of the protein through hydrophilic, hydrophobic, and π-stacking interactions with Asp74, Trp86, Tyr124, Ser125, Glu202, Ser203, Trp236, Trp286, Phe297, Tyr337, and Tyr341. These interactions also indicated that the multiplicity of the IIc aromatic core significantly favored its activity.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Abdullah Saleh Alamary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (A.M.A.-M.); (M.A.); (M.S.I.); (A.S.A.)
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.A.); (Z.U.-H.)
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (S.A.); (Z.U.-H.)
| |
Collapse
|
6
|
Galli U, Colombo G, Travelli C, Tron GC, Genazzani AA, Grolla AA. Recent Advances in NAMPT Inhibitors: A Novel Immunotherapic Strategy. Front Pharmacol 2020; 11:656. [PMID: 32477131 PMCID: PMC7235340 DOI: 10.3389/fphar.2020.00656] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a cofactor of many enzymatic reactions as well as being a substrate for a number of NAD-consuming enzymes (e.g., PARPS, sirtuins, etc). NAD can be synthesized de novo starting from tryptophan, nicotinamide, nicotinic acid, or nicotinamide riboside from the diet. On the other hand, the nicotinamide that is liberated by NAD-consuming enzymes can be salvaged to re-form NAD. In this former instance, nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme. In the many cells in which the salvage pathway is predominant, NAMPT, therefore, represents an important controller of intracellular NAD concentrations, and as a consequence of energy metabolism. It is, therefore, not surprising that NAMPT is over expressed by tumoral cells, which take advantage from this to sustain growth rate and tumor progression. This has led to the initiation of numerous medicinal chemistry programs to develop NAMPT inhibitors in the context of oncology. More recently, however, it has been shown that NAMPT inhibitors do not solely target the tumor but also have an effect on the immune system. To add complexity, this enzyme can also be secreted by cells, and in the extracellular space it acts as a cytokine mainly through the activation of Toll like Receptor 4 (TLR4), although it has not been clarified yet if this is the only receptor responsible for its actions. While specific small molecules have been developed only against the intracellular form of NAMPT, growing evidences sustain the possibility to target the extracellular form. In this contribution, the most recent evidences on the medicinal chemistry of NAMPT will be reviewed, together with the key elements that sustain the hypothesis of NAMPT targeting and the drawbacks so far encountered.
Collapse
Affiliation(s)
- Ubaldina Galli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Gian Cesare Tron
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ambra A Grolla
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
7
|
Wu Y, Wang L, Huang Y, Chen S, Wu S, Dong G, Sheng C. Nicotinamide Phosphoribosyltransferase (NAMPT) Is a New Target of Antitumor Agent Chidamide. ACS Med Chem Lett 2020; 11:40-44. [PMID: 31938461 DOI: 10.1021/acsmedchemlett.9b00407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Chidamide is a histone deacetylase (HDAC) inhibitor that is currently used to treat cutaneous T-cell lymphoma in clinic. Herein nicotinamide phosphoribosyltransferase (NAMPT) was identified to be a new target of chidamide on the basis of the pharmacophore analysis, molecular docking, biological assays, inhibitor design, and structure-activity relationship study. The polypharmacology of chidamide will provide important information for better understanding its antitumor mechanism. Also, design of dual NAMPT/HDAC inhibitors may serve as an effective strategy to develop novel antitumor agents.
