1
|
Radomska D, Czarnomysy R, Marciniec K, Nowakowska J, Domínguez-Álvarez E, Bielawski K. Short Communication: Novel Di- and Triselenoesters as Effective Therapeutic Agents Inhibiting Multidrug Resistance Proteins in Breast Cancer Cells. Int J Mol Sci 2024; 25:9732. [PMID: 39273679 PMCID: PMC11395623 DOI: 10.3390/ijms25179732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer has the highest incidence rate among all malignancies worldwide. Its high mortality is mainly related to the occurrence of multidrug resistance, which significantly limits therapeutic options. In this regard, there is an urgent need to develop compounds that would overcome this phenomenon. There are few reports in the literature that selenium compounds can modulate the activity of P-glycoprotein (MDR1). Therefore, we performed in silico studies and evaluated the effects of the novel selenoesters EDAG-1 and EDAG-8 on BCRP, MDR1, and MRP1 resistance proteins in MCF-7 and MDA-MB-231 breast cancer cells. The cytometric analysis showed that the tested compounds (especially EDAG-8) are inhibitors of BCRP, MDR1, and MRP1 efflux pumps (more potent than the reference compounds-novobiocin, verapamil, and MK-571). An in silico study correlates with these results, suggesting that the compound with the lowest binding energy to these transporters (EDAG-8) has a more favorable spatial structure affecting its anticancer activity, making it a promising candidate in the development of a novel anticancer agent for future breast cancer therapy.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
2
|
Hankins RA, Lukesh JC. An Examination of Chemical Tools for Hydrogen Selenide Donation and Detection. Molecules 2024; 29:3863. [PMID: 39202942 PMCID: PMC11356831 DOI: 10.3390/molecules29163863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Hydrogen selenide (H2Se) is an emerging biomolecule of interest with similar properties to that of other gaseous signaling molecules (i.e., gasotransmitters that include nitric oxide, carbon monoxide, and hydrogen sulfide). H2Se is enzymatically generated in humans where it serves as a key metabolic intermediate in the production of selenoproteins and other selenium-containing biomolecules. However, beyond its participation in biosynthetic pathways, its involvement in cellular signaling or other biological mechanisms remains unclear. To uncover its true biological significance, H2Se-specific chemical tools capable of functioning under physiological conditions are required but lacking in comparison to those that exist for other gasotransmitters. Recently, researchers have begun to fill this unmet need by developing new H2Se-releasing compounds, along with pioneering methods for selenide detection and quantification. In combination, the chemical tools highlighted in this review have the potential to spark groundbreaking explorations into the chemical biology of H2Se, which may lead to its branding as the fourth official gasotransmitter.
Collapse
Affiliation(s)
| | - John C. Lukesh
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, 455 Vine Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
3
|
Kumar P, Bhalla A. Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems. Top Curr Chem (Cham) 2024; 382:12. [PMID: 38589598 DOI: 10.1007/s41061-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India.
| |
Collapse
|
4
|
Teixeira R, Salaroglio IC, Oliveira NFB, Sequeira JGN, Fontrodona X, Romero I, Machuqueiro M, Tomaz AI, Garcia MH, Riganti C, Valente A. Fighting Multidrug Resistance with Ruthenium-Cyclopentadienyl Compounds: Unveiling the Mechanism of P-gp Inhibition. J Med Chem 2023; 66:14080-14094. [PMID: 37616241 PMCID: PMC10614197 DOI: 10.1021/acs.jmedchem.3c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 08/26/2023]
Abstract
The search for more effective and selective drugs to overcome cancer multidrug resistance is urgent. As such, a new series of ruthenium-cyclopentadienyl ("RuCp") compounds with the general formula [Ru(η5-C5H4R)(4,4'-R'-2,2'-bipy)(PPh3)] were prepared and fully characterized. All compounds were evaluated toward non-small cell lung cancer cells with different degrees of cisplatin sensitivity (A549, NCI-H2228, Calu-3, and NCI-H1975), showing better cytotoxicity than the first-line chemotherapeutic drug cisplatin. Compounds 2 and 3 (R' = -OCH3; R = CHO (2) or CH2OH (3)) further inhibited the activity of P-gp and MRP1 efflux pumps by impairing their catalytic activity. Molecular docking calculations identified the R-site P-gp pocket as the preferred one, which was further validated using site-directed mutagenesis experiments in P-gp. Altogether, our results unveil the first direct evidence of the interaction between P-gp and "RuCp" compounds in the modulation of P-gp activity and establish them as valuable candidates to circumvent cancer MDR.
Collapse
Affiliation(s)
- Ricardo
G. Teixeira
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Nuno F. B. Oliveira
- BioISI:
Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João G. N. Sequeira
- BioISI:
Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Xavier Fontrodona
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Isabel Romero
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Miguel Machuqueiro
- BioISI:
Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M. Helena Garcia
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Chiara Riganti
- Department
of Oncology, University of Torino, 10126 Torino, Italy
- Molecular
Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy
| | - Andreia Valente
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Mhate M, Mahanta CS, Dhaked DK, Ravichandiran V, Swain SP. Metal-free synthesis of selenoesters directly from carboxylic acids using bifunctional selenoureas under batch and continuous-flow conditions. Chem Commun (Camb) 2023; 59:10920-10923. [PMID: 37581358 DOI: 10.1039/d3cc02872k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A new metal-free method for the synthesis of selenoesters directly from carboxylic acids in a flow reactor is reported. The carboxylic acids, Michael acceptors, and bifunctional selenoureas (source of selenium and nucleophile, activator of carbonyl group) were reacted to obtain selenoesters (up to 70% yield). An evidence-backed plausible mechanism is also presented.
Collapse
Affiliation(s)
- Mouzma Mhate
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research-Kolkata, 168, Maniktala Main Road, Kolkata 700054, India.
| | - Chandra Sekhara Mahanta
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research-Kolkata, 168, Maniktala Main Road, Kolkata 700054, India.
| | - Devendra K Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research-Kolkata, 168, Maniktala Main Road, Kolkata 700054, India
| | - Velyutham Ravichandiran
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research-Kolkata, 168, Maniktala Main Road, Kolkata 700054, India.
| | - Sharada Prasanna Swain
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research-Kolkata, 168, Maniktala Main Road, Kolkata 700054, India.
| |
Collapse
|
6
|
Balis P, Berenyiova A, Misak A, Grman M, Rostakova Z, Waczulikova I, Cacanyiova S, Domínguez-Álvarez E, Ondrias K. The Phthalic Selenoanhydride Decreases Rat Blood Pressure and Tension of Isolated Mesenteric, Femoral and Renal Arteries. Molecules 2023; 28:4826. [PMID: 37375381 DOI: 10.3390/molecules28124826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phthalic selenoanhydride (R-Se) solved in physiological buffer releases various reactive selenium species including H2Se. It is a potential compound for Se supplementation which exerts several biological effects, but its effect on the cardiovascular system is still unknown. Therefore, herein we aimed to study how R-Se affects rat hemodynamic parameters and vasoactive properties in isolated arteries. The right jugular vein of anesthetized Wistar male rats was cannulated for IV administration of R-Se. The arterial pulse waveform (APW) was detected by cannulation of the left carotid artery, enabling the evaluation of 35 parameters. R-Se (1-2 µmol kg-1), but not phthalic anhydride or phthalic thioanhydride, transiently modulated most of the APW parameters including a decrease in systolic and diastolic blood pressure, heart rate, dP/dtmax relative level, or anacrotic/dicrotic notches, whereas systolic area, dP/dtmin delay, dP/dtd delay, anacrotic notch relative level or its delay increased. R-Se (~10-100 µmol L-1) significantly decreased the tension of precontracted mesenteric, femoral, and renal arteries, whereas it showed a moderate vasorelaxation effect on thoracic aorta isolated from normotensive Wistar rats. The results imply that R-Se acts on vascular smooth muscle cells, which might underlie the effects of R-Se on the rat hemodynamic parameters.
