1
|
Luo W, Chang G, Lin D, Xie H, Sun H, Li Z, Mo S, Wang R, Wang Y, Zheng Z. 3,3'-((3,4,5-trifluoropHenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) inhibit lung cancer cell proliferation and migration. PLoS One 2024; 19:e0303186. [PMID: 38776295 PMCID: PMC11111047 DOI: 10.1371/journal.pone.0303186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
Lung cancer is a major public health challenge and, despite therapeutic improvements, is the first leading cause of cancer worldwide. The current cure rate from advanced cancer treatment is excessively low. Therefore, it is of great importance to identify novel, potent and less toxic anticancer agents for the treatment of lung cancer. The aim of our research is to synthesize a new biscoumarin 3,3'-((3,4,5-trifluorop -phenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (C35) as an anticancer agent. C35 was simply prepared by 4-hydroxycoumarin and 3,4,5-trifluorobenzaldehyde under ethanol and its structure was analyzed by spectroscopic analyses. The anti-proliferation effect of C35 was detected using CCK-8 assay. Migration abilities were measured by Transwell assay. The expression of correlated proteins was determined by Western blot. The results showed that C35 displayed strong cytostatic effects on lung cancer cell proliferation. In addition, C35 possessed a significant inhibition of migration by reducing the expression of matrix metalloproteinases-2 (MMP-2) and MMP-9 in lung cancer cells. Furthermore, C35 treatment suppressed the phosphorylation of p38 in lung cancer cells. Moreover, in vivo experiments were carried out, in which we treated Lewis tumor-bearing C57 mice via intraperitoneal injection of C35. Results showed that C35 inhibited tumor growth in vivo. In conclusion, our study demonstrated the anticancer activity of C35 via suppression of lung cancer cell proliferation and migration, which is possibly involved with the inhibition of the p38 pathway.
Collapse
Affiliation(s)
- Wenhui Luo
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, Guangdong Province, PR China
| | - Guoxin Chang
- College of Traditional Chinese Medicine, Guangdong Pharmacuetical University, Guangzhou, Guangdong Province, PR China
| | - Dingmei Lin
- College of Traditional Chinese Medicine, Guangdong Pharmacuetical University, Guangzhou, Guangdong Province, PR China
| | - Hongyi Xie
- College of Traditional Chinese Medicine, Guangdong Pharmacuetical University, Guangzhou, Guangdong Province, PR China
| | - Huilong Sun
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
| | - Zhibin Li
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
| | - Shirong Mo
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
| | - Ruixue Wang
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
| | - Yan Wang
- College of Traditional Chinese Medicine, Guangdong Pharmacuetical University, Guangzhou, Guangdong Province, PR China
| | - Zhaoguang Zheng
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
| |
Collapse
|
2
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
3
|
Abd El-Haleem AH, Ellafy MA, Abbas SES, El-Ashrey MK. Design, synthesis and anticancer evaluation of some novel 7-hydroxy-4-methyl-3-substituted benzopyran-2-one derivatives. Future Med Chem 2024; 16:417-437. [PMID: 38352986 DOI: 10.4155/fmc-2023-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
Aim: 22 derivatives of 7-hydroxy-4-methyl-3-substituted benzopyran-2-one were designed, synthesized and evaluated for their anticancer activity. Materials & methods: The prepared compounds were screened for their cytotoxicity against the MCF-7 breast cancer cell line. The best five were then evaluated against MCF10a to check their safety and then tested for their PI3K and Akt-1 inhibitory action. The best two derivatives were further analyzed through cell cycle analysis, caspase 3/7 activation, increasing BAX level and decreasing BCL-2. Docking and absorption, distribution, metabolism and excretion prediction studies were also performed. Results & conclusion: Compounds 3b, 3c, 3j, 7 and 8 were the most active. Compounds 3c and 8 showed remarkable inhibitory action against PI3K and Akt-1 enzymes, and both are promising candidates for treatment of breast cancer.
