1
|
Ampomah-Wireko M, Chen S, Li R, Gao C, Wang M, Qu Y, Kong H, Nininahazwe L, Zhang E. Recent advances in the exploration of oxazolidinone scaffolds from compound development to antibacterial agents and other bioactivities. Eur J Med Chem 2024; 269:116326. [PMID: 38513340 DOI: 10.1016/j.ejmech.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Bacterial infections cause a variety of life-threatening diseases, and the continuous evolution of drug-resistant bacteria poses an increasing threat to current antimicrobial regimens. Gram-positive bacteria (GPB) have a wide range of genetic capabilities that allow them to adapt to and develop resistance to practically all existing antibiotics. Oxazolidinones, a class of potent bacterial protein synthesis inhibitors with a unique mechanism of action involving inhibition of bacterial ribosomal translation, has emerged as the antibiotics of choice for the treatment of drug-resistant GPB infections. In this review, we discussed the oxazolidinone antibiotics that are currently on the market and in clinical development, as well as an updated synopsis of current advances on their analogues, with an emphasis on innovative strategies for structural optimization of linezolid, structure-activity relationship (SAR), and safety properties. We also discussed recent efforts aimed at extending the activity of oxazolidinones to gram-negative bacteria (GNB), antitumor, and coagulation factor Xa. Oxazolidinone antibiotics can accumulate in GNB by a conjugation to siderophore-mediated β-lactamase-triggered release, making them effective against GNB.
Collapse
Affiliation(s)
- Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
2
|
Fernandes GFS, Scarim CB, Kim SH, Wu J, Castagnolo D. Oxazolidinones as versatile scaffolds in medicinal chemistry. RSC Med Chem 2023; 14:823-847. [PMID: 37252095 PMCID: PMC10211318 DOI: 10.1039/d2md00415a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 11/19/2023] Open
Abstract
Oxazolidinone is a five-member heterocyclic ring with several biological applications in medicinal chemistry. Among the three possible isomers, 2-oxazolidinone is the most investigated in drug discovery. Linezolid was pioneered as the first approved drug containing an oxazolidinone ring as the pharmacophore group. Numerous analogues have been developed since its arrival on the market in 2000. Some have succeeded in reaching the advanced stages of clinical studies. However, most oxazolidinone derivatives reported in recent decades have not reached the initial stages of drug development, despite their promising pharmacological applications in a variety of therapeutic areas, including antibacterial, antituberculosis, anticancer, anti-inflammatory, neurologic, and metabolic diseases, among other areas. Therefore, this review article aims to compile the efforts of medicinal chemists who have explored this scaffold over the past decades and highlight the potential of the class for medicinal chemistry.
Collapse
Affiliation(s)
| | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University Araraquara 14800903 Brazil
| | - Seong-Heun Kim
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
- School of Cancer and Pharmaceutical Sciences, King's College London 150 Stamford Street SE1 9NH London UK
| | - Jingyue Wu
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| |
Collapse
|
3
|
Novichikhina NP, Shestakov AS, Medvedeva SM, Lagutina AM, Krysin MY, Podoplelova NA, Panteleev MA, Ilin IS, Sulimov AV, Tashchilova AS, Sulimov VB, Geronikaki A, Shikhaliev KS. New Hybrid Tetrahydropyrrolo[3,2,1- ij]quinolin-1-ylidene-2-thioxothiazolidin-4-ones as New Inhibitors of Factor Xa and Factor XIa: Design, Synthesis, and In Silico and Experimental Evaluation. Molecules 2023; 28:molecules28093851. [PMID: 37175261 PMCID: PMC10179972 DOI: 10.3390/molecules28093851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Despite extensive research in the field of thrombotic diseases, the prevention of blood clots remains an important area of study. Therefore, the development of new anticoagulant drugs with better therapeutic profiles and fewer side effects to combat thrombus formation is still needed. Herein, we report the synthesis and evaluation of novel pyrroloquinolinedione-based rhodanine derivatives, which were chosen from 24 developed derivatives by docking as potential molecules to inhibit the clotting factors Xa and XIa. For the synthesis of new hybrid derivatives of pyrrolo[3,2,1-ij]quinoline-2-one, we used a convenient structural modification of the tetrahydroquinoline fragment by varying the substituents in positions 2, 4, and 6. In addition, the design of target molecules was achieved by alkylating the amino group of the rhodanine fragment with propargyl bromide or by replacing the rhodanine fragment with 2-thioxoimidazolidin-4-one. The in vitro testing showed that eight derivatives are capable of inhibiting both coagulation factors, two compounds are selective inhibitors of factor Xa, and two compounds are selective inhibitors of factor XIa. Overall, these data indicate the potential anticoagulant activity of these molecules through the inhibition of the coagulation factors Xa and XIa.