Collapse
Affiliation(s)
- Peter Balis
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Zuzana Rostakova
- Institute of Measurement Science, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia
| | - Iveta Waczulikova
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG), Consejo Superior de Investigaciones Científicas CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
7
|
QSAR modeling and molecular docking studies of 2-oxo-1, 2-dihydroquinoline-4- carboxylic acid derivatives as p-glycoprotein inhibitors for combating cancer multidrug resistance. Heliyon 2023; 9:e13020. [PMID: 36747956 PMCID: PMC9898678 DOI: 10.1016/j.heliyon.2023.e13020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Multidrug resistance (MDR) proteins related to the ATP-binding cassette family are found in a very wide range of human tumors and result in therapeutic failure. The overexpression of efflux pumps such as ABCB1 is one of the mechanisms of MDR. This paper aims to develop a reliable quantitative structure-activity relationship (QSAR) model that best describes the correlation between the activity and the molecular structures in order to predict the inhibitory biological activity towards ABCB1. In this regard, a series of quinoline derivatives of 18 compounds were analyzed using different linear and non-linear machine learning (ML) regression methods including k-nearest neighbors (KNN), decision tree (DT), back propagation neural networks (BPNN) and gradient boosting-based (GB) methods. Their aim is to explain the origin of the activity of these investigated compounds and therefore, design new quinoline derivatives with higher effect on ABCB1. A total of 16 ML predictive models were developed on different number of 2D and 3D descriptors and were evaluated using the coefficient of determination (R2) and the root mean squared error (RMSE) statistical metrics. Among all developed models, A GB-based model in particular catboost achieved the highest predictive quality, with one descriptor, expressed by R2 and RMSE of 95% and 0.283 respectively. Molecular docking studies against the target crystal structure of the outward-facing p-glycoprotein (6C0V) revealed significant binding affinities via both hydrophobic and H-bond interactions with the relevant compounds. The 17 has shown the highest binding energy of -9.22 kcal/mol. Therefore, it can suggest that 17 may prove to be a valuable potential lead structure for the design and synthesis of more potent P-glycoprotein inhibitors for combination used with anti-cancer drugs for cancer multidrug resistance management.
Collapse
|
8
|
Zugman T, da Silva Durigon MC, Campos SK, da Silva RR, da Silva TS, de Oliveira ARM, Piovan L. Exquisite use of Selenoesters as Recyclable Acyl Donors for Lipases‐catalyzed Kinetic Resolution. ChemistrySelect 2022. [DOI: 10.1002/slct.202203883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tay Zugman
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Maria Clara da Silva Durigon
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Suelem Kluconski Campos
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Rodolfo Rodrigues da Silva
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Thiago Sabino da Silva
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Alfredo Ricardo Marques de Oliveira
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| | - Leandro Piovan
- Departamento de Química – Laboratório de Síntese Química e Enzimática (LaSQuE) Universidade Federal do Paraná Centro Politécnico Curitiba 81.531-980 Brazil
| |
Collapse
|
9
|
Seleno-vs. thioether triazine derivatives in search for new anticancer agents overcoming multidrug resistance in lymphoma. Eur J Med Chem 2022; 243:114761. [PMID: 36179403 DOI: 10.1016/j.ejmech.2022.114761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
Abstract
Lymphomas are still difficult to treat even with modern therapies as, among others, multidrug resistance (MDR) is often counteracting a successful cancer therapy. P-gp/ABC-transporters are well-known for their crucial role in the main tumour MDR mechanism, eliminating drugs and cytotoxic substances from the cancer cell by efflux, and their modulators are promising for innovative therapy, but none has been approved in the pharmaceutical market yet. Herein, we have designed, synthesised and analysed 30 novel seleno- and thioether 1,3,5-triazine derivatives conducting comprehensive studies to evaluate their potential application in human JURKAT lymphoma cells. Among the new compounds, four (11, 12, 13 and 23) were much more effective than the reference inhibitor verapamil, being potent ABCB1 inhibitors already at 2 μM, while 5 and 15 showed very potent ABCB1 inhibitory activity only at 20 μM. Results of P-gp ATPase assays, supported with docking studies, indicated the competitive substrate mode of modulating action for 15, while ABCB1, ABCC1 and ABCG2 genes expression induction by 15 with q-PCR was confirmed. All compounds were evaluated for their cytotoxic and antiproliferative properties in both sensitive (PAR) and resistant (MDR) mouse T-lymphoma cell lines, and compound 15, also considering its promising ABCB1 inhibition properties, was revealed to be the best compound in terms of its cytotoxic effect (IC50: 16.73 μM) as well as concerning the antiproliferative effect (IC50: 5.35 μM) in MDR cells. Regarding the mechanistic studies looking at the cell cycle, the thioether 15 and selenium derivatives 26 and 29 were significantly effective in the regulation of cell cycle-related genes alone or in co-treatment with doxorubicin counteracting Cyclin D1 and E1 expression and increasing p53 and p21 levels, shedding first light on their mechanism of action. In summary, we explored the chemical space of seleno- and thioether 1,3,5-triazine derivatives with interesting activity against lymphoma. Especially compound 15 is worthy of being studied deeper to evaluate its precise mode of action further as well it can be improved regarding its potency and drug-likeness.
Collapse
|
10
|
Żesławska E, Tejchman W, Kincses A, Spengler G, Nitek W, Żuchowski G, Szymańska E. 5-Arylidenerhodanines as P-gp Modulators: An Interesting Effect of the Carboxyl Group on ABCB1 Function in Multidrug-Resistant Cancer Cells. Int J Mol Sci 2022; 23:ijms231810812. [PMID: 36142724 PMCID: PMC9503420 DOI: 10.3390/ijms231810812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug resistance (MDR) is considered one of the major mechanisms responsible for the failure of numerous anticancer and antiviral chemotherapies. Various strategies to overcome the MDR phenomenon have been developed, and one of the most attractive research directions is focused on the inhibition of MDR transporters, membrane proteins that extrude cytotoxic drugs from living cells. Here, we report the results of our studies on a series newly synthesized of 5-arylidenerhodanines and their ability to inhibit the ABCB1 efflux pump in mouse T-lymphoma cancer cells. In the series, compounds possessing a triphenylamine moiety and the carboxyl group in their structure were of particular interest. These amphiphilic compounds showed over 17-fold stronger efflux pump inhibitory effects than verapamil. The cytotoxic and antiproliferative effects of target rhodanines on T-lymphoma cells were also investigated. A putative binding mode for 11, one of the most potent P-gp inhibitors tested here, was predicted by molecular docking studies and discussed with regard to the binding mode of verapamil.