Collapse
Affiliation(s)
- Ying Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yahui Huang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Shuqiang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Shanchao Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Ozgencil F, Eren G, Ozkan Y, Guntekin-Ergun S, Cetin-Atalay R. Identification of small-molecule urea derivatives as novel NAMPT inhibitors via pharmacophore-based virtual screening. Bioorg Med Chem 2020; 28:115217. [PMID: 31818629 DOI: 10.1016/j.bmc.2019.115217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-prophosphate (PRPP) to yield nicotinamide mononucleotide (NMN), a rate limiting enzyme in a mammalian salvage pathway of nicotinamide adenine dinucleotide (NAD+) synthesis. Recently, intracellular NAD+ has received substantial attention due to the recent discovery that several enzymes including poly(ADP-ribose) polymerases (PARPs), mono(ADP-ribose) transferases (ARTs), and sirtuins (SIRTs), use NAD+ as a substrate, suggesting that intracellular NAD+ level may regulate cytokine production, metabolism, and aging through these enzymes. NAMPT is found to be upregulated in various types of cancer, and given its importance in the NAD+ salvage pathway, NAMPT is considered as an attractive target for the development of new cancer therapies. In this study, the reported NAMPT inhibitors bearing amide, cyanoguanidine, and urea scaffolds were used to generate pharmacophore models and pharmacophore-based virtual screening studies were performed against ZINC database. Following the filtering steps, ten hits were identified and evaluated for their in vitro NAMPT inhibitory effects. Compounds GF4 (NAMPT IC50 = 2.15 ± 0.22 μM) and GF8 (NAMPT IC50 = 7.31 ± 1.59 μM) were identified as new urea-typed inhibitors of NAMPT which also displayed cytotoxic activities against human HepG2 hepatocellular carcinoma cell line with IC50 values of 15.20 ± 1.28 and 24.28 ± 6.74 μM, respectively.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Gokcen Eren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey.
| | - Yesim Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Sezen Guntekin-Ergun
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Rengul Cetin-Atalay
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
9
|
Yamaguchi D, Imaizumi T, Yagi K, Matsumoto Y, Nakashima T, Hirose A, Kashima N, Nosaka Y, Hamada T, Okawa K, Nishiya Y, Kubo K. Nicotinamide phosphoribosyltransferase is a molecular target of potent anticancer agents identified from phenotype-based drug screening. Sci Rep 2019; 9:7742. [PMID: 31123329 PMCID: PMC6533267 DOI: 10.1038/s41598-019-43994-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/26/2019] [Indexed: 12/30/2022] Open
Abstract
Phenotypic screening in drug discovery has been revived with the expectation of providing promising lead compounds and drug targets and improving the success rate of drug approval. However, target identification remains a major bottleneck in phenotype-based drug discovery. We identified the lead compounds K542 and K405 with a selective inhibition of cell viability against sphingosine-1-phosphate lyase 1 (SGPL1)-transduced ES-2 cells by phenotypic screening. We therefore performed an in vivo pharmacological examination and observed the antitumor activity of K542 in an HT-1080 tumor-bearing mouse xenograft model. SGPL1 was expected to be a therapeutic target in some cancers, suggesting that these lead molecules might be promising candidates; however, their mechanisms of action still remain unexplained. We therefore synthesized the affinity probe Ind-tag derived from K542 and identified the proteins binding to Ind-tag via a pull-down experiment. Proteomics and biochemical analyses revealed that the target molecule of these lead compounds was Nicotinamide phosphoribosyltransferase (NAMPT). We established K542-resistant DLD-1 and HT-1080 cells, and genetic analyses of these cells identified a missense mutation in the NAMPT-encoding gene. This enzymatic experiment clearly showed that K393 exerts enzymatic inhibition against NAMPT. These proteomics, genetics and biochemical analyses clarified that compounds K542 and K405 were NAMPT inhibitors.
Collapse
Affiliation(s)
- Daisuke Yamaguchi
- Small Molecule Drug Research Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan.