Collapse
Affiliation(s)
- Nadezhda P Novichikhina
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Alexander S Shestakov
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Svetlana M Medvedeva
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Anna M Lagutina
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Mikhail Yu Krysin
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Nadezhda A Podoplelova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmakology, 119991 Moscow, Russia
| | - Mikhail A Panteleev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmakology, 119991 Moscow, Russia
| | - Ivan S Ilin
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexey V Sulimov
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna S Tashchilova
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vladimir B Sulimov
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Khidmet S Shikhaliev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| |
Collapse
|
4
|
Chaurasyia A, Chawla P, Monga V, Singh G. Rhodanine derivatives: An insight into the synthetic and medicinal perspectives as antimicrobial and antiviral agents. Chem Biol Drug Des 2023; 101:500-549. [PMID: 36447391 DOI: 10.1111/cbdd.14163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022]
Abstract
Rhodanine or 2-Thioxothiazolidin-4-one is a privileged heterocyclic compound offering a wide opportunity for structural modification, lead development, and modification. It is one of the highly decorated scaffolds in the drug discovery process. Rhodanine derivatives possess a plethora of biological activities due to their ability to interact with a diverse range of protein targets, which provide tremendous opportunities to discover new drugs with different modes of action. The most common strategy for developing novel rhodanine derivatives is the introduction of structurally diverse substituents at the C-5 or N-3, or both positions. Since the inception of Epralestat into the market in 1992, the exploration of rhodanine-3-acetic acids has led to the development of novel leads against different biological targets such as MRSA, HHV-6, Mycobacterial tuberculosis, dengue, etc. In the current pandemic era, some rhodanine compounds have been explored against SARS-CoV-2. In recent years, rhodanine and its derivatives have witnessed significant progress in developing new drug leads as potential antimicrobial and antiviral agents. Different synthetic methodologies and recent developments in the medicinal chemistry of rhodanine derivatives, including biological activities, their mechanistic aspects, structure-activity relationships, and in silico findings, have been compiled in the present review. This article will benefit the scientific community and offer perspectives on how these scaffolds as privileged structures might be exploited in the future for rational design and discovery of rhodanine-based bio-active molecules.
Collapse
Affiliation(s)
- Abhishek Chaurasyia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.,Research Scholar, IK Gujral Punjab Technical University, Kapurthala, Punjab, India
| |
Collapse
|
5
|
Recent advances in oxazolidinones as antituberculosis agents. Future Med Chem 2022; 14:1149-1165. [PMID: 35866418 DOI: 10.4155/fmc-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) is an infectious and fatal disease caused by Mycobacterium tuberculosis (Mtb) and remains a serious public health threat; therefore, the development of new antitubercular agents is a priority for the World Health Organization's End TB strategy and the United Nations' Sustainable Development Goals to eradicate TB. Oxazolidinones are a class of synthetic antibacterial agents with a distinct mode of action developed for the treatment of Gram-positive bacterial infections. Many oxazolidinones exhibit good activity against Mtb, and some are currently in clinical trials for multidrug-resistant TB and extensively drug-resistant TB therapy. In this review, the mechanism of action, activity and toxicity of oxazolidinones and recent progress in the research and development of oxazolidinones as anti-TB agents are summarized.