Collapse
Affiliation(s)
- Ewa Żesławska
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
- Correspondence: (E.Ż.); (E.S.)
| | - Waldemar Tejchman
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
| | - Annamária Kincses
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Grzegorz Żuchowski
- Chair of Organic Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Correspondence: (E.Ż.); (E.S.)
| |
Collapse
|
11
|
Radomska D, Czarnomysy R, Szymanowska A, Radomski D, Domínguez-Álvarez E, Bielawska A, Bielawski K. Novel Selenoesters as a Potential Tool in Triple-Negative Breast Cancer Treatment. Cancers (Basel) 2022; 14:cancers14174304. [PMID: 36077839 PMCID: PMC9454901 DOI: 10.3390/cancers14174304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Disturbing cancer statistics, especially for breast cancer, are becoming a rationale for the development of new anticancer therapies. For the past several years, studies have been proving a greater role of selenium in the chemoprevention of many cancers than previously considered; hence, a trend to develop compounds containing this element as potential agents with anticancer activity has been set for some time. Therefore, our study aimed to evaluate the anticancer activity of novel selenoesters (EDA-71, E-NS-4) in MCF-7 and MDA-MB-231 human breast cancer cells. The assays evaluating proliferation and cell viability, and flow cytometer analysis of apoptosis/autophagy induction, changes in mitochondrial membrane potential, disruption of cell cycle phases, and protein activity of mTOR, NF-κB, cyclin E1/A2, and caspases 3/7, 8, 9, 10 were performed. The obtained results indicate that the tested selenoesters are highly cytotoxic and exhibit antiproliferative activity at low micromolar doses (<5 µM) compared with cisplatin. The most active compound—EDA-71—highly induces apoptosis, which proceeds via both pathways, as evidenced by the activation of all tested caspases. Furthermore, we observed the occurrence of autophagy (↓ mTOR levels) and cell cycle arrest in the S or G2/M phase (↓ cyclin E1, ↑ cyclin A2).
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-748-57-00; Fax: +48-85-879-57-18
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
12
|
Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist Updat 2022; 63:100844. [DOI: 10.1016/j.drup.2022.100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Dobiasová S, Szemerédi N, Kučerová D, Koucká K, Václavíková R, Gbelcová H, Ruml T, Domínguez-Álvarez E, Spengler G, Viktorová J. Ketone-selenoesters as potential anticancer and multidrug resistance modulation agents in 2D and 3D ovarian and breast cancer in vitro models. Sci Rep 2022; 12:6548. [PMID: 35449387 PMCID: PMC9023544 DOI: 10.1038/s41598-022-10311-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Long-term treatment of cancer with chemotherapeutics leads to the development of resistant forms that reduce treatment options. The main associated mechanism is the overexpression of transport proteins, particularly P-glycoprotein (P-gp, ABCB1). In this study, we have tested the anticancer and multidrug resistance (MDR) modulation activity of 15 selenocompounds. Out of the tested compounds, K3, K4, and K7 achieved the highest sensitization rate in ovarian carcinoma cells (HOC/ADR) that are resistant to the action of the Adriamycin. These compounds induced oxidation stress, inhibited P-gp transport activity and altered ABC gene expression. To verify the effect of compounds, 3D cell models were used to better mimic in vivo conditions. K4 and K7 triggered the most significant ROS release. All selected selenoesters inhibited P-gp efflux in a dose-dependent manner while simultaneously altering the expression of the ABC genes, especially P-gp in paclitaxel-resistant breast carcinoma cells (MCF-7/PAX). K4, and K7 demonstrated sensitization potential in resistant ovarian spheroids. Additionally, all selected selenoesters achieved a high cytotoxic effect in 3D breast and ovarian models, which was comparable to that in 2D cultures. K7 was the only non-competitive P-gp inhibitor, and therefore appears to have considerable potential for the treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Simona Dobiasová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6725, Hungary
| | - Denisa Kučerová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia
| | - Kamila Koucká
- Toxicogenomics Unit, National Institute of Public Health, Šrobárova 49, 100 00, Prague, Czechia.,Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00, Pilsen, Czechia
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Šrobárova 49, 100 00, Prague, Czechia.,Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00, Pilsen, Czechia
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6725, Hungary.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague 6, Czechia.
| |
Collapse
|
14
|
Vasiljeva J, Makrecka-Kuka M, Domracheva I, Vilks K, Dimitrijevs P, Arsenyan P. Development of prospective non-toxic inhibitors of ABCB1 activity and expression in a series of selenophenoquinolinones. NEW J CHEM 2022. [DOI: 10.1039/d2nj00340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenophenoquinolinone is a prospective scaffold for the development of ABCB1 inhibitors for the treatment of MDR cancers.
Collapse
Affiliation(s)
- Jelena Vasiljeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | | | - Ilona Domracheva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Karlis Vilks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| |
Collapse
|
15
|
Cyano- and Ketone-Containing Selenoesters as Multi-Target Compounds against Resistant Cancers. Cancers (Basel) 2021; 13:cancers13184563. [PMID: 34572790 PMCID: PMC8465942 DOI: 10.3390/cancers13184563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The search for novel anticancer agents has been the hot topic of interest in cancer research, due to the phenomenon of multidrug resistance (MDR) in cancer that can make cancer cells resistant to the current available chemotherapeutic agents. In this context, we have designed, synthesized, and biologically evaluated 15 novel selenoesters, with the aim to explore their activity against resistant cancer cell lines. Some of these described selenocompounds showed noteworthy cytotoxicity and selectivity, the ability to inhibit the ABCB1 efflux pump, the capacity to modulate the ATPase activity of this pump, the capability to trigger apoptotic events, the ability to interact in a synergistic manner with doxorubicin in resistant cancer cells, and the power to promote wound healing. Consequently, these results validate the design of these selenocompounds and justify further research to evaluate the possibilities of these compounds to be used in the future in the fight against resistant cancers. Abstract Fifteen selenocompounds, comprising of eight ketone-containing selenoesters (K1–K8, also known as oxoselenoesters) and seven cyano-containing selenoesters (N1–N7, known also as cyanoselenoesters), have been designed, synthesized, and evaluated as novel anticancer agents. These compounds are derivatives of previously reported active selenoesters and were prepared following a three-step one-pot synthetic route. The following evaluations were performed in their biological assessment: cytotoxicity determination, selectivity towards cancer cells in respect to non-cancer cells, checkerboard combination assay, ABCB1 inhibition and inhibition of ABCB1 ATPase activity, apoptosis induction, and wound healing assay. As key results, all the compounds showed cytotoxicity against cancer cells at low micromolar concentrations, with cyanoselenoesters being strongly selective. All of the oxoselenoesters, except K4, were potent ABCB1 inhibitors, and two of them, namely K5 and K6, enhanced the activity of doxorubicin in a synergistic manner. The majority of these ketone derivatives modulated the ATPase activity, showed wound healing activity, and induced apoptosis, with K3 being the most potent, with a potency close to that of the reference compound. To summarize, these novel derivatives have promising multi-target activity, and are worthy to be studied more in-depth in future works to gain a greater understanding of their potential applications against cancer.
