1
|
Shekhar, Roquet-Banères F, Anand A, Kremer L, Kumar V. Rational design and microwave-promoted synthesis of triclosan-based dimers: targeting InhA for anti-mycobacterial profiling. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240676. [PMID: 39392739 PMCID: PMC11461061 DOI: 10.1098/rsos.240676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 10/13/2024]
Abstract
A set of alkyl-/1H-1,2,3-triazole-based dimers was strategically designed and synthesized to evaluate their in vitro anti-mycobacterial activities against Mycobacterium tuberculosis and the non-tuberculous Mycobacterium abscessus strains. Systematic variations in the nature (alkyl/1H-1,2,3-triazole) and positioning of the linker were implemented based on the docking scores observed in the binding sites identified in the crystal structures of InhA from M. tuberculosis and M. abscessus. However, the in vitro evaluation results revealed that the synthesized compounds did not exhibit inhibitory effects on the growth of mycobacteria, even at the highest tested concentrations. The elevated lipophilicity values determined through ADMET studies for these synthesized dimers might be a contributing factor to their poor activity profiles.
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab143005, India
| | - Francoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, Punjab143005, India
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab143005, India
| |
Collapse
|
2
|
Abdel-Motaal M, Aldakhili DA, Farag AB, Elmaaty AA, Sharaky M, Mohamed NA, Shaaban S, Alzahrani AYA, Al-Karmalawy AA. Design and synthesis of novel multi-target tetrabromophthalimides as CBS and Topo-II inhibitors and DNA intercalators. RSC Med Chem 2024:d4md00585f. [PMID: 39290384 PMCID: PMC11403875 DOI: 10.1039/d4md00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Microtubules are highly dynamic structures and constitute a crucial component of the cellular cytoskeleton. Besides, topoisomerases (Topo) play a fundamental role in maintaining the appropriate structure and organization of DNA. On the other hand, dual mechanism drug candidates for cancer treatment primarily aim to enhance the efficacy of cancer treatment and potentially overcome drug resistance. Hence, this work was tailored to design and synthesize new multi-target tetrabromophthalimide derivatives (2a-2k) that are capable of inhibiting the colchicine binding site (CBS) and topoisomerase II (Topo-II). The conducted in vitro studies showed that compound 2f showed the lowest IC50 value (6.7 μg mL-1) against the MDA-MB-468 cancer cell line. Additionally, compound 2f prompted upregulation of pro-apoptotic markers (caspases 3, 7, 8, and 9, Bax and p53). Moreover, some anti-apoptotic proteins (MMP2, MMP9, and BCL-2) were downregulated by compound 2f treatment. Besides, the colchicine binding assay showed that compounds 2f and 2k displayed promising inhibitory potential with IC50 values of 1.92 and 4.84 μg mL-1, respectively, in comparison with colchicine (1.55 μg mL-1). Furthermore, the Topo-II inhibition assay displayed the prominent inhibitory potential of compound 2f with an IC50 value of 15.75 μg mL-1, surpassing the IC50 of etoposide (20.82 μg mL-1). Cell cycle analysis revealed that compound 2f induced cell cycle arrest at both the G0-G1 and G2-M phases. The new candidates were docked against both the CBS (PDB ID: 5XIW) and Topo-II (PDB ID: 5CDP) targets to investigate their binding interactions and affinities as well. Accordingly, the synthesized compounds could serve as promising multi-target anticancer candidates with eligible apoptotic activity.
Collapse
Affiliation(s)
- Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University Mansoura Egypt
| | - Dalal Ali Aldakhili
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
| | - Ayman B Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42511 Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University Cairo Egypt
| | - Nadia A Mohamed
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
| | - Saad Shaaban
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University Mansoura Egypt
- Department of Chemistry, College of Science, King Faisal University P.O. Box 380 Al-Ahsa 31982 Saudi Arabia
| | | | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|
3
|
Shekhar, Alcaraz M, Anand A, Sharma RK, Kremer L, Kumar V. Cu-promoted synthesis of triclosan-Mannich and Glaser adducts: anti-mycobacterial evaluation with in silico validations. Future Med Chem 2024; 16:949-961. [PMID: 38910577 DOI: 10.4155/fmc-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 06/25/2024] Open
Abstract
Aim: The WHO, Global tuberculosis report 2022 estimated number of tuberculosis (TB) cases reached 10.6 million in 2021, reflecting a 4.5% increase compared with the 10.1 million reported in 2020. The incidence rate of TB showed 3.6% rise from 2020 to 2021. Results/methodology: This manuscript discloses Cu-promoted single pot A3-coupling between triclosan (TCS)-based alkyne, formaldehyde and secondary amines to yield TCS-based Mannich adducts. Additionally, the coupling of TCS-alkynes in the presence of Cu(OAc)2 afforded the corresponding homodimers. Among tested compounds, the most potent one in the series 11 exhibited fourfold higher potency than rifabutin against drug-resistant Mycobacterium abscessus. The selectivity index was also substantially improved, being 26 (day 1) and 15 (day 3), which is four-times better than TCS.
