1
|
Inoue M, Nakagawa Y, Azuma M, Akahane H, Chimori R, Mano Y, Takasawa R. The PKM2 inhibitor shikonin enhances piceatannol-induced apoptosis of glyoxalase I-dependent cancer cells. Genes Cells 2024; 29:52-62. [PMID: 37963646 PMCID: PMC11448369 DOI: 10.1111/gtc.13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Glyoxalase I (GLO I), a major enzyme involved in the detoxification of the anaerobic glycolytic byproduct methylglyoxal, is highly expressed in various tumors, and is regarded as a promising target for cancer therapy. We recently reported that piceatannol potently inhibits human GLO I and induces the death of GLO I-dependent cancer cells. Pyruvate kinase M2 (PKM2) is also a potential therapeutic target for cancer treatment, so we evaluated the combined anticancer efficacy of piceatannol plus low-dose shikonin, a potent and specific plant-derived PKM2 inhibitor, in two GLO I-dependent cancer cell lines, HL-60 human myeloid leukemia cells and NCI-H522 human non-small-cell lung cancer cells. Combined treatment with piceatannol and low-dose shikonin for 48 h synergistically reduced cell viability, enhanced apoptosis rate, and increased extracellular methylglyoxal accumulation compared to single-agent treatment, but did not alter PKM1, PKM2, or GLO I protein expression. Taken together, these results indicate that concomitant use of low-dose shikonin potentiates piceatannol-induced apoptosis of GLO I-dependent cancer cells by augmenting methylglyoxal accumulation.
Collapse
Affiliation(s)
- Manami Inoue
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yuki Nakagawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Miku Azuma
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Haruka Akahane
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryusei Chimori
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yasunari Mano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryoko Takasawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
2
|
Laus MN, Blando F, Soccio M. Glyoxalase I Assay as a Possible Tool for Evaluation of Biological Activity of Antioxidant-Rich Plant Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:1150. [PMID: 36904010 PMCID: PMC10005046 DOI: 10.3390/plants12051150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The health-promoting properties of natural plant bioactive compounds are mainly attributable to their ability to counteract oxidative stress. This is considered a major causative factor in aging and aging-related human diseases, in which a causal role is also ascribed to dicarbonyl stress. This is due to accumulation of methylglyoxal (MG) and other reactive dicarbonyl species, leading to macromolecule glycation and cell/tissue dysfunction. The glyoxalase (GLYI) enzyme, catalyzing the rate-limiting step of the GSH-dependent MG detoxification pathway, plays a key role in cell defense against dicarbonyl stress. Therefore, the study of GLYI regulation is of relevant interest. In particular, GLYI inducers are important for pharmacological interventions to sustain healthy aging and to improve dicarbonyl-related diseases; GLYI inhibitors, allowing increased MG levels to act as proapoptotic agents in tumor cells, are of special interest in cancer treatment. In this study, we performed a new in vitro exploration of biological activity of plant bioactive compounds by associating the measurement of their antioxidant capacity (AC) with the evaluation of their potential impact on dicarbonyl stress measured as capability to modulate GLYI activity. AC was evaluated using TEAC, ORAC, and LOX-FL methods. The GLYI assay was performed using a human recombinant isoform, in comparison with the recently characterized GLYI activity of durum wheat mitochondria. Different plant extracts were tested, obtained from plant sources with very high phytochemical content ('Sun Black' and wildtype tomatoes, black and 'Polignano' carrots, and durum wheat grain). Results showed high antioxidant properties of the tested extracts, associated with different modes (no effect, activation, and inhibition) and effectiveness in modulating both GLYI activity sources. Overall, results indicate the GLYI assay as an advisable and promising tool for researching plant foods as a source of natural antioxidant compounds acting as GLYI enzymatic regulators to be used for dietary management associated the treatment of oxidative/dicarbonyl-promoted diseases.