Collapse
Affiliation(s)
- Akram H Abd El-Haleem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr University for Science & Technology, P.O. 77, 6th of October City, Giza, Egypt
| | - Manar A Ellafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr University for Science & Technology, P.O. 77, 6 of October City, Giza, Egypt
| | - Safinaz E-S Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
| | - Mohamed K El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| |
Collapse
|
4
|
Fettach S, Thari FZ, Karrouchi K, Benbacer L, Lee LH, Bouyahya A, Cherrah Y, Sefrioui H, Bougrin K, Faouzy MEA. Assessment of anti-hyperglycemic and anti-hyperlipidemic effects of thiazolidine-2,4-dione derivatives in HFD-STZ diabetic animal model. Chem Biol Interact 2024; 391:110902. [PMID: 38367680 DOI: 10.1016/j.cbi.2024.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic endocrine/metabolic disorder characterized by elevated postprandial and fasting glycemic levels that result in disturbances in primary metabolism. In this study, we evaluated the metabolic effects of thiazolidine-2,4-dione derivatives in Wistar rats and Swiss mice that were fed a high-fat diet (HFD) for 4 weeks and received 90 mg/kg of streptozotocin (STZ) intraperitoneally as a T2DM model. The HFD consisted of 17% carbohydrate, 58% fat, and 25% protein, as a percentage of total kcal. The thiazolidine-2,4-dione derivatives treatments reduced fasting blood glucose (FBG) levels by an average of 23.98%-50.84%, which were also improved during the oral starch tolerance test (OSTT). Treatment with thiazolidine-2,4-dione derivatives also improved triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and total cholesterol levels (P < 0.05). The treatment intake has also shown a significant effect to modulate the altered hepatic and renal biomarkers. Further treatment with thiazolidine-2,4-dione derivatives for 28 days significantly ameliorated changes in appearance and metabolic risk factors, including favorable changes in histopathology of the liver, kidney, and pancreas compared with the HFD/STZ-treated group, suggesting its potential role in the management of diabetes. Thiazolidine-2,4-dione derivatives are a class of drugs that act as insulin sensitizers by activating peroxisome proliferator-activated receptor-gamma (PPAR-γ), a nuclear receptor that regulates glucose and lipid metabolism. The results of this study suggest that thiazolidine-2,4-dione derivatives may be a promising treatment option for T2DM by improving glycemic control, lipid metabolism, and renal and hepatic function.
Collapse
Affiliation(s)
- Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Fatima Zahra Thari
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Laila Benbacer
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), B.P. 1382 R.P, 10001, Rabat, Morocco
| | - Learn-Han Lee
- Research Center for Life Science and Healthcare, China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Zhejiang, China; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Yahia Cherrah
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Hassan Sefrioui
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat, Morocco
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco; Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - My El Abbes Faouzy
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| |
Collapse
|
5
|
Koley M, Han J, Soloshonok VA, Mojumder S, Javahershenas R, Makarem A. Latest developments in coumarin-based anticancer agents: mechanism of action and structure-activity relationship studies. RSC Med Chem 2024; 15:10-54. [PMID: 38283214 PMCID: PMC10809357 DOI: 10.1039/d3md00511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Many researchers around the world are working on the development of novel anticancer drugs with different mechanisms of action. In this case, coumarin is a highly promising pharmacophore for the development of novel anticancer drugs. Besides, the hybridization of this moiety with other anticancer pharmacophores has emerged as a potent breakthrough in the treatment of cancer to decrease its side effects and increase its efficiency. This review aims to provide a comprehensive overview of the recent development of coumarin derivatives and their application as novel anticancer drugs. Herein, we highlight and describe the largest number of research works reported in this field from 2015 to August 2023, along with their mechanisms of action and structure-activity relationship studies, making this review different from the other review articles published on this topic to date.
