1
|
Jiang Y, Liu P, Qiu Z, Zhou M, Cheng M, Yang T. The U.S. FDA approved cardiovascular drugs from 2011 to 2023: A medicinal chemistry perspective. Eur J Med Chem 2024; 275:116593. [PMID: 38889609 DOI: 10.1016/j.ejmech.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. A total of 28 new molecular entities (NMEs) were approved by the U.S. Food and Drug Administration (FDA) for the treatment of cardiovascular diseases from 2011 to 2023. Approximately 25 % of the medications were sanctioned for the management of diverse vascular disorders. The other major therapeutic areas of focus included antilipemic agents (15 %), blood pressure disease (11 %), heart failure, hyperkalemia, and cardiomyopathy (7-8% each). Among all the approved drugs, there are a total of 22 new chemical entities (NCEs), including inhibitors, agonists, polymers, and inorganic compounds. In addition to NCEs, 6 biological agents (BLAs), including monoclonal antibodies, small interfering RNAs (siRNAs), and antisense oligonucleotides, have also obtained approval for the treatment of cardiovascular diseases. From this perspective, approved NCEs are itemized and discussed based on their disease, targets, chemical classes, major drug metabolites, and biochemical and pharmacological properties. Systematic analysis has been conducted to examine the binding modes of these approved drugs with their targets using cocrystal structure information or docking studies to provide valuable insights for designing next-generation agents. Furthermore, the synthetic approaches employed in the creation of these drug molecules have been emphasized, aiming to inspire the development of novel, efficient, and applicable synthetic methodologies. Generally, the primary objective of this review is to provide a comprehensive examination of the clinical applications, pharmacology, binding modes, and synthetic methodologies employed in small-molecule drugs approved for treating CVD. This will facilitate the development of more potent and innovative therapeutics for effectively managing cardiovascular diseases.
Collapse
Affiliation(s)
- Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Zhou
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengdi Cheng
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Hou J, Liu S, Zhang X, Tu G, Wu L, Zhang Y, Yang H, Li X, Liu J, Jiang L, Tan Q, Bai F, Liu Z, Miao C, Hua T, Luo Z. Structural basis of antagonist selectivity in endothelin receptors. Cell Discov 2024; 10:79. [PMID: 39075075 PMCID: PMC11286772 DOI: 10.1038/s41421-024-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Endothelins and their receptors, ETA and ETB, play vital roles in maintaining vascular homeostasis. Therapeutically targeting endothelin receptors, particularly through ETA antagonists, has shown efficacy in treating pulmonary arterial hypertension (PAH) and other cardiovascular- and renal-related diseases. Here we present cryo-electron microscopy structures of ETA in complex with two PAH drugs, macitentan and ambrisentan, along with zibotentan, a selective ETA antagonist, respectively. Notably, a specialized anti-ETA antibody facilitated the structural elucidation. These structures, together with the active-state structures of ET-1-bound ETA and ETB, and the agonist BQ3020-bound ETB, in complex with Gq, unveil the molecular basis of agonist/antagonist binding modes in endothelin receptors. Key residues that confer antagonist selectivity to endothelin receptors were identified along with the activation mechanism of ETA. Furthermore, our results suggest that ECL2 in ETA can serve as an epitope for antibody-mediated receptor antagonism. Collectively, these insights establish a robust theoretical framework for the rational design of small-molecule drugs and antibodies with selective activity against endothelin receptors.
Collapse
Affiliation(s)
- Junyi Hou
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaodan Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guowei Tu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yijie Zhang
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiangcheng Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Longquan Jiang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiwen Tan
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fang Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zhe Luo
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Critical Care Medicine, Shanghai Xuhui Central Hospital, Zhongshan Xuhui Hospital, Fudan University, Shanghai, China.