Collapse
Affiliation(s)
- Maura Nicoletta Laus
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Federica Blando
- Institute of Sciences of Food Production, CNR, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Mario Soccio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| |
Collapse
|
3
|
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023; 28:1845. [PMID: 36838831 PMCID: PMC9960276 DOI: 10.3390/molecules28041845] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Phenolic compounds and flavonoids are potential substitutes for bioactive agents in pharmaceutical and medicinal sections to promote human health and prevent and cure different diseases. The most common flavonoids found in nature are anthocyanins, flavones, flavanones, flavonols, flavanonols, isoflavones, and other sub-classes. The impacts of plant flavonoids and other phenolics on human health promoting and diseases curing and preventing are antioxidant effects, antibacterial impacts, cardioprotective effects, anticancer impacts, immune system promoting, anti-inflammatory effects, and skin protective effects from UV radiation. This work aims to provide an overview of phenolic compounds and flavonoids as potential and important sources of pharmaceutical and medical application according to recently published studies, as well as some interesting directions for future research. The keyword searches for flavonoids, phenolics, isoflavones, tannins, coumarins, lignans, quinones, xanthones, curcuminoids, stilbenes, cucurmin, phenylethanoids, and secoiridoids medicinal plant were performed by using Web of Science, Scopus, Google scholar, and PubMed. Phenolic acids contain a carboxylic acid group in addition to the basic phenolic structure and are mainly divided into hydroxybenzoic and hydroxycinnamic acids. Hydroxybenzoic acids are based on a C6-C1 skeleton and are often found bound to small organic acids, glycosyl moieties, or cell structural components. Common hydroxybenzoic acids include gallic, syringic, protocatechuic, p-hydroxybenzoic, vanillic, gentistic, and salicylic acids. Hydroxycinnamic acids are based on a C6-C3 skeleton and are also often bound to other molecules such as quinic acid and glucose. The main hydroxycinnamic acids are caffeic, p-coumaric, ferulic, and sinapic acids.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
4
|
Usami M, Ando K, Shibuya A, Takasawa R, Yokoyama H. Crystal structures of human glyoxalase I and its complex with TLSC702 reveal inhibitor binding mode and substrate preference. FEBS Lett 2022; 596:1458-1467. [PMID: 35363883 DOI: 10.1002/1873-3468.14344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/11/2022]
Abstract
Human glyoxalase I (hGLO I) is an enzyme for detoxification of methylglyoxal (MG), and has been considered an attractive target for the development of new anti-cancer drugs. In our previous report, the GLO I inhibitor TLSC702 induced apoptosis in tumor cells. Here, we determined the crystal structures of hGLO I and its complex with TLSC702. In the complex, the carboxy O atom of TLSC702 is coordinated to Zn2+ , and TLSC702 mainly shows van der Waals interaction with hydrophobic residues. In the inhibitor-unbound structure, glycerol, which has similar functional groups to MG, was bound to Zn2+ , indicating that GLO I can easily bind to MG. This study provides a structural basis to develop better anticancer drugs.
Collapse
Affiliation(s)
- Midori Usami
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Koki Ando
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Asuka Shibuya
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ryoko Takasawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hideshi Yokoyama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
5
|
Addition of hydrophobic side chains improve the apoptosis inducibility of the human glyoxalase I inhibitor, TLSC702. Bioorg Med Chem Lett 2021; 40:127918. [PMID: 33711442 DOI: 10.1016/j.bmcl.2021.127918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Glyoxalase I (GLO I) is a known therapeutic target in cancer. Even though TLSC702, a GLO I inhibitor that we discovered, induces apoptosis in tumor cells, exceptionally higher doses are required compared with those needed to inhibit GLO I activity in vitro. In this work, structure-activity optimization studies were conducted on four sections of the TLSC702 molecule to determine the partial structural features necessary for the inhibition of GLO I. Herein, we found that the carboxy group in TLSC702 was critical for binding with the divalent zinc at the active site of GLO I. In contrast, the side chain substituents in the meta- and para- positions of the benzene ring had little influence on the in vitro inhibition of GLO I. The CLogP values of the TLSC702 derivatives showed a positive correlation with the antiproliferative effects on NCI-H522 cells. Thus, two derivatives of TLSC702, which displayed either high or low lipophilicity due to the types of substituents at the phenyl position, were selected. Even though both derivatives showed comparable inhibitory effects as that of their parent compound, the derivative with the high CLogP value was distinctly more antiproliferative than TLSC702. In contrast, the derivative with the low CLogP value did not decrease cell viability in NCI-H522 and HL-60 cells. These findings suggested that structural improvements, such as the addition of hydrophobic moieties to the phenyl group, enhanced the ability of TLSC702 to induce apoptosis by increasing cell membrane permeability.