Collapse
Affiliation(s)
- Manankar Koley
- CSIR-Central Glass & Ceramic Research Institute Kolkata India
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University Nanjing China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | | | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg Hamburg Germany
| |
Collapse
|
6
|
Fawzi M, Bimoussa A, Laamari Y, Oussidi AN, Oubella A, Ketatni EM, Saadi M, Ammari LE, Morjani H, Ait Itto MY, Auhmani A. New (S)-verbenone-isoxazoline-1,3,4-thiadiazole hybrids: synthesis, anticancer activity and apoptosis-inducing effect. Future Med Chem 2023; 15:1603-1619. [PMID: 37772541 DOI: 10.4155/fmc-2023-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Background: This study aimed to develop novel isoxazoline-1,3,4-thiadiazole hybrids from (S)-verbenone for potential anticancer treatment, particularly focusing on cytotoxic and apoptotic effects in hormone-sensitive MCF-7 and triple-negative MDA-MB-231 breast cancer cells. Methods & results: (S)-verbenone was used to synthesize hybrids through 1,3-dipolar cycloaddition, followed by thorough characterization. The compounds were screened across cancer cell lines, showing significant anticancer effects. Compound 8b notably induced apoptosis via the caspase-3/7 pathway and cell cycle arrest, displaying noteworthy cytotoxicity against MCF-7 and MDA-MB-231 cells. Conclusion: These findings underscore the potential of (S)-verbenone isoxazoline-1,3,4-thiadiazole derivatives for breast cancer therapy due to their remarkable apoptotic activity. This study highlights a promising avenue for advancing breast cancer treatment using these derivatives, founded on (S)-verbenone, showcasing their distinct potential for inducing apoptosis.
Collapse
Affiliation(s)
- Mourad Fawzi
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Abdoullah Bimoussa
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Yassine Laamari
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Abdellah N'ait Oussidi
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Ali Oubella
- Laboratory of Organic & Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, IBNOU ZOHR University, Agadir, 80000, Morocco
| | - El Mostafa Ketatni
- Laboratory of Molecular Chemistry, Materials & Catalysis, Faculty of Sciences, & Technics, Sultan Moulay Slimane University, Beni-Mellal, BP 523, 23000, Morocco
| | - Mohamed Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, PO Box 1014, Rabat, Morocco
| | - Lahcen El Ammari
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, PO Box 1014, Rabat, Morocco
| | - Hamid Morjani
- Unité BioSpecT, EA7506, SFR CAP-Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100, France
| | - Moulay Youssef Ait Itto
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Aziz Auhmani
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| |
Collapse
|
7
|
Wang X, Hu Q, Tang H, Pan X. Isoxazole/Isoxazoline Skeleton in the Structural Modification of Natural Products: A Review. Pharmaceuticals (Basel) 2023; 16:228. [PMID: 37259376 PMCID: PMC9964809 DOI: 10.3390/ph16020228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 03/09/2024] Open
Abstract
Isoxazoles and isoxazolines are five-membered heterocyclic molecules containing nitrogen and oxygen. Isoxazole and isoxazoline are the most popular heterocyclic compounds for developing novel drug candidates. Over 80 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antidiabetic, cardiovascular, and other activities, were reviewed. A review of recent studies on the use of isoxazoles and isoxazolines moiety derivative activities for natural products is presented here, focusing on the parameters that affect the bioactivity of these compounds.