- Shanghai Key Lab of Pulmonary Inflammation and Injury, Shanghai, China.
| |
Collapse
|
3
|
Xu J, Jiang X, Xu S. Aprocitentan, a dual endothelin-1 (ET-1) antagonist for treating resistant hypertension: Mechanism of action and therapeutic potential. Drug Discov Today 2023; 28:103788. [PMID: 37742911 DOI: 10.1016/j.drudis.2023.103788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Hypertension is reaching epidemic proportions worldwide and is a significant public health concern. However, ∼15% of patients with hypertension continue to experience elevated blood pressure, even after taking antihypertensive medications [such as angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs), dihydropyridine calcium channel blockers (CCBs) and thiazide diuretics], a condition referred to as resistant hypertension (RH). Within the complex realm of blood pressure regulation and vascular function, endothelin-1 (ET-1), a potent vasoconstrictor, plays a pivotal role. Recent research, particularly a Phase III clinical trial (NCT03541174), has shed light on the potential of aprocitentan, a dual ET-1 receptor antagonist, in significantly lowering blood pressure in individuals with RH. In this review, we summarize the mechanism of action and therapeutic potential of aprocitentan as an innovative approach for treating RH.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaohua Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
4
|
Woo J, Stein C, Christian AH, Levin MD. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature 2023; 623:77-82. [PMID: 37914946 PMCID: PMC10907950 DOI: 10.1038/s41586-023-06613-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 11/03/2023]
Abstract
When searching for the ideal molecule to fill a particular functional role (for example, a medicine), the difference between success and failure can often come down to a single atom1. Replacing an aromatic carbon atom with a nitrogen atom would be enabling in the discovery of potential medicines2, but only indirect means exist to make such C-to-N transmutations, typically by parallel synthesis3. Here, we report a transformation that enables the direct conversion of a heteroaromatic carbon atom into a nitrogen atom, turning quinolines into quinazolines. Oxidative restructuring of the parent azaarene gives a ring-opened intermediate bearing electrophilic sites primed for ring reclosure and expulsion of a carbon-based leaving group. Such a 'sticky end' approach subverts existing atom insertion-deletion approaches and as a result avoids skeleton-rotation and substituent-perturbation pitfalls common in stepwise skeletal editing. We show a broad scope of quinolines and related azaarenes, all of which can be converted into the corresponding quinazolines by replacement of the C3 carbon with a nitrogen atom. Mechanistic experiments support the critical role of the activated intermediate and indicate a more general strategy for the development of C-to-N transmutation reactions.
Collapse
Affiliation(s)
- Jisoo Woo
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Colin Stein
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | | | - Mark D Levin
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Shihoya W, Sano FK, Nureki O. Structural insights into endothelin receptor signalling. J Biochem 2023; 174:317-325. [PMID: 37491722 PMCID: PMC10533325 DOI: 10.1093/jb/mvad055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/27/2023] Open
Abstract
Endothelins and their receptors, type A (ETA) and type B (ETB), modulate vital cellular processes, including growth, survival, invasion and angiogenesis, through multiple G proteins. This review highlights the structural determinations of these receptors by X-ray crystallography and cryo-electron microscopy, and their activation mechanisms by endothelins. Explorations of the conformational changes upon receptor activation have provided insights into the unique G-protein coupling feature of the endothelin receptors. The review further delves into the binding modes of the clinical antagonist and the inverse agonists. These findings significantly contribute to understanding the mechanism of G-protein activation and have potential implications for drug development, particularly in the context of vasodilatory antagonists and agonists targeting the endothelin receptors.
Collapse
Affiliation(s)
- Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
7
|
Mendel HC, Kaas Q, Muttenthaler M. Neuropeptide signalling systems - An underexplored target for venom drug discovery. Biochem Pharmacol 2020; 181:114129. [PMID: 32619425 PMCID: PMC7116218 DOI: 10.1016/j.bcp.2020.114129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Neuropeptides are signalling molecules mainly secreted from neurons that act as neurotransmitters or peptide hormones to affect physiological processes and modulate behaviours. In humans, neuropeptides are implicated in numerous diseases and understanding their role in physiological processes and pathologies is important for therapeutic development. Teasing apart the (patho)physiology of neuropeptides remains difficult due to ligand and receptor promiscuity and the complexity of the signalling pathways. The current approach relies on a pharmacological toolbox of agonists and antagonists displaying high selectivity for independent receptor subtypes, with the caveat that only few selective ligands have been discovered or developed. Animal venoms represent an underexplored source for novel receptor subtype-selective ligands that could aid in dissecting human neuropeptide signalling systems. Multiple endogenous-like neuropeptides as well as peptides acting on neuropeptide receptors are present in venoms. In this review, we summarise current knowledge on neuropeptides and discuss venoms as a source for ligands targeting neuropeptide signalling systems.
