1
|
Qi W, Lu Y, Shao X, Maienfisch P. Effects of natural Ionones and derived novel analogues with simplified structures on behavioral responses of whiteflies. PEST MANAGEMENT SCIENCE 2024; 80:4523-4532. [PMID: 38747159 DOI: 10.1002/ps.8159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 04/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Whiteflies are major pests in agriculture, causing damage to crops and transmitting plant viruses. Using Volatile Organic Compounds (VOCs) as semiochemicals offers a sustainable approach for combating whiteflies. One such group of compounds, represented by β-ionone, has been found to possess repellent/attractant properties. To further explore the behavioral effects of these compounds on whiteflies, we selected five natural ionone compounds and synthesized six novel analogues to examine the impact of structural variations on whitefly behavior. RESULTS Our results demonstrated that β-ionone and its analogues have a significant impact on the behavior of whiteflies. Among them, 0.01% pseudo ionone solution exhibited an attractant effect on whiteflies. Notably, the application of 1% β-ionone and 0.1% β-ionol solution demonstrated a notable repellent effect and oviposition deterrent effect on whitefly. We also found that the novel ionone analogue (±)1A exhibited a strong repellent effect. Both β-ionol and compound (±)1A possess high logP values and low saturation vapor pressures, which contribute to enhanced lipophilicity, making them more likely to penetrate insect antennae and prolong their presence in the air. CONCLUSION The newly discovered ionone analogue (±)1A and β-ionol exhibit improved repellent effects, while pseudo ionone shows an attractant effect. These three compounds hold promising potential for development as novel biological control agents. Our work highlights the efficacy of VOCs as a protection method against whiteflies. These findings indicate that our new technology for a 'push-pull' control method of B. tabaci can offer a novel tool for integrated pest management (IPM). © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wensong Qi
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yiming Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- CreInSol Consulting & Biocontrols, Rodersdorf, Switzerland
| |
Collapse
|
2
|
Chatron N, Boulven M, Montagut-Romans A, Ponsot F, Jacolot M, Caruel H, Benoît E, Popowycz F, Lattard V. Design of a structure-activity relationship model of vitamin K epoxide reductase (VKORC1) inhibitors combining chemical synthesis of new compounds, enzymatic assays and molecular modelling. Bioorg Med Chem 2023; 94:117453. [PMID: 37741121 DOI: 10.1016/j.bmc.2023.117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/25/2023]
Abstract
Vitamin K antagonists (VKAs) anticoagulants have been used since the 1950s as medicines and rodenticides. These molecules are mainly 4-hydroxycoumarin derivatives and act by inhibiting the vitamin K epoxide reductase (VKORC1), an endoplasmic reticulum membrane resident enzyme. However, many VKORC1 mutations have been reported over the last decade, inducing VKAs resistances and thus treatments failures. Although studies have reported experimental and computational investigations of VKAs based on VKORC1 structural homology models, the development of new effective anticoagulants has been quite complex due to the lack of structural data and reliable structure-activity relationships. However, the recent publication of VKORC1 crystal structure provides new information for further studies. Based on these findings, we combined chemical synthesis, enzymatic assays and molecular modelling methods to design a structure-activity relationship (SAR) model. Our results proved that the lipophilicity, the membrane permeability of inhibitors and their affinity towards human VKORC1 enzyme are the main characteristics for potent anticoagulants. Our SAR model managed to rank compounds according to their ability to inhibit the human VKORC1. Such a tool might constitute an alternative to evaluate new molecules potency before their chemical synthesis and biological assessment and might assist the development of new VKAs.