Collapse
Affiliation(s)
| | | | | | - Xinhui Pan
- Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, China
| |
Collapse
|
8
|
Development of coumarin derivatives as fluoride ion sensor. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Qu S, Zhu L, Wang Q, Wang X. Design, Synthesis and Insecticidal Activity of 3-Arylisoxazoline-N-alkylpyrazole-5-carboxamide Derivatives against Tetranychus urticae Koch. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Chen T, Yu L, Li Z, Hu F, Xu C. Application of terahertz spectroscopy combined with density functional theory to analysis of intermolecular weak interactions for coumarin and 6-methylcoumarin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120159. [PMID: 34325169 DOI: 10.1016/j.saa.2021.120159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The terahertz (THz) absorption spectra of coumarin and 6-methylcoumarin have been investigated by terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.4 to 2.8 THz. Density functional theory (DFT) calculations, both with and without London force dispersion corrections, have been used for the assignment of the experimental THz spectra. To thoroughly interpret the spectrum information, we used potential energy distribution (PED) method to assign the vibrational modes of the absorption peaks, and identify the origin of the absorption peaks by electrostatic potential (ESP) and van der Waals (vdW) potential distribution analysis method. The results show that absorption peaks both for coumarin and 6-methylcoumarin are caused by electrostatic interaction in the lower frequency range, while vdW interaction in the higher frequency. Moreover, the potential energy distribution of electrostatic and vdW between them is basically the same, and it led to the similarity of THz spectra between coumarin and 6-MC. This work has demonstrated that using THz spectroscopy combined with DFT calculations is an effective way to analysis of intermolecular weak interactions and biomolecules with similar structures.
Collapse
Affiliation(s)
- Tao Chen
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Lingxiao Yu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zhi Li
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Fangrong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Chuanpei Xu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| |
Collapse
|
11
|
Talha A, Favreau C, Bourgoin M, Robert G, Auberger P, El Ammari L, Saadi M, Benhida R, Martin AR, Bougrin K. Ultrasound-assisted one-pot three-component synthesis of new isoxazolines bearing sulfonamides and their evaluation against hematological malignancies. ULTRASONICS SONOCHEMISTRY 2021; 78:105748. [PMID: 34520963 PMCID: PMC8436160 DOI: 10.1016/j.ultsonch.2021.105748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
In the present study, following a one-pot two-step protocol, we have synthesized novel sulfonamides-isoxazolines hybrids (3a-r) via a highly regioselective 1,3-dipolar cycloaddition. The present methodology capitalized on trichloroisocyanuric acid (TCCA) as a safe and ecological oxidant and chlorinating agent for the in-situ conversion of aldehydes to nitrile oxides in the presence of hydroxylamine hydrochloride, under ultrasound activation. These nitrile oxides could be engaged in 1,3-dipolar cycloaddition reactions with various alkene to afford the targeted sulfonamides-isoxazolines hybrids (3a-r). The latter were assessed for their antineoplastic activity against model leukemia cell lines (Chronic Myeloid Leukemia, K562 and Promyelocytic Leukemia, HL-60).
Collapse
Affiliation(s)
- Aicha Talha
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
| | - Cécile Favreau
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Maxence Bourgoin
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Guillaume Robert
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Patrick Auberger
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Lahcen El Ammari
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des, Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn, Batouta, BP 1014, Rabat, Morocco
| | - Mohamed Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des, Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn, Batouta, BP 1014, Rabat, Morocco
| | - Rachid Benhida
- Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Benguerir, Morocco; Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272 - 06108 Nice, France
| | - Anthony R Martin
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272 - 06108 Nice, France.