Collapse
|
16
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
18
|
Xu J, Yan X, Ge X, Zhang M, Dang X, Yang Y, Xu F, Luo Y, Li G. Novel multi-stimuli responsive functionalized PEG-based co-delivery nanovehicles toward sustainable treatments of multidrug resistant tumor. J Mater Chem B 2021; 9:1297-1314. [PMID: 33443252 DOI: 10.1039/d0tb02192j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The efficacy of ongoing anticancer treatment is often compromised by some barriers, such as low drug content, nonspecific release of drug delivery system, and multidrug resistance (MDR) effect of tumors. Herein, in the research a novel functionalized PEG-based polymer cystine-(polyethylene glycol)2-b-(poly(2-methacryloyloxyethyl ferrocenecarboxylate)2) (Cys-(PEG45)2-b-(PMAOEFC)2) with multi-stimuli sensitive mechanism was constructed, in which doxorubicin (DOX) was chemical bonded through Schiff base structure to provide acid labile DOX prodrug (DOX)2-Cys-(PEG45)2-b-(PMAOEFC)2. Afterwards, paclitaxel (PTX) and its diselenide bond linked PTX dimer were encapsulated into the prodrug through physical loading, to achieve pH and triple redox responsive (DOX)2-Cys-(PEG45)2-b-(PMAOEFC)2@PTX and (DOX)2-Cys-(PEG45)2-b-(PMAOEFC)2@PTX dimer with ultrahigh drugs content. The obtained nanovehicles could self-assemble into globular micelles with good stability based on fluorescence spectra and TEM observation. Moreover, there was a remarkable "reassembly-disassembly" behavior caused by phase transition of micelles under the mimic cancerous physiological environment. DOX and PTX could be on-demand released in acid and redox stress mode, respectively. Meanwhile, in vivo anticancer studies revealed the significant tumor inhibition of nanoformulas. This work offered facile strategies to fabricate drug nanaovehicles with tunable drug content and types, it has a profound significance in overcoming MDR effect, which provided more options for sustainable cancer treatment according to the desired drug dosage and the stage of tumor growth.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xiangji Yan
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xin Ge
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Mingzhen Zhang
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xugang Dang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yanling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
19
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
20
|
Żesławska E, Kucwaj-Brysz K, Kincses A, Spengler G, Szymańska E, Czopek A, Marć MA, Kaczor A, Nitek W, Domínguez-Álvarez E, Latacz G, Kieć-Kononowicz K, Handzlik J. An insight into the structure of 5-spiro aromatic derivatives of imidazolidine-2,4-dione, a new group of very potent inhibitors of tumor multidrug resistance in T-lymphoma cells. Bioorg Chem 2021; 109:104735. [PMID: 33640632 DOI: 10.1016/j.bioorg.2021.104735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/07/2023]
Abstract
A series of 17 arylpiperazine derivatives of the 5-spiroimidazolidine-2,4-diones (6-22) has been explored, including variations in (i) the number of aromatic rings at position 5, (ii) the length of the linker, as well as (iii) the kind and position of the linked arylpiperazine terminal fragment. Synthesis (6-16) and X-ray crystallographic studies for representative compounds (8, 10, 14 and 18) have been performed. The ability to inhibit the tumor multidrug resistance (MDR) efflux pump P-glycoprotein (P-gp, ABCB1) overexpressed in mouse T-lymphoma cells was investigated. The cytotoxic and antiproliferative actions of the compounds on both the reference and the ABCB1-overproducing cells were also examined. The pharmacophore-based molecular modeling studies have been performed. ADMET properties in vitro of selected most active derivatives (6, 11 and 12) have been determined. All compounds, excluding 18, inhibited the cancer P-gp efflux pump with higher potency than that of reference verapamil. The spirofluorene derivatives with amine alkyl substituents at position 1, and the methyl group at position 3 (6-16), occurred the most potent P-gp inhibitors in the MDR T-lymphoma cell line. In particular, compounds 7 and 12 were 100-fold more potent than verapamil. Crystallography-supported pharmacophore-based SAR analysis has postulated specific structural properties that could explain this excellent cancer MDR-inhibitory action.
Collapse
Affiliation(s)
- Ewa Żesławska
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Anna Marć
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
21
|
YILDIRIM M, ERSATIR M, ARSLAN B, GİRAY ES. Cytotoxic and apoptotic potential of some coumarin and 2-amino-3-carbonitrile selenophene derivatives in prostate cancer. Turk J Chem 2021; 45:192-198. [PMID: 33737857 PMCID: PMC7955924 DOI: 10.3906/kim-2008-56] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/26/2020] [Indexed: 01/25/2023] Open
Abstract
3-acetyl coumarin derivatives (1a-d) are formed as a result of condensation of salicylaldehyde derivatives and ethyl acetoacetate and were converted into coumarin-selenophene hybrid compounds (2a-d) in the basic medium by modified Gewald reaction in the presence of malononitrile and selenium. Products are characterized by nuclear magnetic resonance (NMR). The prepared compounds are screened for their anticancer activity against DU-145 cell line. In addition, selected target compounds are evaluated for apoptosis and oxidative stress on DU-145 (prostate carcinoma) cell lines.
Collapse
Affiliation(s)
- Metin YILDIRIM
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, MersinTurkey
| | - Mehmet ERSATIR
- Department of Chemistry, Arts and Science Faculty, Çukurova University, AdanaTurkey
| | - Badel ARSLAN
- Department of Stem Cell and Regenerative Medicine, Institute of Health Science, Mersin University, MersinTurkey
| | - Elife Sultan GİRAY
- Department of Chemistry, Arts and Science Faculty, Çukurova University, AdanaTurkey
| |
Collapse
|
22
|
Radomska D, Czarnomysy R, Radomski D, Bielawski K. Selenium Compounds as Novel Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22031009. [PMID: 33498364 PMCID: PMC7864035 DOI: 10.3390/ijms22031009] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
The high number of new cancer incidences and the associated mortality continue to be alarming, leading to the search for new therapies that would be more effective and less burdensome for patients. As there is evidence that Se compounds can have chemopreventive activity, studies have begun to establish whether these compounds can also affect already existing cancers. This review aims to discuss the different classes of Se-containing compounds, both organic and inorganic, natural and synthetic, and the mechanisms and molecular targets of their anticancer activity. The chemical classes discussed in this paper include inorganic (selenite, selenate) and organic compounds, such as diselenides, selenides, selenoesters, methylseleninic acid, 1,2-benzisoselenazole-3[2H]-one and selenophene-based derivatives, as well as selenoamino acids and Selol.
Collapse
|
23
|
Ali W, Benedetti R, Handzlik J, Zwergel C, Battistelli C. The innovative potential of selenium-containing agents for fighting cancer and viral infections. Drug Discov Today 2020; 26:256-263. [PMID: 33164821 DOI: 10.1016/j.drudis.2020.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Selenium-containing compounds have emerged as a potentially promising treatment for viral infections and tumor development and dissemination. Selenium per se is often considered as a toxic element with little or no beneficial effects, but considerable advances have been made in the understanding of the complex biology, chemistry and drug delivery of this element, especially when it is included in bioactive molecules. Here, we summarize and critically discuss recent findings in the field of selenium-based applications for the treatment of cancer and viral infections.