Collapse
Affiliation(s)
- Nolan Chatron
- USC 1233 RS2GP, VetAgro Sup, INRAE, University of Lyon, 69280 Marcy L'Etoile, France.
| | - Manon Boulven
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France; Liphatech, Bonnel, 47480 Pont-du-Casse, France
| | - Adrien Montagut-Romans
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France; Liphatech, Bonnel, 47480 Pont-du-Casse, France
| | - Flavien Ponsot
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Maïwenn Jacolot
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | | | - Etienne Benoît
- USC 1233 RS2GP, VetAgro Sup, INRAE, University of Lyon, 69280 Marcy L'Etoile, France
| | - Florence Popowycz
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Virginie Lattard
- USC 1233 RS2GP, VetAgro Sup, INRAE, University of Lyon, 69280 Marcy L'Etoile, France
| |
Collapse
|
3
|
Vujcic B, Wyllie J, Tania, Burns J, White KF, Cromwell S, Lupton DW, Dutton JL, Soares da Costa TP, Houston SD. Cage hydrocarbons as linkers in dimeric drug design: Case studies with trimethoprim and tedizolid. Bioorg Med Chem Lett 2023; 80:129086. [PMID: 36423825 DOI: 10.1016/j.bmcl.2022.129086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The looming threat of a "post-antibiotic era" has been caused by a rapid rise in antibacterial resistance and subsequent depletion of effective antibiotic agents in the clinic. An efficient strategy to address this shortfall lies in the reengineering of pre-existing and commercially available antibiotic drugs. This is exemplified by dimerization, a design concept in which two pharmacophores are covalently linked to form a new chemical entity. The cage hydrocarbons cubane (1), bicyclo[2.2.2]octane (BCO) (2), adamantane (3), and bicyclo[1.1.1]pentane (BCP) (4) present themselves as an attractive family of linkers in this regard. In this report, all four hydrocarbon cages were employed as linkers in a series of dimers based on the commercially available antibiotics trimethoprim and tedizolid. A detailed synthetic roadmap for the protection and deprotection of each pharmacophore is outlined. Several members of the trimethoprim series showed activity on par with that of their trimethoprim progenitor, although this was not the case for the tedizolid series. The design strategy outlined herein highlights the utility of the group as a platform for the rapid and modular construction of future novel antibiotics.
Collapse
Affiliation(s)
- Biljana Vujcic
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jessica Wyllie
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide 5063, South Australia, Australia
| | - Tania
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jed Burns
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Keith F White
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Simon Cromwell
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Jason L Dutton
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide 5063, South Australia, Australia
| | - Sevan D Houston
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; Almac Sciences Ltd, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom.
| |
Collapse
|
4
|
Barotcu AZ, Karanfil A, Şahin E, Kelebekli L. Stereoselective synthesis of novel bis-homoinositols with bicyclo[4.2.0]octane motifs. Carbohydr Res 2022; 519:108611. [PMID: 35716487 DOI: 10.1016/j.carres.2022.108611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Starting from cyclooctatetraene, bis-homoconduritols with cis-inositol and allo-inositol (or bicyclo[4.2.0]octane motif) structures were synthesized. Photooxygenation of trans-7,8-dibromo-bicyclo[4.2.0]octa-2,4-diene allowed the preparation of tricyclic endoperoxide. The compound diacetate was obtained by reduction of endoperoxide with thiourea followed by acetylation reaction. Removal of halides with zinc dust in acetic acid yielded the dien-diacetate, a key compound of the designed molecules. OsO4 oxidation of diendiacetate followed by acetylation gave the corresponding hexaacetates. Finally, the novel desired bis-homoinositols were obtained in high yield by the ammonolysis of acetate groups. The structures of all synthesized compounds were characterized by spectroscopic methods.