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco; Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| |
Collapse
|
12
|
Ma L, Jin F, Cheng X, Tao S, Jiang G, Li X, Yang J, Bao X, Wan X. [2 + 2 + 1] Cycloaddition of N-tosylhydrazones, tert-butyl nitrite and alkenes: a general and practical access to isoxazolines. Chem Sci 2021; 12:9823-9830. [PMID: 34349956 PMCID: PMC8293996 DOI: 10.1039/d1sc02352g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
N-Tosylhydrazones have proven to be versatile synthons over the past several decades. However, to our knowledge, the construction of isoxazolines based on N-tosylhydrazones has not been examined. Herein, we report the first demonstrations of [2 + 2 + 1] cycloaddition reactions that allow the facile synthesis of isoxazolines, employing N-tosylhydrazones, tert-butyl nitrite (TBN) and alkenes as reactants. This process represents a new type of cycloaddition reaction with a distinct mechanism that does not involve the participation of nitrile oxides. This approach is both general and practical and exhibits a wide substrate scope, nearly universal functional group compatibility, tolerance of moisture and air, the potential for functionalization of complex bioactive molecules and is readily scaled up. Both control experiments and theoretical calculations indicate that this transformation proceeds via the in situ generation of a nitronate from the coupling of N-tosylhydrazone and TBN, followed by cycloaddition with an alkene and subsequent elimination of a tert-butyloxy group to give the desired isoxazoline.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Feng Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xionglve Cheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Suyan Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Gangzhong Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xingxing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jinwei Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
13
|
Aarjane M, Slassi S, Ghaleb A, Amine A. Synthesis, spectroscopic characterization (FT-IR, NMR) and DFT computational studies of new isoxazoline derived from acridone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Yenİlmez ÇİftÇİ G, Yilmaz S, Bayik N, Şenkuytu E, Kaya EN, DurmuŞ M, Bulut M. Chemosensor properties of 7-hydroxycoumarin substituted cyclotriphosphazenes. Turk J Chem 2021; 44:64-73. [PMID: 33488143 PMCID: PMC7751823 DOI: 10.3906/kim-1908-51] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/17/2019] [Indexed: 01/26/2023] Open
Abstract
The newly synthesized cyclotriphosphazene cored coumarin chemosensors 5, 6, and 7 were successfully characterized by
1
H NMR,
31
P NMR, and MALDI-TOF mass spectrometry. Additionally, the photophysical and metal sensing properties of the targeted compounds were determined by fluorescence spectroscopy in the presence of various metals (Li
+
, Na
+
, K
+
, Cs
+
, Mg
2+
, Ca
2+
, Ba
2+
, Cr
3+
, Mn
2+
, Fe
3+
, Co
2+
, Al
3+
, Hg
+
, Cu
2+
, Zn
2+
, Ag
+
, and Cd
2+
) . The fluorescence titration results showed that compounds 5, 6, and 7 could be employed as fluorescent chemosensors for Fe
3+
ions with high sensitivity. The complex stoichiometry between final cyclotriphosphazene chemosensors and Fe
3+
ions was also determined by Job’s plots.
Collapse
Affiliation(s)
- Gönül Yenİlmez ÇİftÇİ
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Sergen Yilmaz
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Nagihan Bayik
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Elif Şenkuytu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Esra Nur Kaya
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Mahmut DurmuŞ
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Mustafa Bulut
- Department of Chemistry, Faculty of Art and Science, Marmara University, Kadıköy, İstanbul Turkey
| |
Collapse
|
15
|
El Idrissi M, Eşme A, Hakmaoui Y, Ríos-Gutiérrez M, Aitouna AO, Salah M, Zeroual A, Domingo LR. Divulging the various chemical reactivity of trifluoromethyl-4-vinyl-benzene as well as methyl-4-vinyl-benzene in [3+2] cycloaddition reactions. J Mol Graph Model 2021; 102:107760. [DOI: 10.1016/j.jmgm.2020.107760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
|
16
|
Srinivas BK, Shivamadhu MC, Jayarama S. Musa acuminata lectin exerts anti-cancer effects on HeLa and EAC cells via activation of caspase and inhibitions of Akt, Erk, and Jnk pathway expression and suppresses the neoangiogenesis in in-vivo models. Int J Biol Macromol 2021; 166:1173-1187. [PMID: 33159939 DOI: 10.1016/j.ijbiomac.2020.10.272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
In the present study aimed to purify the lectin from the sap of Musa acuminata pseudostem and elucidate the apoptotic and angiogenic molecular mechanism in both in-vitro and in-vivo model. Mannose specific lectin was purified by using mannose affinity column chromatography and analyzed by RP-HPLC, SDS-PAGE, and PAS staining method. Furthermore, the protein was identified by MALDI-MS/MS. MAL effectively agglutinates trypsinized RBCs and showed effective cytotoxicity against various human cancer cell lines. MAL mitigates the cell proliferation, colony formation, cell migration, arrest the cell cycle in the G2/M phase, and induce apoptosis by altering the expression of apoptotic proteins/mRNA level (Bax and Bcl-2) via caspase 8/9, 3 dependent pathway in both in-vitro and in-vivo. Supporting this, in-vivo EAC tumor mice models prove the efficacy of MAL by inducing cell death and inhibiting the neovessel formation by targeting the MVD, inhibition of VEGF secretion, suppressing the expression of MMPs, HIF-1α, Flt-1, Akt, Jnk, and Erk1/2. More importantly, the MAL treatment leads to effective inhibition of tumor growth and an increase in the survivability of EAC mice. Our study summarizes that the MAL having a significant anticancer potential expressively degenerates the tumor development by inducing apoptosis and suppressing neoangiogenesis.