Collapse
|
6
|
Leone A, Nigro C, Nicolò A, Prevenzano I, Formisano P, Beguinot F, Miele C. The Dual-Role of Methylglyoxal in Tumor Progression - Novel Therapeutic Approaches. Front Oncol 2021; 11:645686. [PMID: 33869040 PMCID: PMC8044862 DOI: 10.3389/fonc.2021.645686] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
One of the hallmarks of cancer cells is their metabolic reprogramming, which includes the preference for the use of anaerobic glycolysis to produce energy, even in presence of normal oxygen levels. This phenomenon, known as “Warburg effect”, leads to the increased production of reactive intermediates. Among these Methylglyoxal (MGO), a reactive dicarbonyl known as the major precursor of the advanced glycated end products (AGEs), is attracting great attention. It has been well established that endogenous MGO levels are increased in several types of cancer, however the MGO contribution in tumor progression is still debated. Although an anti-cancer role was initially attributed to MGO due to its cytotoxicity, emerging evidence has highlighted its pro-tumorigenic role in several types of cancer. These apparently conflicting results are explained by the hormetic potential of MGO, in which lower doses of MGO are able to establish an adaptive response in cancer cells while higher doses cause cellular apoptosis. Therefore, the extent of MGO accumulation and the tumor context are crucial to establish MGO contribution to cancer progression. Several therapeutic approaches have been proposed and are currently under investigation to inhibit the pro-tumorigenic action of MGO. In this review, we provide an overview of the early and latest evidence regarding the role of MGO in cancer, in order to define its contribution in tumor progression, and the therapeutic strategies aimed to counteract the tumor growth.
Collapse
Affiliation(s)
- Alessia Leone
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Cecilia Nigro
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Nicolò
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Immacolata Prevenzano
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Pietro Formisano
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
7
|
Toxicological Evaluation of Piceatannol, Pterostilbene, and ε-Viniferin for Their Potential Use in the Food Industry: A Review. Foods 2021; 10:foods10030592. [PMID: 33799882 PMCID: PMC7998146 DOI: 10.3390/foods10030592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The application of stilbenes in the food industry is being considered because of their biological activities. Piceatannol, pterostilbene and ε-viniferin have awakened the industry’s interest. However, before they can be commercialized, we must first guarantee their safety for consumers. The present work reviews the toxicological studies performed with these stilbenes. A wide variety of studies has demonstrated their cytotoxic effects in both cancer and non-cancerous cell lines. In contrast, although DNA damage was detected by some authors, in vitro genotoxic studies on the effects of piceatannol, pterostilbene, and ε-viniferin remain scarce. None of the three reviewed substances have been evaluated using the in vitro tests required by the European Food Safety Authority (EFSA) as the first step in genotoxicity testing. We did not find any study on the toxic effects of these stilbenes in vivo. Thus, more studies are needed to confirm their safe use before they can be authorized as additive in the food industry.
Collapse
|
8
|
Ellagic acid: A potent glyoxalase-I inhibitor with a unique scaffold. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:115-130. [PMID: 32697740 DOI: 10.2478/acph-2021-0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2020] [Indexed: 01/19/2023]
Abstract
The glyoxalase system, particularly glyoxalase-I (GLO-I), has been approved as a potential target for cancer treatment. In this study, a set of structurally diverse polyphenolic natural compounds were investigated as potential GLO-I inhibitors. Ellagic acid was found, computationally and experimentally, to be the most potent GLO-I inhibitor among the tested compounds which showed an IC50 of 0.71 mmol L-1. Its binding to the GLO-I active site seemed to be mainly driven by ionic interaction via its ionized hydroxyl groups with the central Zn ion and Lys156, along with other numerous hydrogen bonding and hydrophobic interactions. Due to its unique and rigid skeleton, it can be utilized to search for other novel and potent GLO-I inhibitors via computational approaches such as pharmacophore modeling and similarity search methods. Moreover, an inspection of the docked poses of the tested compounds showed that chlorogenic acid and dihydrocaffeic acid could be considered as lead compounds worthy of further optimization.