Collapse
Affiliation(s)
- Wesam Ali
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbruecken, Germany
| | - Rosaria Benedetti
- Department of Precision Medicine, Luigi Vanvitelli University of Campania, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Clemens Zwergel
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbruecken, Germany; Department of Precision Medicine, Luigi Vanvitelli University of Campania, Via L. De Crecchio 7, 80138 Naples, Italy; Department of Drug Chemistry and Technologies, Sapienza University of Rome, Department of Excellence 2018-2022, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Department of Excellence 2018-2022, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
24
|
Al Khalyfeh K, Taher D, Helal W, Korb M, Hamadneh I, Al-Dujaili A, Imraish A, Hammad HM, Al-As’ad RM, Abu-Orabi ST, Hildebrandt A, Lang H. Synthesis and characterization of 1,4-chalcogenesters bearing 5-membered heterocycles. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13090211. [PMID: 32859124 PMCID: PMC7558951 DOI: 10.3390/ph13090211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In the last decades, organoselenium compounds gained interest due to their important biological features. However, the lack of solubility, which characterizes most of them, makes their actual clinical exploitability a hard to reach goal. Selenosugars, with their intrinsic polarity, do not suffer from this issue and as a result, they can be conceived as a useful alternative. The aim of this review is to provide basic knowledge of the synthetic aspects of selenosugars, selenonium salts, selenoglycosides, and selenonucleotides. Their biological properties will be briefly detailed. Of course, it will not be a comprehensive dissertation but an analysis of what the authors think is the cream of the crop of this interesting research topic.
Collapse
|
26
|
Ali W, Spengler G, Kincses A, Nové M, Battistelli C, Latacz G, Starek M, Dąbrowska M, Honkisz-Orzechowska E, Romanelli A, Rasile MM, Szymańska E, Jacob C, Zwergel C, Handzlik J. Discovery of phenylselenoether-hydantoin hybrids as ABCB1 efflux pump modulating agents with cytotoxic and antiproliferative actions in resistant T-lymphoma. Eur J Med Chem 2020; 200:112435. [DOI: 10.1016/j.ejmech.2020.112435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
|
27
|
Kaczor A, Nové M, Kincses A, Spengler G, Szymańska E, Latacz G, Handzlik J. Search for ABCB1 Modulators Among 2-Amine-5-Arylideneimidazolones as a New Perspective to Overcome Cancer Multidrug Resistance. Molecules 2020; 25:molecules25092258. [PMID: 32403277 PMCID: PMC7249047 DOI: 10.3390/molecules25092258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/03/2023] Open
Abstract
Multidrug resistance (MDR) is a severe problem in the treatment of cancer with overexpression of glycoprotein P (Pgp, ABCB1) as a reason for chemotherapy failure. A series of 14 novel 5-arylideneimidazolone derivatives containing the morpholine moiety, with respect to two different topologies (groups A and B), were designed and obtained in a three- or four-step synthesis, involving the Dimroth rearrangement. The new compounds were tested for their inhibition of the ABCB1 efflux pump in both sensitive (parental (PAR)) and ABCB1-overexpressing (MDR) T-lymphoma cancer cells in a rhodamine 123 accumulation assay. Their cytotoxic and antiproliferative effects were investigated by a thiazolyl blue tetrazolium bromide (MTT) assay. For active compounds, an insight into the mechanisms of action using either the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp was performed. The safety profile in vitro was examined. Structure–activity relationship (SAR) analysis was discussed. The most active compounds, representing both 2-substituted- (11) and Dimroth-rearranged 3-substituted (18) imidazolone topologies, displayed 1.38–1.46 fold stronger efflux pump inhibiting effects than reference verapamil and were significantly safer than doxorubicin in cell-based toxicity assays in the HEK-293 cell line. Results of mechanistic studies indicate that active imidazolones are substrates with increasing Pgp ATPase activity, and their dye-efflux inhibition via competitive action on the Pgp verapamil binding site was predicted in silico.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/toxicity
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Humans
- Imidazoles/chemical synthesis
- Imidazoles/chemistry
- Imidazoles/pharmacology
- In Vitro Techniques
- Inhibitory Concentration 50
- Lymphoma, T-Cell/enzymology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Mice
- Models, Molecular
- Molecular Docking Simulation
- Morpholines/chemistry
- Rhodamine 123/metabolism
- Structure-Activity Relationship
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
| | - Márta Nové
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (M.N.); (A.K.); (G.S.)
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (M.N.); (A.K.); (G.S.)
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; (M.N.); (A.K.); (G.S.)
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland; (A.K.); (E.S.); (G.L.)
- Correspondence:
| |
Collapse
|
28
|
Xu T, Guo P, He Y, Pi C, Wang Y, Feng X, Hou Y, Jiang Q, Zhao L, Wei Y. Application of curcumin and its derivatives in tumor multidrug resistance. Phytother Res 2020; 34:2438-2458. [PMID: 32255545 DOI: 10.1002/ptr.6694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
Malignant tumor endangers seriously the health of all mankind. Multidrug resistance (MDR) is one of the main causes of clinical tumor chemotherapy failure. Curcumin (CUR) has not only antitumor activity but also reversing tumor MDR effect. CUR reverses tumor MDR via regulating related signal pathways or corresponding expressed proteins or gene. When combined with chemotherapeutic agents, CUR can be a chemotherapeutic sensitive agent to enhance chemotherapy efficacy and weaken tumor MDR. On the other hand, to improve the MDR reversal effect of CUR, its derivatives have been extensively studied. Therefore, this article mainly focuses on reviewing the application of CUR and its derivatives in MDR and its mechanism of reversing MDR.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Pu Guo
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yingmeng He
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanyuan Wang
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xianhu Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yi Hou
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qingsheng Jiang
- School of International Education, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
29
|
Żesławska E, Korona-Głowniak I, Nitek W, Tejchman W. Effect of the position of a methoxy substituent on the antimicrobial activity and crystal structures of 4-methyl-1,6-diphenylpyrimidine-2(1H)-selenone derivatives. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:359-366. [PMID: 32229717 DOI: 10.1107/s2053229620004040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/23/2020] [Indexed: 11/10/2022]
Abstract
Derivatives of pyrimidine-2(1H)-selenone are a group of compounds with very strong antimicrobial activity. In order to study the effect of the position of the methoxy substituent on biological activity, molecular geometry and intermolecular interactions in the crystal, three derivatives were prepared and evaluated with respect to their antimicrobial activities, and their crystal structures were determined by X-ray diffraction. The investigated compounds, namely, 1-(X-methoxyphenyl)-4-methyl-6-phenylpyrimidine-2(1H)-selenones (X = 2, 3 and 4 for 1, 2 and 3, respectively), C18H16N2OSe, showed very strong activity against selected strains of Gram-positive bacteria and fungi. Two compounds, 1 and 2, crystallize in the monoclinic space group P21/c, while 3 crystallizes in the space group P21/n; 1 has two molecules in the asymmetric unit and the other two (2 and 3) have one molecule. The geometries of the investigated compounds differ slightly in the mutual orientations of the aromatic and pyrimidineselenone rings. The O atom in 1 stabilizes the conformation of the molecules via intramolecular C-H...O hydrogen bonding. The packing of molecules is determined by weak C-H...N and C-H...Se intermolecular interactions and additionally in 1 and 2 by C-H...O intermolecular interactions. The introduction of the methoxy substituent results in greater selectivity of the investigated compounds.