Collapse
Affiliation(s)
| | - Madhu Chakkere Shivamadhu
- Department of Biochemistry, Yuvaraja's College, University of Mysore, Mysuru, Karnataka 570005, India
| | - Shankar Jayarama
- Post-Graduation Department of Biotechnology, Teresian College, Siddhartha Nagara, Mysore, Karnataka 570011, India; Post-Graduation Department of Studies and Research in Food Technology, Davanagere University, Tholahunase, Davanagere, Karnataka 577002, India.
| |
Collapse
|
17
|
Jayarama S, Naik Parrikar P, Srinivas B, Krishnappa D. Apoptosis-inducing and antiangiogenic activity of partially purified protein from the pericarp of Zanthoxylum rhetsa in vitro and in vivo. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_520_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Al-Warhi T, Sabt A, Elkaeed EB, Eldehna WM. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg Chem 2020; 103:104163. [DOI: 10.1016/j.bioorg.2020.104163] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
|
19
|
Luo X, Liu S, Lan Y. Mechanism and Regioselectivity of 1,3‐Dipolar Cycloaddition of Nitrile Oxides to 3‐Methylene Oxindole: A Density Functional Theory Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202002672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional Materials, College of ChemistryChongqing Normal University Chongqing 401331 China
| | - Song Liu
- Chongqing Key Laboratory of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringChongqing University Chongqing 400030 China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational ChemistrySchool of Chemistry and Chemical EngineeringChongqing University Chongqing 400030 China
- College of Chemistryand Institute of Green CatalysisZhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
20
|
Overview on developed synthesis procedures of coumarin heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConsidering highly valuable biological and pharmaceutical properties of coumarins, the synthesis of these heterocycles has been considered for many organic and pharmaceutical chemists. This review includes the recent research in synthesis methods of coumarin systems, investigating their biological properties and describing the literature reports for the period of 2016 to the middle of 2020. In this review, we have classified the contents based on co-groups of coumarin ring. These reported methods are carried out in the classical and non-classical conditions particularly under green condition such as using green solvent, catalyst and other procedures.