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
| | - Amit Anand
- Department of Chemistry, Khalsa college, Amritsar, Punjab, 143005, India
| | - Rajni Kant Sharma
- Department of Chemistry, College of Basic Science & Humanities CCS, Haryana Agricultural University, Hisar, Haryana, India
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
- INSERM, IRIM, Montpellier, 34293, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
4
|
Ravindar L, Hasbullah SA, Rakesh KP, Raheem S, Agustar HK, Ismail N, Ling LY, Hassan NI. Exploring diverse frontiers: Advancements of bioactive 4-aminoquinoline-based molecular hybrids in targeted therapeutics and beyond. Eur J Med Chem 2024; 264:116043. [PMID: 38118392 DOI: 10.1016/j.ejmech.2023.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/22/2023]
Abstract
Amongst heterocyclic compounds, quinoline and its derivatives are advantaged scaffolds that appear as a significant assembly motif for developing new drug entities. Aminoquinoline moiety has gained significant attention among researchers in the 21stcentury. Considering the biological and pharmaceutical importance of aminoquinoline derivatives, herein, we review the recent developments (since 2019) in various biological activities of the 4-aminoquinoline scaffold hybridized with diverse heterocyclic moieties such as quinoline, pyridine, pyrimidine, triazine, dioxine, piperazine, pyrazoline, piperidine, imidazole, indole, oxadiazole, carbazole, dioxole, thiazole, benzothiazole, pyrazole, phthalimide, adamantane, benzochromene, and pyridinone. Moreover, by gaining knowledge about SARs, structural insights, and molecular targets, this review may help medicinal chemists design cost-effective, selective, safe, and more potent 4-aminoquinoline hybrids for diverse biological activities.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Saki Raheem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, United Kingdom
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medicinal Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
5
|
Goyal A, Kharkwal H, Piplani M, Singh Y, Murugesan S, Aggarwal A, Kumar P, Chander S. Spotlight on 4-substituted quinolines as potential anti-infective agents: Journey beyond chloroquine. Arch Pharm (Weinheim) 2023; 356:e2200361. [PMID: 36494101 DOI: 10.1002/ardp.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
Continued emerging resistance of pathogens against the clinically approved candidates and their associated limitations continuously demand newer agents having better potency with a more suited safety profile. Quinoline nuclei containing scaffolds of natural and synthetic origin have been documented for diverse types of pharmacological activities, and a number of drugs are clinically approved. In the present review, we unprecedentedly covered the biological potential of 4-substituted quinoline and elaborated a rationale for its special privilege to afford the significant number of approved clinical drugs, particularly against infectious pathogens. Compounds with 4-substituted quinoline are well documented for antimalarial activity, but in the last two decades, they have been extensively explored for activity against cancer, tuberculosis, and several other pathogens including viruses, bacteria, fungi, and other infectious pathogens. In the present study, the anti-infective spectrum of this scaffold is discussed against viruses, mycobacteria, malarial parasites, and fungal and bacterial strains, along with recent updates in this area, with special emphasis on the structure-activity relationship.
Collapse
Affiliation(s)
- Ankush Goyal
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Harsha Kharkwal
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mona Piplani
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Yogendra Singh
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | | | - Amit Aggarwal
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology, Jammu, Jammu and Kashmir, India
| | - Subhash Chander
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Gavadia R, Rasgania J, Basil MV, Chauhan V, Kumar S, Jakhar K. Synthesis of Isoniazid analogs with Promising Antituberculosis Activity and Bioavailability: Biological Evaluation and Computational Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
7
|
Saroha B, Kumar G, Kumar R, Kumari M, Kumar S. A minireview of 1,2,3-triazole hybrids with O-heterocycles as leads in medicinal chemistry. Chem Biol Drug Des 2022; 100:843-869. [PMID: 34592059 DOI: 10.1111/cbdd.13966] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 01/25/2023]
Abstract
Over the past few decades, the dynamic progress in the synthesis and screening of heterocyclic compounds against various targets has made a significant contribution in the field of medicinal chemistry. Among the wide array of heterocyclic compounds, triazole moiety has attracted the attention of researchers owing to its vast therapeutic potential and easy preparation via copper and ruthenium-catalyzed azide-alkyne cycloaddition reactions. Triazole skeletons are found as major structural components in a different class of drugs possessing diverse pharmacological profiles including anti-cancer, anti-bacterial, anti-fungal, anti-viral, anti-oxidant, anti-inflammatory, anti-diabetic, anti-tubercular, and anti-depressant among various others. Furthermore, in the past few years, a significantly large number of triazole hybrids were synthesized with various heterocyclic moieties in order to gain the added advantage of the improved pharmacological profile, overcoming the multiple drug resistance and reduced toxicity from molecular hybridization. Among these synthesized triazole hybrids, many compounds are available commercially and used for treating different infections/disorders like tazobactam and cefatrizine as potent anti-bacterial agents while isavuconazole and ravuconazole as anti-fungal activities to name a few. In this review, we will summarize the biological activities of various 1,2,3-triazole hybrids with copious oxygen-containing heterocycles as lead compounds in medicinal chemistry. This review will be very helpful for researchers working in the field of molecular modeling, drug design and development, and medicinal chemistry.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Kumari
- Department of Chemistry, Govt. College for Women Badhra, Charkhi Dadri, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
8
|
Sun AL, Wang CC, Zhou H, Lang YF, Fu SY, Liu RM, Lei K. Design, Synthesis, and Evaluation of Isoindoline Derivatives as New Antidepressant
Agents. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220301141149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Isoindoline derivatives exhibit a wide range of biological activities and have
attracted considerable attention. However, few studies have been conducted on their antidepressant activity.