Collapse
|
6
|
Rhodanine scaffold: A review of antidiabetic potential and structure-activity relationships (SAR). MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
7
|
Ondari ME, Klosin J, Kruper WR, Lysenko I, Thomas PJ, Cheng K, Abboud KA, Kruper WJ. Diol-Ritter Reaction: Regio- and Stereoselective Synthesis of Protected Vicinal Aminoalcohols and Mechanistic Aspects of Diol Monoester Disproportionation. J Org Chem 2021; 87:2063-2074. [PMID: 34581583 DOI: 10.1021/acs.joc.1c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The well-known epoxide-Ritter reaction generally affords oxazolines with poor to average regioselectivity. Herein, a mechanism-based study of the less known diol-Ritter reaction has provided a highly regioselective procedure for the synthesis of 1-vic-amido-2-esters from either terminal epoxides or 1,2-diols via Lewis acid-catalyzed monoesterification. When treated with a stoichiometric Lewis acid catalyst (BF3), these diol monoesters form dioxonium cation intermediates that are ring-opened with nitrile nucleophiles to form nitrilium intermediates, which undergo rapid and irreversible hydration to give the desired amidoesters. Diester byproduct formation is irreversible and appears to occur through disproportionation of diol monoester. With chiral epoxide starting materials, the formation of amidoester occurs with retention of configuration and no apparent erosion of optical purity as determined by single-crystal X-ray analyses and chiral chromatography, respectively. The direct access to chiral vic-amidoesters is especially practical with regard to the synthesis of antibacterial oxazolidinone analogues of the Zyvox antimicrobial family.
Collapse
Affiliation(s)
- Mark E Ondari
- Corteva Agriscience, 1710 Building, Midland, Michigan 48674, United States
| | - Jerzy Klosin
- Corporate R&D, The Dow Chemical Company, 1776 Building, Midland, Michigan 48674, United States
| | - William R Kruper
- Corteva Agriscience, 1710 Building, Midland, Michigan 48674, United States
| | - Ivan Lysenko
- Michigan State University, St Andrews, Midland, Michigan 48674, United States
| | | | - Kevin Cheng
- Michigan State University, St Andrews, Midland, Michigan 48674, United States
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - William J Kruper
- Michigan State University, St Andrews, Midland, Michigan 48674, United States
| |
Collapse
|
8
|
Synthesis and X-ray crystal structure of unexpected novel thiazolidinone/1,3,4-thiadiazole heterocycle via S-alkylation and Smiles rearrangement dual approaches. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Cruz CD, Wrigstedt P, Moslova K, Iashin V, Mäkkylä H, Ghemtio L, Heikkinen S, Tammela P, Perea-Buceta JE. Installation of an aryl boronic acid function into the external section of N-aryl-oxazolidinones: Synthesis and antimicrobial evaluation. Eur J Med Chem 2020; 211:113002. [PMID: 33223262 DOI: 10.1016/j.ejmech.2020.113002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
N-aryl-oxazolidinones is a prominent family of antimicrobials used for treating infections caused by clinically prevalent Gram-positive bacteria. Recently, boron-containing compounds have displayed intriguing potential in the antibiotic discovery setting. Herein, we report the unprecedented introduction of a boron-containing moiety such as an aryl boronic acid in the external region of the oxazolidinone structure via a chemoselective acyl coupling reaction. As a result, we accessed a series of analogues with a distal aryl boronic pharmacophore on the oxazolidinone scaffold. We identified that a peripheric linear conformation coupled with freedom of rotation and no further substitution on the external aryl boronic ring, an amido linkage with hydrogen bonding character, in addition to a para-relative disposition between boronic group and linker, are the optimal combination of structural features in this series for antimicrobial activity. In comparison to linezolid, the analogue comprising all those features, compound 20b, displayed levels of antimicrobial activity augmented by an eight-fold to a thirty-two-fold against a panel of Gram-positive strains, and a near one hundred-fold against Escherichia coli JW5503, a Gram-negative mutant strain with a defective efflux capability.