Collapse
Affiliation(s)
- Ewa Żesławska
- Pedagogical University, Department of Chemistry, Institute of Biology, Podchorążych 2, 30-084 Kraków, Poland
| | - Izabela Korona-Głowniak
- Medical University of Lublin, Department of Pharmaceutical Microbiology, Chodźki 1, 20-093 Lublin, Poland
| | - Wojciech Nitek
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Waldemar Tejchman
- Pedagogical University, Department of Chemistry, Institute of Biology, Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|
30
|
Antiviral, Antimicrobial and Antibiofilm Activity of Selenoesters and Selenoanhydrides. Molecules 2019; 24:molecules24234264. [PMID: 31771095 PMCID: PMC6930503 DOI: 10.3390/molecules24234264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/24/2023] Open
Abstract
Selenoesters and the selenium isostere of phthalic anhydride are bioactive selenium compounds with a reported promising activity in cancer, both due to their cytotoxicity and capacity to reverse multidrug resistance. Herein we evaluate the antiviral, the biofilm inhibitory, the antibacterial and the antifungal activities of these compounds. The selenoanhydride and 7 out of the 10 selenoesters were especially potent antiviral agents in Vero cells infected with herpes simplex virus-2 (HSV-2). In addition, the tested selenium derivatives showed interesting antibiofilm activity against Staphylococcus aureus and Salmonella enterica serovar Typhimurium, as well as a moderate antifungal activity in resistant strains of Candida spp. They were inactive against anaerobes, which may indicate that the mechanism of action of these derivatives depends on the presence of oxygen. The capacity to inhibit the bacterial biofilm can be of particular interest in the treatment of nosocomial infections and in the coating of surfaces of prostheses. Finally, the potent antiviral activity observed converts these selenium derivatives into promising antiviral agents with potential medical applications.
Collapse
|
31
|
Chatterjee R, Mukherjee A, Santra S, Zyryanov GV, Majee A. Iron(III)-catalyzed synthesis of selenoesters from α-amino carbonyl derivatives at room temperature. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Domínguez‐Álvarez E, Łażewska D, Szabó Z, Hagenow S, Reiner D, Gajdács M, Spengler G, Stark H, Handzlik J, Kieć‐Kononowicz K. The Search for Histamine H
4
Receptor Ligands with Anticancer Activity among Novel (Thio)urea Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Enrique Domínguez‐Álvarez
- Instituto de Química Orgánica GeneralConsejo Superior de Investigaciones Científicas (IQOG-CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - Dorota Łażewska
- Department of Technology and Biotechnology of DrugsFaculty of PharmacyJagiellonian University Medical College 9 Medyczna Street 30-688 Kraków Poland
| | - Zsanett Szabó
- Department of Medical Microbiology and ImmunobiologyFaculty of MedicineUniversity of Szeged Dóm tér 10 6720 Szeged Hungary
| | - Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf
| | - David Reiner
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf
| | - Márió Gajdács
- Department of Medical Microbiology and ImmunobiologyFaculty of MedicineUniversity of Szeged Dóm tér 10 6720 Szeged Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and ImmunobiologyFaculty of MedicineUniversity of Szeged Dóm tér 10 6720 Szeged Hungary
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of DrugsFaculty of PharmacyJagiellonian University Medical College 9 Medyczna Street 30-688 Kraków Poland
| | - Katarzyna Kieć‐Kononowicz
- Department of Technology and Biotechnology of DrugsFaculty of PharmacyJagiellonian University Medical College 9 Medyczna Street 30-688 Kraków Poland
| |
Collapse
|
33
|
Krasowska D, Iraci N, Santi C, Drabowicz J, Cieslak M, Kaźmierczak-Barańska J, Palomba M, Królewska-Golińska K, Magiera J, Sancineto L. Diselenides and Benzisoselenazolones as Antiproliferative Agents and Glutathione-S-Transferase Inhibitors. Molecules 2019; 24:E2914. [PMID: 31405214 PMCID: PMC6721112 DOI: 10.3390/molecules24162914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
A series of variously functionalized selenium-containing compounds were purposely synthesized and evaluated against a panel of cancer cell lines. Most of the compounds showed an interesting cytotoxicity profile with compound 5 showing a potent activity on MCF7 cells. The ethyl amino derivative 5 acts synergistically with cis-platin and inhibits the GST enzyme with a potency that well correlates with the cytotoxicity observed in MCF7 cells. A computational analysis suggests a possible binding mode on the GST enzyme. As the main outcome of the present study, the ethyl amino derivative 5 emerged as a valid lead compound for further, future developments.
Collapse
Affiliation(s)
- Dorota Krasowska
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Józef Drabowicz
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
- Institute of Chemistry Jan Długosz University in Częstochowa Częstochowa, 42-200 Armii Krajowej 13/15, Poland
| | - Marcin Cieslak
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Julia Kaźmierczak-Barańska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Martina Palomba
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Karolina Królewska-Golińska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Jakub Magiera
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Luca Sancineto
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland.
| |
Collapse
|
34
|
Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors. Molecules 2019; 24:molecules24081487. [PMID: 31014009 PMCID: PMC6514980 DOI: 10.3390/molecules24081487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 11/17/2022] Open
Abstract
Bacterial multidrug resistance is becoming a growing problem for public health, due to the development and spreading of bacterial strains resistant to antimicrobials. In this study, the antibacterial and multidrug resistance reversing activity of a series of seleno-carbonyl compounds has been evaluated. The effects of eleven selenocompounds on bacterial growth were evaluated in Staphylococcus aureus, methicillin resistant S. aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Chlamydia trachomatis D. The combination effect of compounds with antibiotics was examined by the minimum inhibitory concentration reduction assay. Their efflux pump (EP) inhibitory properties were assessed using real-time fluorimetry. Relative expressions of EP and quorum-sensing genes were studied by quantitative PCR. Results showed that a methylketone selenoester had remarkable antibacterial activity against Gram-positive bacteria and potentiated the activity of oxacillin in MRSA. Most of the selenocompounds showed significant anti-chlamydial effects. The selenoanhydride and the diselenodiester were active inhibitors of the AcrAB-TolC system. Based on these results it can be concluded that this group of selenocompounds can be attractive potential antibacterials and EP inhibitors. The discovery of new derivatives with a significant antibacterial activity as novel selenocompounds, is of high impact in the fight against resistant pathogens.