Collapse
Affiliation(s)
- Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria.
| |
Collapse
|
8
|
Chen Y, Su X, Qin Q, Yu Y, Jia M, Zhang H, Li H, Pei L. New insights into phenotypic switching of VSMCs induced by hyperhomocysteinemia: Role of endothelin-1 signaling. Biomed Pharmacother 2020; 123:109758. [DOI: 10.1016/j.biopha.2019.109758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
|
9
|
Abstract
Cardiovascular disease is a major contributor to global morbidity and mortality and is the common end point of many chronic diseases. The endothelins comprise three structurally similar peptides of 21 amino acids in length. Endothelin 1 (ET-1) and ET-2 activate two G protein-coupled receptors - endothelin receptor type A (ETA) and endothelin receptor type B (ETB) - with equal affinity, whereas ET-3 has a lower affinity for ETA. ET-1 is the most potent vasoconstrictor in the human cardiovascular system and has remarkably long-lasting actions. ET-1 contributes to vasoconstriction, vascular and cardiac hypertrophy, inflammation, and to the development and progression of cardiovascular disease. Endothelin receptor antagonists have revolutionized the treatment of pulmonary arterial hypertension. Clinical trials continue to explore new applications of endothelin receptor antagonists, particularly in treatment-resistant hypertension, chronic kidney disease and patients receiving antiangiogenic therapies. Translational studies have identified important roles for the endothelin isoforms and new therapeutic targets during development, in fluid-electrolyte homeostasis, and in cardiovascular and neuronal function. Novel pharmacological strategies are emerging in the form of small-molecule epigenetic modulators, biologics (such as monoclonal antibodies for ETB) and possibly signalling pathway-biased agonists and antagonists.
Collapse
|
10
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
11
|
Wei X, Zhang C, Wang Y, Zhan Q, Qiu G, Fan L, Yin G. Decyanative Cross-Coupling of Cyanopyrimidines with O-, S-, and N-Nucleophiles: A Route to Alkoxylpyrimidines, Aminopyrimidines and Alkylthiopyrimidines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiangyang Wei
- College of Chemistry and Chemical Engineering; Hubei Key Laboratory of Pollutant Analysis and Reuse Technology; Hubei Normal University; 435002 Huangshi P. R. China
| | - Caiyang Zhang
- College of Chemistry and Chemical Engineering; Hubei Key Laboratory of Pollutant Analysis and Reuse Technology; Hubei Normal University; 435002 Huangshi P. R. China
| | - Yifei Wang
- College of Chemistry and Chemical Engineering; Hubei Key Laboratory of Pollutant Analysis and Reuse Technology; Hubei Normal University; 435002 Huangshi P. R. China
| | - Qi Zhan
- College of Chemistry and Chemical Engineering; Hubei Key Laboratory of Pollutant Analysis and Reuse Technology; Hubei Normal University; 435002 Huangshi P. R. China
| | - Guiying Qiu
- College of Chemistry and Chemical Engineering; Hubei Key Laboratory of Pollutant Analysis and Reuse Technology; Hubei Normal University; 435002 Huangshi P. R. China
| | - Ling Fan
- College of Chemistry and Chemical Engineering; Hubei Key Laboratory of Pollutant Analysis and Reuse Technology; Hubei Normal University; 435002 Huangshi P. R. China
| | - Guodong Yin
- College of Chemistry and Chemical Engineering; Hubei Key Laboratory of Pollutant Analysis and Reuse Technology; Hubei Normal University; 435002 Huangshi P. R. China
| |
Collapse
|
12
|