Collapse
Affiliation(s)
- Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Pauli Wrigstedt
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Karina Moslova
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Vladimir Iashin
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Heidi Mäkkylä
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Léo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Sami Heikkinen
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Jesus E Perea-Buceta
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland.
| |
Collapse
|
10
|
Xu JF, Yang YS, Jiang AQ, Zhu HL. Detection Methods and Research Progress of Human Serum Albumin. Crit Rev Anal Chem 2020; 52:72-92. [PMID: 32723179 DOI: 10.1080/10408347.2020.1789835] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human serum albumin (HSA) is a biological macromolecule with important physiological functions; abnormal HSA levels are associated with coronary heart disease, multiple myeloma, diabetes, nephropathy, neurometabolic disorders, liver cirrhosis and other diseases. Therefore, accurate and quantitative detection of HAS have extremely important research and application value in biological science, molecular biology, clinical medicine and other fields. As for the detection method of HSA, dye-binding method and immune method are the first to be used, and have been applied in clinical detection. In recent years, many new detection technologies have emerged, such as fluorescent probe detection method, nano-materials for HSA detection, biosensor and so on. Although there are many methods developed recently to detect HSA, comprehensive reviews for HSA detection methods are still rare. Thus, writing this review to fill in the blank is in need. In order to highlight the recent progress in the field of HSA detection, in this review, the methods used to detect HSA are summarized and sorted, the advantages and disadvantages of these detection methods are also listed, then the research progress of small molecular fluorescence probe method is emphatically introduced in this paper. Then, we briefly discussed the challenges and future development directions in this field.
Collapse
Affiliation(s)
- Jian-Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Ai-Qin Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Synthesis and biological evaluation of novel N-2,4-dimethoxyphenyl dithiolopyrrolone derivatives as bacterial RNA polymerase inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02550-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Zheng J, Chen Z, Lin Z, Sun X, Bai B, Xu G, Chen J, Yu Z, Qu D. Radezolid Is More Effective Than Linezolid Against Planktonic Cells and Inhibits Enterococcus faecalis Biofilm Formation. Front Microbiol 2020; 11:196. [PMID: 32117185 PMCID: PMC7033516 DOI: 10.3389/fmicb.2020.00196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/28/2020] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to compare the effects of radezolid and linezolid on planktonic and biofilm cells of Enterococcus faecalis. A total of 302 E. faecalis clinical isolates were collected, and the minimum inhibitory concentrations (MICs) of radezolid and linezolid were determined by the agar dilution method. Changes in the transcriptome of a high-level, in vitro-induced linezolid-resistant isolate were assessed by RNA sequencing and RT-qPCR, and the roles of efflux pump-related genes were confirmed by overexpression analysis. Biofilm biomass was evaluated by crystal violet staining and the adherent cells in the biofilms were quantified according to CFU numbers. The MIC50/MIC90 values of radezolid (0.25/0.50 mg/L) against the 302 E. faecalis clinical isolates were eightfold lower than those of linezolid (2/4 mg/L). The radezolid MICs against the high-level linezolid-resistant isolates (linezolid MICs ≥ 64 mg/L) increased to ≥ 4 mg/L with mutations in the four copies of the V domain of the 23S rRNA gene. The mRNA expression level of OG1RF_12220 (mdlB2, multidrug ABC superfamily ATP-binding cassette transporter) increased in the high-level linezolid-resistant isolates, and radezolid and linezolid MICs against the linezolid-sensitive isolate increased with overexpression of OG1RF_12220. Radezolid (at 1/4 or 1/8× the MIC) inhibited E. faecalis biofilm formation to a greater extent than linezolid, which was primarily achieved through the inhibition of ahrC, esp, relA, and relQ transcription in E. faecalis. In conclusion, radezolid is more effective than linezolid against planktonic E. faecalis cells and inhibits biofilm formation by this bacterium.