Collapse
|
9
|
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, Diao Q, Zheng Z, Liu D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother 2020; 131:110663. [DOI: 10.1016/j.biopha.2020.110663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
|
10
|
Arakaki DG, Samúdio dos Santos V, de Melo EP, Pereira H, Silva Figueiredo P, Rodrigues Cortês M, Alexandre Carollo C, de Oliveira LCS, Tschinkel P, Reis F, Souza I, Rosa R, Sanches F, Freitas dos Santos E, Aragão do Nascimento V. Canjiqueira Fruit: Are We Losing the Best of It? Foods 2020; 9:foods9040521. [PMID: 32326266 PMCID: PMC7231018 DOI: 10.3390/foods9040521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Fruits and byproducts are valuable sources of nutrients and bioactive compounds, which are associated with a decreased risk of developing several diseases, such as cancer, inflammation, cardiovascular diseases, and Alzheimer’s. The fruits of canjiqueira (Byrsonima cydoniifolia) are already exploited as a food resource, while the seeds are discarded. This study aimed at showing the potential of the whole fruit of canjiqueira. Elemental characterization was performed on ICP OES, while thermal stability was assessed on thermogravimetry. The determination of the fatty acid profile was carried out on gas chromatography and bioactive compound identification using liquid chromatography and mass spectrometry. Results show that both parts of canjiqueira fruit are a source of various minerals, such as Ca, Cu, Fe, K, Mg, and Mn while the seed only is a good source for Zn. Oleic and linoleic acids are the main compounds in pulp and seed. The thermal stability of seed oil is superior to pulp oil, while piceatannol concentration is higher in seed than pulp. All parts of canjiqueira fruit may be used as a strategy to address nutrition issues and are valuable ingredients to prospective food products.
Collapse
Affiliation(s)
- Daniela G. Arakaki
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
- Correspondence: (D.G.A.); (V.A.d.N.)
| | - Vanessa Samúdio dos Santos
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (V.S.d.S.); (C.A.C.)
| | - Elaine Pádua de Melo
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Hugo Pereira
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
| | - Mário Rodrigues Cortês
- Chemistry Institute, Federal Universityof Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (M.R.C.); (L.C.S.d.O.)
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (V.S.d.S.); (C.A.C.)
| | | | - Paula Tschinkel
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Francisco Reis
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Igor Souza
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Rafaela Rosa
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Fabiane Sanches
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil;
| | - Elisvânia Freitas dos Santos
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
- Correspondence: (D.G.A.); (V.A.d.N.)
| |
Collapse
|
11
|
Banik K, Ranaware AM, Harsha C, Nitesh T, Girisa S, Deshpande V, Fan L, Nalawade SP, Sethi G, Kunnumakkara AB. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacol Res 2020; 153:104635. [DOI: 10.1016/j.phrs.2020.104635] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
|
12
|
Jin T, Zhao L, Wang HP, Huang ML, Yue Y, Lu C, Zheng ZB. Recent advances in the discovery and development of glyoxalase I inhibitors. Bioorg Med Chem 2019; 28:115243. [PMID: 31879183 DOI: 10.1016/j.bmc.2019.115243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Glyoxalase I (GLO1) is a homodimeric Zn2+-metalloenzyme that catalyses the transformation of methylglyoxal (MG) to d-lacate through the intermediate S-d-lactoylglutathione. Growing evidence indicates that GLO1 has been identified as a potential target for the treatment cancer and other diseases. Various inhibitors of GLO1 have been discovered or developed over the past several decades including natural or natural product-based inhibitors, GSH-based inhibitors, non-GSH-based inhibitors, etc. The aim of this review is to summarize recent achievements of concerning discovery, design strategies, as well as pharmacological aspects of GLO1 inhibitors with the target of promoting their development toward clinical application.
Collapse
Affiliation(s)
- Tian Jin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China.
| | - Lu Zhao
- Sichuan Institute for Food and Drug Control, Chengdu 611731, People's Republic of China.
| | - Hong-Ping Wang
- Sichuan Institute for Food and Drug Control, Chengdu 611731, People's Republic of China
| | - Mao-Lin Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China
| | - Yan Yue
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China
| | - Chichong Lu
- Department of Chemistry, School of Science, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| | - Zhe-Bin Zheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China.