van Thor MCJ, Ten Klooster L, Snijder RJ, Kelder JC, Mager JJ, Post MC. Bosentan or Macitentan Therapy in Chronic Thromboembolic Pulmonary Hypertension? Lung 2019; 197:753-760. [PMID: 31583452 DOI: 10.1007/s00408-019-00274-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Research comparing bosentan and macitentan in chronic thromboembolic pulmonary hypertension (CTEPH) is scarce, although macitentan might have superior pharmacologic properties. We present the first real-world, 2-year follow-up results and compare clinical outcomes of both drugs in CTEPH. METHODS All consecutive, technical inoperable or residual CTEPH patients receiving bosentan or macitentan, diagnosed in our multidisciplinary team between January 2003 and January 2019, were included. We report and compare survival, clinical worsening (CW), adverse events, WHO FC, NT-proBNP and 6-min walking test (6MWT) until 2 years after medication initiation. RESULTS In total, 112 patients receiving bosentan or macitentan (58% female, mean age 62 ± 14 years, 68% WHO FC III/IV, 51% bosentan) could be included. Mean treatment duration was 1.9 ± 0.4 years for bosentan and 1.2 ± 0.6 years for macitentan. Two-year survival rate was 91% for bosentan and 80% for macitentan (HR mortality macitentan 1.85 [0.56-6.10], p = 0.31). Two-year CW-free survival was 81% and 58%, respectively (HR CW macitentan 2.16 [0.962-4.87], p = 0.06). Right atrial pressure, cardiac output (for mortality alone) and 6MWT lowest saturation were multivariate predictors at baseline. Overall adverse event rates were comparable and WHO FC, NT-proBNP and 6MWT distance improved similar for both drugs till 2-year follow-up. CONCLUSION CTEPH patients receiving bosentan or macitentan have improved clinical outcomes till 2-year follow-up, without significant differences in outcomes between both therapies.
Collapse
Affiliation(s)
- M C J van Thor
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands.,Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - L Ten Klooster
- Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - R J Snijder
- Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - J C Kelder
- Department of Epidemiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - J J Mager
- Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - M C Post
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands.
| |
Collapse
|
13
|
Hinze AM, Wigley FM. Pharmacotherapy Options in the Management of Raynaud's Phenomenon. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2018; 4:235-254. [PMID: 31538045 DOI: 10.1007/s40674-018-0102-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Purpose of review Multiple classes of medications have been studied for the treatment of Raynaud's phenomenon (RP) with or without digital ischemia. The goal of this review is to discuss the outcomes of recent studies and to report on our approach to the management of RP in light of the available evidence. Recent findings Comparing treatments for RP remains a challenge as efficacy endpoint vary widely among trials. While calcium channel blockers are used first-line in the pharmacologic management of RP, phosphodiesterase 5 inhibitors have also been shown to be beneficial in reducing symptoms. In the setting of digital ischemia, administration of intravenous prostanoids is the standard of care. Bosentan has shown benefit in the prevention of future ulcers in patients with scleroderma. Botulinum toxin therapy was ineffective in a clinical trial involving scleroderma patients; more controlled studies are needed in other subsets of patients. Digital sympathectomy may be beneficial in cases of critical digital ischemia, though recurrence of symptoms is common. Summary Comparative effectiveness studies are needed to determine which therapeutic interventions are most beneficial in patients with RP. Based on the available evidence, we start with CCBs and add a phosphodiesterase inhibitor if symptoms are not controlled, or intravenous prostacyclin in the setting of severe critical digital ischemia. We may additionally add an endothelial receptor antagonist in cases of recurrent digital ulcers. A surgical sympathectomy may be used in refractory cases of digital ischemia. A digital block may also be a less invasive, but temporary, intervention allowing for titration of medical therapy.