Collapse
|
35
|
Spengler G, Gajdács M, Marć MA, Domínguez-Álvarez E, Sanmartín C. Organoselenium Compounds as Novel Adjuvants of Chemotherapy Drugs-A Promising Approach to Fight Cancer Drug Resistance. Molecules 2019; 24:molecules24020336. [PMID: 30669343 PMCID: PMC6359065 DOI: 10.3390/molecules24020336] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Malignant diseases present a serious public health burden and their treatment with traditional chemotherapy cannot be considered an all-round solution, due to toxic side effects. Selenium compounds (Se-compounds) have received substantial attention in medicinal chemistry, especially in experimental chemotherapy, both as cytotoxic agents and adjuvants in chemotherapy. A checkerboard microplate method was applied to study the drug interactions of Se-compounds and clinically relevant chemotherapeutic drugs against the multidrug-resistant (MDR) subtype of mouse t-lymphoma cells overexpressing the ABCB1 transporter. Se-compounds showed synergistic interactions with chemotherapeutic agents targeting the topoisomerase enzymes or the microtubule apparatus. The ketone-containing selenoesters showed synergism at lower concentrations (1.25 µM). Most of the tested compounds interacted antagonistically with alkylating agents and verapamil. A thiophene-containing Se-compound showed synergism with all tested drugs, except cisplatin. While the exact mechanism of drug interactions is yet unknown, the potency of the selenocompounds as efflux pump inhibitors or the potentiation of their efficacy as reactive oxygen species modulators may play a role in their complementary activity against the tested MDR lymphoma cell line.
Collapse
Affiliation(s)
- Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, 6720 Szeged, Hungary.
| | - Márió Gajdács
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, 6720 Szeged, Hungary.
| | - Małgorzata Anna Marć
- Interdisciplinary Excellence Centre, Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, 6720 Szeged, Hungary.
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), 31008 Pamplona, Spain.
| |
Collapse
|
36
|
Shankaraiah N, Nekkanti S, Ommi O, P.S. LS. Diverse Targeted Approaches to Battle Multidrug Resistance in Cancer. Curr Med Chem 2019; 26:7059-7080. [DOI: 10.2174/0929867325666180410110729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/01/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
:
The efficacy of successful cancer therapies is frequently hindered by the development of drug
resistance in the tumor. The term ‘drug resistance’ is used to illustrate the decreased effectiveness of a
drug in curing a disease or alleviating the symptoms of the patient. This phenomenon helps tumors to survive
the damage caused by a specific drug or group of drugs. In this context, studying the mechanisms of
drug resistance and applying this information to design customized treatment regimens can improve therapeutic
efficacy as well as the curative outcome. Over the years, numerous Multidrug Resistance (MDR)
mechanisms have been recognized and tremendous effort has been put into developing agents to address
them. The integration of data emerging from the elucidation of molecular and biochemical pathways and
specific tumor-associated factors has shown tremendous promise within the oncology community for improving
patient outcomes. In this review, we provide an overview of the utility of these molecular and biochemical
signaling processes as well as tumor-associated factors associated with MDR, for the rational
selection of cancer treatment strategies.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Shalini Nekkanti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Ojaswitha Ommi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Lakshmi Soukya P.S.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| |
Collapse
|
37
|
Kharma A, Misak A, Grman M, Brezova V, Kurakova L, Baráth P, Jacob C, Chovanec M, Ondrias K, Domínguez-Álvarez E. Release of reactive selenium species from phthalic selenoanhydride in the presence of hydrogen sulfide and glutathione with implications for cancer research. NEW J CHEM 2019. [DOI: 10.1039/c9nj02245g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The last decade has witnessed a renewed interest in selenium (Se) as an element able to prevent a range of illnesses in humans, mainly through supplementation.
Collapse
|
38
|
Mottaghipisheh J, Nové M, Spengler G, Kúsz N, Hohmann J, Csupor D. Antiproliferative and cytotoxic activities of furocoumarins of Ducrosia anethifolia. PHARMACEUTICAL BIOLOGY 2018; 56:658-664. [PMID: 31070540 PMCID: PMC6300088 DOI: 10.1080/13880209.2018.1548625] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 01/15/2023]
Abstract
CONTEXT Phytochemical and pharmacological data on Ducrosia anethifolia (DC.) Boiss. (Apiaceae), an Iranian medicinal plant, are scarce; however, furocoumarins are characteristic compounds of D. anethifolia. OBJECTIVE Our experiments identify the secondary metabolites of D. anethifolia and assess their antitumor and anti-multidrug resistance activities. MATERIALS AND METHODS Pure compounds were isolated from the extract of aerial parts of the plant by chromatographic methods. Bioactivities were tested on multidrug resistant and sensitive mouse T-lymphoma cell lines. The inhibition of the cancer MDR efflux pump ABCB1 was evaluated by flow cytometry (at 2 and 20 µM). A checkerboard microplate method was applied to study the interactions of furocoumarins and doxorubicin. Toxicity was studied using normal murine NIH/3T3 fibroblasts. RESULTS Thirteen pure compounds were isolated, nine furocoumarins namely, pabulenol (1), (+)-oxypeucedanin hydrate (2), oxypeucedanin (3), oxypeucedanin methanolate (4), (-)-oxypeucedanin hydrate (5), imperatorin (6), isogospherol (7), heraclenin (8), heraclenol (9), along with vanillic aldehyde (10), harmine (11), 3-hydroxy-α-ionone (12) and 2-C-methyl-erythrytol (13). Oxypeucedanin showed the highest in vitro antiproliferative and cytotoxic activity against parent (IC50 = 25.98 ± 1.27, 40.33 ± 0.63 µM) and multidrug resistant cells (IC50 = 28.89 ± 0.73, 66.68 ± 0.00 µM), respectively, and exhibited slight toxicity on normal murine fibroblasts (IC50 = 57.18 ± 3.91 µM). DISCUSSION AND CONCLUSIONS Compounds 2, 3, 5, 7, 10-13 were identified for the first time from the Ducrosia genus. Here, we report a comprehensive in vitro assessment of the antitumor activities of D. anethifolia furocoumarins. Oxypeucedanin is a promising compound for further investigations for its anticancer effects.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Márta Nové
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Kúsz
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| | - Dezső Csupor
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| |
Collapse
|
39
|
Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 2018; 127:80-97. [PMID: 29746900 DOI: 10.1016/j.freeradbiomed.2018.05.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
Selenium(Se)-containing compounds have attracted a growing interest as anticancer agents over recent decades, with mounting reports demonstrating their high efficacy and selectivity against cancer cells. Typically, Se compounds exert their cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis. However, the precise intracellular targets, signalling pathways affected and mechanisms of cell death engaged following treatment vary with the chemical properties of the selenocompound and its metabolites, as well as the cancer model that is used. Naturally occurring organic Se compounds, besides encompassing a significant antitumor activity with an apparent ability to prevent metastasis, also seem to have fewer side effects and less systemic effects as reported for many inorganic Se compounds. On this basis, many novel organoselenium compounds have also been synthesized and examined as potential chemotherapeutic agents. This review aims to summarize the most well studied natural and synthetic organoselenium compounds and provide the most recent developments in our understanding of the molecular mechanisms that underlie their potential anticancer effects.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Prajakta Khalkar
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jeremy Braude
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
40
|
Qiao J, Liu Y, Du Y. Method to build 2,4-substituted selenazole from β-azido diselenide and carboxylic acid: A formal synthesis of selenazofurin. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Ney Y, Jawad Nasim M, Kharma A, Youssef LA, Jacob C. Small Molecule Catalysts with Therapeutic Potential. Molecules 2018; 23:E765. [PMID: 29584669 PMCID: PMC6017662 DOI: 10.3390/molecules23040765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 01/21/2023] Open
Abstract
Catalysts are employed in many areas of research and development where they combine high efficiency with often astonishing selectivity for their respective substrates. In biology, biocatalysts are omnipresent. Enzymes facilitate highly controlled, sophisticated cellular processes, such as metabolic conversions, sensing and signalling, and are prominent targets in drug development. In contrast, the therapeutic use of catalysts per se is still rather limited. Recent research has shown that small molecule catalytic agents able to modulate the redox state of the target cell bear considerable promise, particularly in the context of inflammatory and infectious diseases, stroke, ageing and even cancer. Rather than being "active" on their own in a more traditional sense, such agents develop their activity by initiating, promoting, enhancing or redirecting reactions between biomolecules already present in the cell, and their activity therefore depends critically on the predisposition of the target cell itself. Redox catalysts, for instance, preferably target cells with a distinct sensitivity towards changes in an already disturbed redox balance and/or increased levels of reactive oxygen species. Indeed, certain transition metal, chalcogen and quinone agents may activate an antioxidant response in normal cells whilst at the same time triggering apoptosis in cancer cells with a different pre-existing "biochemical redox signature" and closer to the internal redox threshold. In pharmacy, catalysts therefore stand out as promising lead structures, as sensor/effector agents which are highly effective, fairly selective, active in catalytic, i.e., often nanomolar concentrations and also very flexible in their structural design.