| | - Takamichi Imaizumi
- Small Molecule Drug Research Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | - Kaori Yagi
- Corporate Social Responsibility Management Department, Kyowa Hakko Kirin Co., Ltd., 1-9-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Yuichi Matsumoto
- Corporate Strategy & Planning Department, Kyowa Hakko Kirin Co., Ltd., 1-9-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Takayuki Nakashima
- Research Core Function Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | - Akiyo Hirose
- Open Innovation Department, R&D Division, Kyowa Hakko Kirin Co., Ltd., 3-6-6, Asahi-machi, Machida-shi, Tokyo, 194-8533, Japan
| | - Naomi Kashima
- Clinical Sciences Research Laboratories, Translational Research Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | - Yukino Nosaka
- Research Core Function Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | - Tomoko Hamada
- Small Molecule Drug Research Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | - Katsuya Okawa
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | - Yoichi Nishiya
- Small Molecule Drug Research Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188, Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | - Kazuo Kubo
- R&D Planning Department, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1-9-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Department of Biosciences & Informatics, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa, 223-8522, Japan
| |
Collapse
|
10
|
Allegra A, Innao V, Gerace D, Allegra AG, Vaddinelli D, Bianco O, Musolino C. The adipose organ and multiple myeloma: Impact of adipokines on tumor growth and potential sites for therapeutic intervention. Eur J Intern Med 2018; 53:12-20. [PMID: 29859797 DOI: 10.1016/j.ejim.2018.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
In addition to its capacity to store lipids the adipose tissue is now identified as a real organ with both endocrine and metabolic roles. Preclinical results indicate that modifying adipose tissue and bone marrow adipose tissue (BMAT) could be a successful multiple myeloma (MM) therapy. BMAT interrelates with bone marrow cells and other immune cells, and may influence MM disease progression. The BM adipocytes may have a role in MM progression, bone homing, chemoresistance, and relapse, due to local endocrine, paracrine, or metabolic factors. BM adipocytes isolated from MM subjects have been shown to increase myeloma growth in vitro and may preserve cells from chemotherapy-induced apoptosis. By producing free fatty acids and emitting signaling molecules such as growth factors and adipokines, BM adipocytes are both an energy font and an endocrine signaling factory. This review should suggest future research approaches toward developing novel treatments to target MM by targeting BMAT and its products.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Demetrio Gerace
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Doriana Vaddinelli
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Oriana Bianco
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| |
Collapse
|
11
|
Dong G, Chen W, Wang X, Yang X, Xu T, Wang P, Zhang W, Rao Y, Miao C, Sheng C. Small Molecule Inhibitors Simultaneously Targeting Cancer Metabolism and Epigenetics: Discovery of Novel Nicotinamide Phosphoribosyltransferase (NAMPT) and Histone Deacetylase (HDAC) Dual Inhibitors. J Med Chem 2017; 60:7965-7983. [DOI: 10.1021/acs.jmedchem.7b00467] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Wei Chen
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Xia Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Xinglin Yang
- MOE Key Laboratory of Protein Sciences,
School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tianying Xu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Pei Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences,
School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Chaoyu Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
12
|
Keri RS, Chand K, Budagumpi S, Balappa Somappa S, Patil SA, Nagaraja BM. An overview of benzo[b]thiophene-based medicinal chemistry. Eur J Med Chem 2017; 138:1002-1033. [PMID: 28759875 DOI: 10.1016/j.ejmech.2017.07.038] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/15/2017] [Accepted: 07/20/2017] [Indexed: 01/16/2023]
Abstract
Among sulfur containing heterocycles, benzothiophene and its derivatives are at the focus as these candidates have structural similarities with active compounds to develop new potent lead molecules in drug design. Benzo[b]thiophene scaffold is one of the privileged structures in drug discovery as this core exhibits various biological activities allowing them to act as anti-microbial, anti-cancer, anti-inflammatory, anti-oxidant, anti-tubercular, anti-diabetic, anti-convulsant agents and many more. Further, numerous benzothiophene-based compounds as clinical drugs have been extensively used to treat various types of diseases with high therapeutic potency, which has led to their extensive developments. Due to the wide range of biological activities of benzothiophene, their structure activity relationships (SAR) have generated interest among medicinal chemists, and this has culminated in the discovery of several lead molecules against numerous diseases. The present review is endeavoring to highlight the progress in the various pharmacological activities of benzo[b]thiophene derivatives. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic benzothiophene-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes. Also, SAR studies that highlight the chemical groups responsible for evoking the potential activities of benzothiophene derivatives are studied and compared.
Collapse
Affiliation(s)
- Rangappa S Keri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India.
| | - Karam Chand
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Sasidhar Balappa Somappa
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India; Organic Chemistry Section, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Adipocytes have adapted to store energy in the form of lipid and also secrete circulating factors called adipokines that signal to other tissues to coordinate energy homeostasis. These functions are disrupted in the setting of obesity, promoting the development of diseases such as diabetes, cardiovascular disease, and cancer. RECENT FINDINGS Obesity is linked to an increased risk of many types of cancer and increased cancer-related mortality. The basis for the striking association between obesity and cancer is not well understood. Here, we review the cellular and molecular pathways that appear to be involved in obesity-driven cancer. We also describe possible therapeutic considerations and highlight important unanswered questions in the field.
Collapse
Affiliation(s)
- Sarah E Ackerman
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Olivia A Blackburn
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - François Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
- The Rockefeller University, 1230 York Avenue, Box 223, New York, NY, 10065, USA.
| |
Collapse
|