Collapse
Affiliation(s)
- Alicia M Hinze
- Division of Rheumatology, Johns Hopkins University, 5200 Eastern Avenue, MFL Building, Center Tower Ste. 4100, Baltimore, MD, 21224
| | - Fredrick M Wigley
- Division of Rheumatology, Johns Hopkins University, 5200 Eastern Avenue, MFL Building, Center Tower Ste. 4100, Baltimore, MD, 21224
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To review the most recent data on the development of endothelin receptor antagonists (ERAs) for the treatment of hypertension and the management of diabetic nephropathy RECENT FINDINGS: Recent reviews and meta-analyses of experimental and clinical data obtained with ERAs confirmed that endothelin receptor blockade is associated with significant decreases in blood pressure in essential hypertension but also in resistant hypertension. In addition, in patients with diabetic nephropathy, ERAs induce significant 30-40% decreases in albuminuria when administered on top of blockers of the renin-angiotensin system. Yet, the benefits of ERAs have often been limited by their tolerability profile, essentially fluid retention and the development of edema and liver toxicity. Hence, several programs have been interrupted. Today, only one ERA, aprocitentan, is still under development for the treatment of resistant hypertension. Regarding the place of ERAs in the management of diabetic nephropathy, the results of the SONAR trial with atrasentan are eagerly awaited but the recent interruption of this trial because of insufficient events is worrisome, as one might not obtain all the expected information for this major trial. Blockade of endothelin receptor have a high potential in the treatment of hypertension and the prevention of the progression of renal diseases such as diabetic nephropathy. Today, the number of clinical programs investigating the potential benefits of ERAs is limited and more data must be obtained to define the real place of ERAs in these indications.
Collapse
Affiliation(s)
- Michel Burnier
- Department of Medicine, Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 17, 1011, Lausanne, Switzerland.
| |
Collapse
|
15
|
X-ray structures of endothelin ET B receptor bound to clinical antagonist bosentan and its analog. Nat Struct Mol Biol 2017; 24:758-764. [PMID: 28805809 DOI: 10.1038/nsmb.3450] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022]
Abstract
Endothelin receptors (ETRs) have crucial roles in vascular control and are targets for drugs designed to treat circulatory-system diseases and cancer progression. The nonpeptide dual-ETR antagonist bosentan is the first oral drug approved to treat pulmonary arterial hypertension. Here we report crystal structures of human endothelin ETB receptor bound to bosentan and to the ETB-selective analog K-8794, at 3.6-Å and 2.2-Å resolution, respectively. The K-8794-bound structure reveals the detailed water-mediated hydrogen-bonding network at the transmembrane core, which could account for the weak negative allosteric modulation of ETB by Na+ ions. The bosentan-bound structure reveals detailed interactions with ETB, which are probably conserved in the ETA receptor. A comparison of the two structures shows unexpected similarity between antagonist and agonist binding. Despite this similarity, bosentan sterically prevents the inward movement of transmembrane helix 6 (TM6), and thus exerts its antagonistic activity. These structural insights will facilitate the rational design of new ETR-targeting drugs.
Collapse
|
16
|
Smith MP, Rowling EJ, Miskolczi Z, Ferguson J, Spoerri L, Haass NK, Sloss O, McEntegart S, Arozarena I, von Kriegsheim A, Rodriguez J, Brunton H, Kmarashev J, Levesque MP, Dummer R, Frederick DT, Andrews MC, Cooper ZA, Flaherty KT, Wargo JA, Wellbrock C. Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Mol Med 2017; 9:1011-1029. [PMID: 28606996 PMCID: PMC5538298 DOI: 10.15252/emmm.201607156] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/17/2022] Open
Abstract
Approaches to prolong responses to BRAF targeting drugs in melanoma patients are challenged by phenotype heterogeneity. Melanomas of a "MITF-high" phenotype usually respond well to BRAF inhibitor therapy, but these melanomas also contain subpopulations of the de novo resistance "AXL-high" phenotype. > 50% of melanomas progress with enriched "AXL-high" populations, and because AXL is linked to de-differentiation and invasiveness avoiding an "AXL-high relapse" is desirable. We discovered that phenotype heterogeneity is supported during the response phase of BRAF inhibitor therapy due to MITF-induced expression of endothelin 1 (EDN1). EDN1 expression is enhanced in tumours of patients on treatment and confers drug resistance through ERK re-activation in a paracrine manner. Most importantly, EDN1 not only supports MITF-high populations through the endothelin receptor B (EDNRB), but also AXL-high populations through EDNRA, making it a master regulator of phenotype heterogeneity. Endothelin receptor antagonists suppress AXL-high-expressing cells and sensitize to BRAF inhibition, suggesting that targeting EDN1 signalling could improve BRAF inhibitor responses without selecting for AXL-high cells.