Collapse
Affiliation(s)
- Ayşenur Zeren Barotcu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey
| | - Abdullah Karanfil
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey
| | - Ertan Şahin
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240, Erzurum, Turkey
| | - Latif Kelebekli
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey.
| |
Collapse
|
5
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
6
|
Chen X, Liu Y, Furukawa N, Jin DY, Savage GP, Stafford DW, Suhara Y, Williams CM, Tie JK. A novel vitamin K derived anticoagulant tolerant to genetic variations of vitamin K epoxide reductase. J Thromb Haemost 2021; 19:689-700. [PMID: 33314621 PMCID: PMC7925372 DOI: 10.1111/jth.15209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Vitamin K antagonists (VKAs), such as warfarin, have remained the cornerstone of oral anticoagulation therapy in the prevention and treatment of thromboembolism for more than half a century. They function by impairing the biosynthesis of vitamin K-dependent (VKD) clotting factors through the inhibition of vitamin K epoxide reductase (VKOR). The challenge of VKAs therapy is their narrow therapeutic index and highly variable dosing requirements, which are partially the result of genetic variations of VKOR. OBJECTIVES The goal of this study was to search for an improved VKA that is tolerant to the genetic variations of its target enzyme. METHODS A series of vitamin K derivatives with benzyl and related side-chain substitutions at the 3-position of 1,4-naphthoquinone were synthesized. The role of these compounds in VKD carboxylation was evaluated by mammalian cell-based assays and conventional in vitro activity assays. RESULTS Our results showed that replacing the phytyl side-chain with a methylene cyclooctatetraene (COT) moiety at the 3-position of vitamin K1 converted it from a substrate to an inhibitor for VKD carboxylation. Strikingly, this COT-vitamin K derivative displayed a similar inhibition potency in warfarin-resistant VKOR mutations whose warfarin resistance varied more than 400-fold. Further characterization of COT-vitamin K for the inhibition of VKD carboxylation suggested that this compound targets multiple enzymes in the vitamin K redox cycle. Importantly, the anticoagulation effect of COT-vitamin K can be rescued with high doses of vitamin K1 . CONCLUSION We discovered a vitamin K analogue that functions as a VKA and is tolerant to genetic variations in the target enzyme.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yizhou Liu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Natsuko Furukawa
- Laboratory of Organic Synthesis and Medicinal Chemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Da-Yun Jin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - G. Paul Savage
- CSIRO Manufacturing, Ian Wark Laboratory, Melbourne 3168, Victoria, Australia
| | - Darrel W. Stafford
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yoshitomo Suhara
- Laboratory of Organic Synthesis and Medicinal Chemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Jian-Ke Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
7
|
Siddiqui TAJ, Shaikh SF, Totawar BB, Dumpala M, Ubaidullah M, Thamer BM, Mane RS, Al-Enizi AM. Tungsten oxides: green and sustainable heterogeneous nanocatalysts for the synthesis of bioactive heterocyclic compounds. Dalton Trans 2021; 50:2032-2041. [PMID: 33480909 DOI: 10.1039/d0dt04238b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tungsten oxide (WO3) as an efficient heterogeneous catalyst was prepared via a simple hydrothermal route for the synthesis of a wide range of bioactive heterocyclic compounds. The present investigation deals with the rapid and low-cost synthesis of C-3-alkylated 4-hydroxycoumarin, chromene, and xanthene derivatives. WO3 nanorods (NRs) are successfully envisaged to catalyze desired transformations, demonstrating the wide range of their potential applications in catalysis. Synthetic transformation details, smallest catalytic amounts, excellent product yields, and plausible reaction mechanisms for the formation of these heterocyclic scaffolds are elicidated. As-prepared WO3 NRs are characterized to confirm their structural, chemical, and morphological parameters by X-ray diffraction, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy measurements, respectively. We discuss the factors that govern the formation of products, and the active role of WO3 NRs, which are essential for the activation of substrates in the present study of thermal conditions. Herein, detailed synthesis and spectroscopic information of the prepared compounds are reported.