| |
Collapse
|
13
|
Yamamoto T, Sato A, Takai Y, Yoshimori A, Umehara M, Ogino Y, Inada M, Shimada N, Nishida A, Ichida R, Takasawa R, Maruki-Uchida H, Mori S, Sai M, Morita M, Tanuma SI. Effect of piceatannol-rich passion fruit seed extract on human glyoxalase I-mediated cancer cell growth. Biochem Biophys Rep 2019; 20:100684. [PMID: 31517069 PMCID: PMC6728800 DOI: 10.1016/j.bbrep.2019.100684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Passion fruit seed extract (PFSE), a product rich in stilbenes such as piceatannol and scirpusin B, has various physiological effects. It is unclear whether PFSE and its stilbene derivatives inhibit cancer cell proliferation via human glyoxalase I (GLO I), the rate-limiting enzyme for detoxification of methylglyoxal. We examined the anticancer effects of PFSE in two types of human cancer cell lines with different GLO I expression levels, NCI-H522 cells (highly-expressed GLO I) and HCT116 cells (lowly-expressed GLO I). PFSE and its stilbenes inhibited GLO I activity. In addition, PFSE and its stilbenes supressed the cancer cell proliferation of NCI-H522 cells more than HCT116 cells. These observations suggest that PFSE can provide a novel anticancer strategy for prevention and treatment.
Collapse
Key Words
- Anticancer
- GLO I, glyoxalase I
- Glyoxalase I
- HPLC, high-performance liquid chromatography
- IL-6, interleukin 6
- MAPK, mitogen-activated protein kinase
- MG, methylglyoxal
- PFSE, Passion fruit seed extract
- PI3K, phosphoinositide 3-kinase
- Passion fruit seed extract
- Piceatannol
- STAT3, signal transducers and activators of transcription 3
- TCA, tricarboxylic acid
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Research and Development Institute, Health Science Research Center, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, 230-8504, Japan
| | - Akira Sato
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yusuke Takai
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-0012, Japan
| | - Masahiro Umehara
- Research and Development Institute, Health Science Research Center, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, 230-8504, Japan
| | - Yoko Ogino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Mana Inada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Nami Shimada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Aya Nishida
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Risa Ichida
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ryoko Takasawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroko Maruki-Uchida
- Research and Development Institute, Health Science Research Center, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, 230-8504, Japan
| | - Sadao Mori
- Research and Development Institute, Health Science Research Center, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, 230-8504, Japan
| | - Masahiko Sai
- Research and Development Institute, Health Science Research Center, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, 230-8504, Japan
| | - Minoru Morita
- Research and Development Institute, Health Science Research Center, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, 230-8504, Japan
| | - Sei-ichi Tanuma
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
14
|
|
15
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
16
|
Suh KS, Chon S, Choi EM. Protective effects of piceatannol on methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblastic cells. Free Radic Res 2018; 52:712-723. [DOI: 10.1080/10715762.2018.1467010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| |
Collapse
|
17
|
Shimada N, Takasawa R, Tanuma SI. Interdependence of GLO I and PKM2 in the Metabolic shift to escape apoptosis in GLO I-dependent cancer cells. Arch Biochem Biophys 2018; 638:1-7. [PMID: 29225125 DOI: 10.1016/j.abb.2017.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/27/2022]
Abstract
Many cancer cells undergo metabolic reprogramming known as the Warburg effect, which is characterized by a greater dependence on glycolysis for ATP generation, even under normoxic conditions. Glyoxalase I (GLO I) is a rate-limiting enzyme involved in the detoxification of cytotoxic methylglyoxal formed in glycolysis and which is known to be highly expressed in many cancer cells. Thus, specific inhibitors of GLO I are expected to be effective anticancer drugs. We previously discovered a novel GLO I inhibitor named TLSC702. Although the strong inhibitory activity of TLSC702 was observed in the in vitro enzyme assay, higher concentrations were required to induce apoptosis at the cellular level. One of the proposed reasons for this difference is that cancer cells alter the energy metabolism leading them to become more dependent on mitochondrial respiration than glycolysis (Metabolic shift) to avoid apoptosis induction. Thus, we assumed that combination of TLSC702 with shikonin-a specific inhibitor of pyruvate kinase M2 (PKM2) that acts as a driver of TCA cycle by supplying pyruvate and which is known to be specifically expressed in cancer cells-would have anticancer effects. We herein show the anticancer effects of combination treatment with TLSC702 and shikonin, and a possible anticancer mechanism.
Collapse
Affiliation(s)
- Nami Shimada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryoko Takasawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sei-Ichi Tanuma
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Genome & Drug Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|