Collapse
Affiliation(s)
- Yannick Ney
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Lama A Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Damascus University, Damascus, Syria.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|
42
|
Álvarez-Pérez M, Ali W, Marć MA, Handzlik J, Domínguez-Álvarez E. Selenides and Diselenides: A Review of Their Anticancer and Chemopreventive Activity. Molecules 2018. [PMID: 29534447 PMCID: PMC6017218 DOI: 10.3390/molecules23030628] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Selenium and selenocompounds have attracted the attention and the efforts of scientists worldwide due to their promising potential applications in cancer prevention and/or treatment. Different organic selenocompounds, with diverse functional groups that contain selenium, have been reported to exhibit anticancer and/or chemopreventive activity. Among them, selenocyanates, selenoureas, selenoesters, selenium-containing heterocycles, selenium nanoparticles, selenides and diselenides have been considered in the search for efficiency in prevention and treatment of cancer and other related diseases. In this review, we focus our attention on the potential applications of selenides and diselenides in cancer prevention and treatment that have been reported so far. The around 80 selenides and diselenides selected herein as representative compounds include promising antioxidant, prooxidant, redox-modulating, chemopreventive, anticancer, cytotoxic and radioprotective compounds, among other activities. The aim of this work is to highlight the possibilities that these novel organic selenocompounds can offer in an effort to contribute to inspire medicinal chemists in their search of new promising derivatives.
Collapse
Affiliation(s)
- Mónica Álvarez-Pérez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Wesam Ali
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, D-66123 Saarbruecken, Germany.
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Małgorzata Anna Marć
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
43
|
Sharma N, Kumar S, Kumar S, Mehta SK, Bhasin KK. Synthesis and characterization of fused imidazole heterocyclic selenoesters and their application for chemical detoxification of HgCl2. NEW J CHEM 2018. [DOI: 10.1039/c7nj03908e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenoester derivatives of imidazo[1,2-a]pyridine/imidazo[1,2-a]pyrimidine has been synthesized by the reaction of sodium selenocarboxylates with 2-(chloromethyl)imidazo[1,2-a]pyridine/pyrimidine.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sanjeev Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Sangit Kumar
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - S. K. Mehta
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - K. K. Bhasin
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| |
Collapse
|
44
|
Vega-Teijido MA, Kieninger M, Ventura ON. Theoretical study of the reactions of the hydroselenyl radical (HSe ●) with the selenenic radical (HSeO ●). J Mol Model 2017; 24:3. [PMID: 29209850 DOI: 10.1007/s00894-017-3535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
The formation of selenium species in some biological processes involves the generation of ionic and radical intermediates such as RSe●, RSe-, RSeO●, and RSeO-, among others. We performed a theoretical study of the possible mechanisms for the reaction of the two simplest Se radicals-the hydroselenyl (HSe●) and selenenic (HSeO●) radicals, in which the possible products, intermediates, and transition-state structures were investigated. Density functional theory (DFT) was applied at the B3LYP/6-311++G(3df,3pd) level and the Ahlrichs Coulomb fitting basis sets were employed with an effective core potential (ECP) for both Se atoms. The same procedure was used to calculate the electronic density. All calculations were also performed using the M06-2X functional, which describes weaker bonds better than B3LYP does. In the reaction of interest, the so-called CR complex (HSe····SeOH) is formed initially. After passing through the transition state TS1, cis-HSeSeOH is obtained as a product. If a low barrier is then overcome (passing through the transition state TS32), the trans-HSeSeOH species is obtained. The CR complex can also rearrange into the intermediate INT after overcoming the barrier presented by the transition state TS2. Additionally, the decomposition of INT to H2O and 1Se2 is possible through another transition state. This reaction is not included in this study. We also observed a second possible route for the conversion of INT to one of the HSeSeOH species; this route occurs through two pathways (with transition states TS31 and TS32). A comparison of some of the results with those obtained for sulfur analogs along the same pathways is also presented in this work. Graphical abstract Electronic envelopes for HSeO● and HSe● radicals.
Collapse
Affiliation(s)
- Mauricio Angel Vega-Teijido
- Computational Chemistry and Biology Group-CCBG, DETEMA, Facultad de Química, Universidad de la República-UdelaR, 11800, Montevideo, Uruguay.
| | - Martina Kieninger
- Computational Chemistry and Biology Group-CCBG, DETEMA, Facultad de Química, Universidad de la República-UdelaR, 11800, Montevideo, Uruguay
| | - Oscar N Ventura
- Computational Chemistry and Biology Group-CCBG, DETEMA, Facultad de Química, Universidad de la República-UdelaR, 11800, Montevideo, Uruguay
| |
Collapse
|
45
|
Selenoesters and selenoanhydrides as novel multidrug resistance reversing agents: A confirmation study in a colon cancer MDR cell line. Bioorg Med Chem Lett 2017; 27:797-802. [PMID: 28126516 DOI: 10.1016/j.bmcl.2017.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/08/2017] [Accepted: 01/11/2017] [Indexed: 01/05/2023]
Abstract
Taking into account that multidrug resistance (MDR) is the main cause for chemotherapeutic failure in cancer treatment and as a continuation of our efforts to overcome this problem we report the evaluation of one cyclic selenoanhydride (1) and ten selenoesters (2-11) in MDR human colon adenocarcinoma Colo 320 cell line. The most potent derivatives (1, 9-11) inhibited the ABCB1 efflux pump much stronger than the reference compound verapamil. Particularly, the best one (9) was 4-fold more potent than verapamil at a 10-fold lower concentration. Furthermore, the evaluated derivatives exerted a potent and selective cytotoxic activity. In addition, they were strong apoptosis inducers as the four derivatives triggered apoptotic events in a 64-72% of the examined MDR Colo 320 human adenocarcinoma cells.
Collapse
|