Collapse
Affiliation(s)
- Jinxin Zheng
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhong Chen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhiwei Lin
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiang Sun
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Bing Bai
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guangjian Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junwen Chen
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
13
|
Aliaga ME, Gazitua M, Rojas-Bolaños A, Fuentes-Estrada M, Durango D, García-Beltrán O. A selective thioxothiazolidin-coumarin probe for Hg 2+ based on its desulfurization reaction. Exploring its potential for live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117372. [PMID: 31344574 DOI: 10.1016/j.saa.2019.117372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Sensing the most toxic heavy metal (mercury) has attracted a lot of attention in recent years due to its extreme harmfulness to both human health and the environment. Thus, we reported herein the synthesis, spectroscopic and kinetic characterization, and biological evaluation of a new thioxothiazolidin coumarin derivative (ILA92), which undergoes a desulfurization reaction induced by mercuric ions (Hg2+). This process is the origin of a selective sensing of Hg2+ ions in aqueous solution by colorimetric and fluorescent methods. Furthermore, the probe showed great potential for imaging Hg2+ in living cells.
Collapse
Affiliation(s)
- Margarita E Aliaga
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile.
| | - Marcela Gazitua
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile
| | - Andrea Rojas-Bolaños
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730002, Colombia
| | - Marcial Fuentes-Estrada
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730002, Colombia
| | - Diego Durango
- Universidad Nacional de Colombia, Sede Medellín, Escuela de Química, Carrera 65, No. 59A-110, Medellín, Colombia
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730002, Colombia.
| |
Collapse
|
14
|
Maddila S, Gorle S, Jonnalagadda SB. Drug screening of rhodanine derivatives for antibacterial activity. Expert Opin Drug Discov 2019; 15:203-229. [PMID: 31777321 DOI: 10.1080/17460441.2020.1696768] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Bacteriological infections are a major risk to human health. These include all hospital and public-acquired infections. In drug discovery, rhodanines are privileged heterocyclic frameworks. Their derivatives possess strong anti-bacterial activity and some of them have shown potent activity against multidrug-resistant pathogens, both under in vitro and in vivo conditions. To treat multi-drug resistant pathogens, the development of novel potent drugs, with superior anti-bacterial efficacy, is paramount. One avenue which shows promise is the design and development of novel rhodanines.Areas covered: This review summarizes the status on rhodanine-based derivatives and their anti-bacterial activity, based on published research over the past six years. Furthermore, to facilitate the design of novel derivatives with improved functions, their structure-activity relationships are assessed with reference to their efficacy as anti-bacterial agents and their toxicity.Expert opinion: The pharmacological activity of molecules bearing a rhodanine scaffold needs to be very critically assessed in spite of considerable information available from various biological evaluations. Although, some data on structure-activity relationship frameworks is available, information is not adequate to optimize the efficacy of rhodanine derivatives for different applications.
Collapse
Affiliation(s)
- Suresh Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.,Department of Chemistry, GITAM Institute of Sciences, GITAM University, Visakhapatnam, India
| | - Sridevi Gorle
- Department of Microbiology and Food Science & Technology, GITAM Institute of Sciences, GITAM University, Visakhapatnam, India
| | | |
Collapse
|
15
|
Direct filtration procedure to attain antibacterial TFC membrane: A facile developing route of membrane surface properties and fouling resistance. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Shaikh MS, Kanhed AM, Chandrasekaran B, Palkar MB, Agrawal N, Lherbet C, Hampannavar GA, Karpoormath R. Discovery of novel N-methyl carbazole tethered rhodanine derivatives as direct inhibitors of Mycobacterium tuberculosis InhA. Bioorg Med Chem Lett 2019; 29:2338-2344. [DOI: 10.1016/j.bmcl.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023]
|
17
|
Bayindir S, Yararli K. The easy synthesis of new N-substituted 5-oxindoline-rhodanines and their sensing ability: the recognition of acetate ions in aqueous solution. NEW J CHEM 2019. [DOI: 10.1039/c9nj01732a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, there has been increasing interest in developing innovative synthetic strategies for the decoration of rhodanine-cores.
Collapse
Affiliation(s)
- Sinan Bayindir
- Department of Chemistry
- Faculty of Sciences and Arts
- Bingöl University
- Bingöl
- Turkey
| | - Kemal Yararli
- Department of Chemistry
- Faculty of Sciences and Arts
- Bingöl University
- Bingöl
- Turkey
| |
Collapse
|