Collapse
Affiliation(s)
- T A J Siddiqui
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, M.S., India.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
De S, Jash M, Chowdhury C. Palladium(ii) catalysed cascade strategy for the synthesis of dibenzo[5,6:7,8]cycloocta[1,2-b]indol-10-ols/-10(15H)-ones: easy access to 1,3,5,7-cyclooctatetraenes (COTs). Chem Commun (Camb) 2020; 56:15659-15662. [PMID: 33289730 DOI: 10.1039/d0cc06538b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An atom-economic Pd(ii)-catalysed cascade cyclisation of 2-(biphenylethynyl)anilines tethered to an aldehyde or cyano group leads to the formation of dibenzo[5,6:7,8]cycloocta[1,2-b]indol-10-ols 6 or dibenzo[5,6:7,8]cycloocta[1,2-b]indol-10(15H)-ones 8 with high yields (up to 95%). The reaction proceeds via amino-palladation of the alkyne followed by nucleophilic addition onto the aldehyde/cyano group. Treatment of 6 with p-TsOH·H2O smoothly provided cyclooctatetraene (COT) derivatives 7.
Collapse
Affiliation(s)
- Sukanya De
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700032, India.
| | | | | |
Collapse
|
9
|
Dallaston MA, Houston SD, Williams CM. Cubane, Bicyclo[1.1.1]pentane and Bicyclo[2.2.2]octane: Impact and Thermal Sensitiveness of Carboxyl-, Hydroxymethyl- and Iodo-substituents. Chemistry 2020; 26:11966-11970. [PMID: 32820575 DOI: 10.1002/chem.202001658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Indexed: 12/21/2022]
Abstract
With the burgeoning interest in cage motifs for bioactive molecule discovery, and the recent disclosure of 1,4-cubane-dicarboxylic acid impact sensitivity, more research into the safety profiles of cage scaffolds is required. Therefore, the impact sensitivity and thermal decomposition behavior of judiciously selected starting materials and synthetic intermediates of cubane, bicyclo[1.1.1]pentane (BCP), and bicyclo[2.2.2]octane (BCO) were evaluated via hammer test and sealed cell differential scanning calorimetry, respectively. Iodo-substituted systems were found to be more impact sensitive, whereas hydroxymethyl substitution led to more rapid thermodecomposition. Cubane was more likely to be impact sensitive with these substituents, followed by BCP, whereas all BCOs were unresponsive. The majority of derivatives were placed substantially above Yoshida thresholds-a computational indicator of sensitivity.
Collapse
Affiliation(s)
- Madeleine A Dallaston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
10
|
Sarkar MR, Houston SD, Savage GP, Williams CM, Krenske EH, Bell SG, De Voss JJ. Rearrangement-Free Hydroxylation of Methylcubanes by a Cytochrome P450: The Case for Dynamical Coupling of C–H Abstraction and Rebound. J Am Chem Soc 2019; 141:19688-19699. [DOI: 10.1021/jacs.9b08064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Md. Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sevan D. Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - G. Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, VIC 3168, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Arachchige KSA, Fahrenhorst-Jones T, Burns JM, Al-Fayaad HA, Behera JN, Rao CNR, Clegg JK, Williams CM. 1,4-Diazacubane crystal structure rectified as piperazinium. Chem Commun (Camb) 2019; 55:11751-11753. [PMID: 31513198 DOI: 10.1039/c9cc06272f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All 21 [n]-azacubanes are proposed by theoreticians to be stable, however, to-date only the synthesis of 1,4-diazacubane has been reported - as a Ni2+ templated Kagome metal organic framework (MOF). Described herein is the structural reassignment of this Kagome MOF on the basis of deducing the precise experimental procedure, and demonstrating that rather than the formation of 1,4-diazacubane, charge is balanced by disordered piperazinium cations across a twelve-fold symmetry site. Furthermore, quantum chemical calculations reveal that 1,4-diazacubane is unlikely to form under the reported conditions due to unfavorable enthalpies for select hypothetical reactions leading to such a product. This significant structure correction upholds the unconquered synthesis status quo of azacubane.
Collapse
Affiliation(s)
| | - Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Jogendra N Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India and School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752 050, India
| | - C N R Rao
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| |
Collapse
|