Collapse
|
21
|
Versatile approach to densely substituted isoxazolines and pyrazolines: Focus on a quaternary carbon center as a constitutive feature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Wu J, Liu W, Liang L, Gan Y, Xia S, Gou X, Sun X. Facile synthesis and characterization of indene-fused 4-methylcoumarins and an unexpected skeletal rearrangement via Pechmann condensation. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Redox cycling of copper by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated modulation of redox scavengers, DNA damage and cell death in diethylnitrosamine induced hepatocellular carcinoma. Bioorg Chem 2020; 99:103818. [PMID: 32276135 DOI: 10.1016/j.bioorg.2020.103818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
Targeted therapy is a new strategy for cancer treatment that targets chemical entities specific to cancer cells than normal ones. One of the features associated with malignancy is the elevated copper which plays an integral role in angiogenesis. Work is in progress in our lab to identify new copper chelators to target elevated copper under targeted therapy for the killing of cancer cells. Recently, a coumarin-based copper chelator, di(2-picolyl)amine-3(bromoacetyl)coumarin hybrid molecule (ligand-L) has been synthesized by us, and also studied its copper-dependent macromolecular damage response in copper overloaded lymphocytes. The present study investigates the anticancer activity of ligand-L and its mode of action in rat model of diethylnitrosamine (DEN) induced hepatocellular carcinoma. It has been found that liver tissue has a marked increase in copper levels in DEN induced hepatocellular carcinoma. Ex vivo results showed that ligand-L inhibited cell viability, induced reactive oxygen species (ROS) generation, DNA damage, loss of mitochondrial membrane potential and caspase-3 activation in isolated hepatocellular carcinoma cells (HCC). All these effects induced by ligand-L were abrogated by neocuproine and N-acetylcysteine (ROS scavenger). Further, ligand-L treatment of animals bearing hepatocellular carcinoma results in an increment in the cellular redox scavengers, lipid peroxidation and DNA breakage in malignant hepatocytes. In vivo studies using ligand-L also showed that ligand-L possesses anticancer properties as evidenced by improvement in liver marker enzymes and liver surface morphology, and reduced alpha-fetoprotein in the treated group compared to untreated cancer-induced group. Overall, this study suggests that copper-ligand-L interaction leads to ROS generation which caused DNA damage and apoptosis in malignant cells. This study provides enough support to establish ligand-L as a clinically relevant lead molecule for the treatment of different malignancies.
Collapse
|
24
|
Efremova MM, Molchanov AP, Novikov AS, Starova GL, Muryleva AA, Slita AV, Zarubaev VV. 1,3-Dipolar cycloaddition of N-allyl substituted polycyclic derivatives of isoindole-1,3-dione with nitrones and nitrile oxides: An experimental and theoretical investigation. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Anil SM, Rajeev N, Kiran KR, Swaroop TR, Mallesha N, Shobith R, Sadashiva MP. Multi-pharmacophore Approach to Bio-therapeutics: Piperazine Bridged Pseudo-peptidic Urea/Thiourea Derivatives as Anti-oxidant Agents. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Khomenko TM, Zakharenko AL, Chepanova AA, Ilina ES, Zakharova OD, Kaledin VI, Nikolin VP, Popova NA, Korchagina DV, Reynisson J, Chand R, Ayine-Tora DM, Patel J, Leung IKH, Volcho KP, Salakhutdinov NF, Lavrik OI. Promising New Inhibitors of Tyrosyl-DNA Phosphodiesterase I (Tdp 1) Combining 4-Arylcoumarin and Monoterpenoid Moieties as Components of Complex Antitumor Therapy. Int J Mol Sci 2019; 21:ijms21010126. [PMID: 31878088 PMCID: PMC6982354 DOI: 10.3390/ijms21010126] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme in humans, and a current and promising inhibition target for the development of new chemosensitizing agents due to its ability to remove DNA damage caused by topoisomerase 1 (Top1) poisons such as topotecan and irinotecan. Herein, we report our work on the synthesis and characterization of new Tdp1 inhibitors that combine the arylcoumarin (neoflavonoid) and monoterpenoid moieties. Our results showed that they are potent Tdp1 inhibitors with IC50 values in the submicromolar range. In vivo experiments with mice revealed that compound 3ba (IC50 0.62 µM) induced a significant increase in the antitumor effect of topotecan on the Krebs-2 ascites tumor model. Our results further strengthen the argument that Tdp1 is a druggable target with the potential to be developed into a clinically-potent adjunct therapy in conjunction with Top1 poisons.