Collapse
Affiliation(s)
- Michael P Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Zsofia Miskolczi
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jennifer Ferguson
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Loredana Spoerri
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Nikolas K Haass
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | - Olivia Sloss
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sophie McEntegart
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Imanol Arozarena
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Navarrabiomed-Fundación Miguel Servet-Idisna, Pamplona, Spain
| | | | - Javier Rodriguez
- Systems Biology Ireland, School of Medicine, UCD, Dublin 4, Ireland
| | - Holly Brunton
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jivko Kmarashev
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Dennie T Frederick
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Miles C Andrews
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary A Cooper
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jennifer A Wargo
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Khadtare N, Stephani R, Korlipara V. Design, synthesis and evaluation of 1,3,6-trisubstituted-4-oxo-1,4-dihydroquinoline-2-carboxylic acid derivatives as ET A receptor selective antagonists using FRET assay. Bioorg Med Chem Lett 2017; 27:2281-2285. [PMID: 28462837 DOI: 10.1016/j.bmcl.2017.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/18/2022]
Abstract
The endothelin axis and in particular the two receptor subtypes, ETA and ETB, are under investigation for the treatment of various diseases such as pulmonary arterial hypertension, fibrosis, renal failure and cancer. Previous work in our lab has shown that 1,3,6-trisubstituted-4-oxo-1,4-dihydroquinoline-2-carboxylic acid derivatives exhibit noteworthy endothelin receptor antagonist activity. A series of analogues with modifications centered around position 6 of the heterocyclic quinolone core and replacement of the aryl carboxylic acid group with an isosteric tetrazole ring was designed and synthesized to further optimize the structure activity relationship. The endothelin receptor antagonist activity was determined by in vitro Förster resonance energy transfer (FRET) using GeneBLAzer® assay technology. The most potent member of this series exhibited ETA receptor antagonist activity in the subnanomolar range with an IC50 value of 0.8nM, and was 1000-fold selective for the ETA receptor compared to the ETB receptor. Its activity and selectivity profile resembles that of the most recently approved drug, macitentan.
Collapse
Affiliation(s)
- Nikhil Khadtare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Ralph Stephani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Vijaya Korlipara
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States.
| |
Collapse
|
18
|
Hahn SS, Makaryus M, Talwar A, Narasimhan M, Zaidi G. A review of therapeutic agents for the management of pulmonary arterial hypertension. Ther Adv Respir Dis 2016; 11:46-63. [PMID: 27595643 PMCID: PMC5941973 DOI: 10.1177/1753465816665289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon, progressive and life
threatening disease characterized by a proliferative vasculopathy of the small
muscular pulmonary arterioles resulting in elevated pulmonary vascular
resistance and eventually right ventricular failure. An increasing understanding
of the pathobiology of PAH and its natural history has led to the development of
numerous targeted therapies. Despite these advances there is significant
progression of disease and the survival rate remains low. This article reviews
the agents currently available for the medical management of PAH.
Collapse
Affiliation(s)
- Stella S Hahn
- Northwell Health Division of Pulmonary Critical Care and Sleep Medicine, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA
| | - Mina Makaryus
- Northwell Health Division of Pulmonary Critical Care and Sleep Medicine, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA
| | - Arunabh Talwar
- Northwell Health Division of Pulmonary Critical Care and Sleep Medicine, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA
| | - Mangala Narasimhan
- Northwell Health Division of Pulmonary Critical Care and Sleep Medicine, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA
| | - Gulrukh Zaidi
- Northwell Health Division of Pulmonary Critical Care and Sleep Medicine, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA
| |
Collapse
|