Objective:
Here, we designed and synthesized a series of isoindoline derivatives and studied their antidepressant
activities.
Method:
Forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant
activity of the target compounds. The most active compound was used to evaluate the exploratory
activity of the animals by the open-field test. 5-HT concentration was estimated to evaluate if the compound
has an effect on the mice brain by using ELISA. The biological activities of the compounds were
verified by molecular docking studies. The pharmacokinetic properties of the target compounds were
predicted by Discovery Studio (DS) 2020.
Results:
The results of the pharmacological experiments showed that most isoindoline derivatives exhibited
significant antidepressant activity. Among these compounds, compound 4j showed the highest antidepressant
activity. The results of the measurement of 5-HT levels in the brains of mice indicate that the
antidepressant activity of isoindoline derivatives may be mediated by elevated 5-HT levels. Compound 4j
was used in molecular docking experiments to simulate the possible interaction of these compounds with
the 5-HT1A receptor. The results demonstrated that compound 4j had a significant interaction with amino
acids around the active site of the 5-HT1A receptor in the homology model.
Conclusion:
Isoindoline derivatives synthesized in this study have a significant antidepressant activity.
These findings can be useful in the design and synthesis of novel antidepressants.
Collapse
Affiliation(s)
- Ai-Ling Sun
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Chao-Chao Wang
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hao Zhou
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yi-Fei Lang
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Shu-Yue Fu
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ren-Min Liu
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Kang Lei
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
9
|
Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis. Eur J Med Chem 2022; 239:114531. [PMID: 35759907 DOI: 10.1016/j.ejmech.2022.114531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
Isoniazid is a cornerstone of modern tuberculosis (TB) therapy and targets the enoyl ACP reductase InhA, a key enzyme in mycolic acid biosynthesis. InhA is still a promising target for the development of new anti-TB drugs. Herein, we report the design, synthesis, and anti-tubercular activity of new isoniazid hybrids. Among these, 1H-1,2,3 triazole-tethered quinoline-isoniazid conjugates 16a to 16g exhibited high activity against Mycobacterium tuberculosis with minimal inhibitory concentrations in the 0.25-0.50 μg/mL range and were bactericidal in vitro. Importantly, these compounds were well tolerated at high doses on mammalian cells, leading to high selectivity indices. The hybrids were dependent on functional KatG production to inhibit mycolic acid biosynthesis. Moreover, overexpression of InhA in M. tuberculosis resulted in high resistance levels to 16a-16g and reduced mycolic acid biosynthesis inhibition, similar to isoniazid. Overall, these findings suggest that the synthesized quinoline-isoniazid hybrids are promising anti-tubercular molecules, which require further pre-clinical evaluation.
Collapse
|
10
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
A trio of quinoline-isoniazid-phthalimide with promising antiplasmodial potential: Synthesis, in-vitro evaluation and heme-polymerization inhibition studies. Bioorg Med Chem 2021; 39:116159. [PMID: 33895706 DOI: 10.1016/j.bmc.2021.116159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022]
Abstract
Quinoline-isoniazid-phthalimide triads have been synthesised to assess their antiplasmodial efficacy and cytotoxicity against chloroquine-resistant W2 strain of P. falciparum and Vero cells, respectively. Most of the synthesized compounds displayed IC50 in lower nM range and appeared to be approximately five to twelve fold more active than chloroquine. Heme-binding studies were also carried out to delineate the mode of action. The promising compounds with IC50s in range of 11-30 nM and selectivity index >2800, may act as promising template for the design of new antiplasmodials.
Collapse
|
12
|
Microwave-Assisted Synthesis of Schiff Bases of Isoniazid and Evaluation of Their Anti-Proliferative and Antibacterial Activities. MOLBANK 2021. [DOI: 10.3390/m1189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Three new Schiff bases of isoniazid were synthesized using microwave-assisted synthesis and conventional condensation with aromatic aldehydes. Synthesized compounds were characterized using elemental analysis, IR, NMR, and Mass spectroscopy. Synthesized compounds were evaluated for antiproliferative activity against MCF-7 cell line. The IC50 values were from 125 to 276 µM. The compounds were also evaluated for antibacterial activity against Staphylococcus aureus and Escherichia coli. Results showed that the synthesized compounds produce significant antibacterial activity in vitro. Inhibition of compounds ranged from 13 to 18 mm.
Collapse
|