Collapse
Affiliation(s)
- Tatyana M. Khomenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Ekaterina S. Ilina
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Olga D. Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Vasily I. Kaledin
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
| | - Nelly A. Popova
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Dina V. Korchagina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK;
| | - Raina Chand
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Daniel M. Ayine-Tora
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Jinal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
- Correspondence:
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
- Department of Physical and Chemical Biology and Biotechnology, Altai State University, 61, Lenina Ave., 656049 Barnaul, Russia
| |
Collapse
|
27
|
Majnooni MB, Fakhri S, Smeriglio A, Trombetta D, Croley CR, Bhattacharyya P, Sobarzo-Sánchez E, Farzaei MH, Bishayee A. Antiangiogenic Effects of Coumarins against Cancer: From Chemistry to Medicine. Molecules 2019; 24:molecules24234278. [PMID: 31771270 PMCID: PMC6930449 DOI: 10.3390/molecules24234278] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis, the process of formation and recruitment of new blood vessels from pre-existing vessels, plays an important role in the development of cancer. Therefore, the use of antiangiogenic agents is one of the most critical strategies for the treatment of cancer. In addition, the complexity of cancer pathogenicity raises the need for multi-targeting agents. Coumarins are multi-targeting natural agents belonging to the class of benzopyrones. Coumarins have several biological and pharmacological effects, including antimicrobial, antioxidant, anti-inflammation, anticoagulant, anxiolytic, analgesic, and anticancer properties. Several reports have shown that the anticancer effect of coumarins and their derivatives are mediated through targeting angiogenesis by modulating the functions of vascular endothelial growth factor as well as vascular endothelial growth factor receptor 2, which are involved in cancer pathogenesis. In the present review, we focus on the antiangiogenic effects of coumarins and related structure-activity relationships with particular emphasis on cancer.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (A.S.); (D.T.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (A.S.); (D.T.)
| | | | - Piyali Bhattacharyya
- Escuela de Ciencias de la Salud, Universidad Ana G. Méndez, Recinto de Gurabo, Gurabo, PR 00778, USA;
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; or
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
28
|
Coumarin-containing hybrids and their anticancer activities. Eur J Med Chem 2019; 181:111587. [PMID: 31404864 DOI: 10.1016/j.ejmech.2019.111587] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide, and it results in around 9 million deaths annually. The anticancer agents play an intriguing role in the treatment of cancers, while the severe anticancer scenario and the emergence of drug-resistant especially multidrug-resistant cancers create a huge demand for novel anticancer drugs with different mechanisms of action. The coumarin scaffold is ubiquitous in nature and is a highly privileged motif for the development of novel drugs due to its biodiversity and versatility. Coumarin derivatives can exert diverse antiproliferative mechanisms, and some of them such as Irosustat are under clinical trials for the treatment of various cancers, revealing their potential as putative anticancer drugs. Hybridization of coumarin moiety with other anticancer pharmacophores is a promising strategy to reduce side effects, overcome the drug resistance, and may provide valuable therapeutic intervention for the treatment of cancers. Thus, coumarin-containing hybrids occupy an important position in the development of novel anticancer agents. This review aims to summarize the recent advances made towards the development of coumarin-containing hybrids as potential anticancer agents, covering articles published between 2015 and 2019, and the structure-activity relationship together with mechanisms of action are also discussed.
Collapse
|
29
|
Karataş MO, Tekin S, Alici B, Sandal S. Cytotoxic effects of coumarin substituted benzimidazolium salts against human prostate and ovarian cancer cells. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1647-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Chen CY, Yang TH, Pan CD, Wang X. Improved synthesis, X-ray structure, and antifungal activity of a sugar-psoralen conjugate: 4,4′-Dimethylxanthotoxol 2,3,4,6-tetra-O-Acetyl-β-D-glucoside. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1609018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Chao-Yue Chen
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, PR China
| | - Ting-Hai Yang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, PR China
| | - Chang-Duo Pan
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, PR China
| | - Xin Wang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, PR China
| |
Collapse
|
31
|
Tan C, Yuan J, Zhong L, Jiang T, Liu X, Ding C, Xu T, Chen J. Design, Synthesis and Insecticidal Activity of 1-Methyl-3-(5-aryl-4,5-dihydroisoxazol-3-yl)-1H-pyrazole-5-carboxamides. HETEROCYCLES 2019. [DOI: 10.3987/com-19-14067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|