1
|
Cele N, Awolade P, Seboletswe P, Khubone L, Olofinsan K, Islam MS, Jordaan A, Warner DF, Singh P. Synthesis,Antidiabetic and Antitubercular Evaluation of Quinoline-pyrazolopyrimidine hybrids and Quinoline-4-Arylamines. ChemistryOpen 2024; 13:e202400014. [PMID: 38506589 DOI: 10.1002/open.202400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Two libraries of quinoline-based hybrids 1-(7-chloroquinolin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and 7-chloro-N-phenylquinolin-4-amine were synthesized and evaluated for their α-glucosidase inhibitory and antioxidant properties. Compounds with 4-methylpiperidine and para-trifluoromethoxy groups, respectively, showed the most promising α-glucosidase inhibition activity with IC50=46.70 and 40.84 μM, compared to the reference inhibitor, acarbose (IC50=51.73 μM). Structure-activity relationship analysis suggested that the cyclic secondary amine pendants and para-phenyl substituents account for the variable enzyme inhibition. Antioxidant profiling further revealed that compounds with an N-methylpiperazine and N-ethylpiperazine ring, respectively, have good DPPH scavenging abilities with IC50=0.18, 0.58 and 0.93 mM, as compared to ascorbic acid (IC50=0.05 mM), while the best DPPH scavenger is NO2-substituted compound (IC50=0.08 mM). Also, compound with N-(2-hydroxyethyl)piperazine moiety emerged as the best NO radical scavenger with IC50=0.28 mM. Molecular docking studies showed that the present compounds are orthosteric inhibitors with their quinoline, pyrimidine, and 4-amino units as crucial pharmacophores furnishing α-glucosidase binding at the catalytic site. Taken together, these compounds exhibit dual potentials; i. e., potent α-glucosidase inhibitors and excellent free radical scavengers. Hence, they may serve as structural templates in the search for agents to manage Type 2 diabetes mellitus. Finally, in preliminary assays investigating the anti-tubercular potential of these compounds, two pyrazolopyrimidine series compounds and a 7-chloro-N-phenylquinolin-4-amine hybrid showed sub-10 μM whole-cell activities against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Pule Seboletswe
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Lungisani Khubone
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Kolawole Olofinsan
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban, South Africa
| | - Audrey Jordaan
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| |
Collapse
|
2
|
Sun Q, Guo F, Liu Y, Zhang Y, Zhang K, Wang Y, Gao Q, Lim V, Duan Y, Fang L. Construction of an Angular Tricyclic Benzofuran Skeleton Using the C-H Activation Strategy. J Org Chem 2024; 89:3304-3308. [PMID: 38356371 DOI: 10.1021/acs.joc.3c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A protocol for the construction of an angular tricyclic benzofuran skeleton based on the C-H activation strategy has been established. Different phthalide lactones on this skeleton can be easily assembled with various side chains by using C-H activation with aldehydes and subsequent reduction. This skeleton provides a versatile and crucial motif for the total synthesis of naturally occurring angular tricyclic benzofurans and their derivatives. Based on this protocol, the improved total syntheses of daldinin A and annullatin D were achieved in yields of 17.3 and 7.6%, respectively.
Collapse
Affiliation(s)
- Qianqian Sun
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China
- School of Pharmacy, Xinxiang Medical University, 601 East Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia
| | - Feixiang Guo
- School of Pharmacy, Xinxiang Medical University, 601 East Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Yi Liu
- School of Pharmacy, Xinxiang Medical University, 601 East Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Yizhe Zhang
- School of Pharmacy, Xinxiang Medical University, 601 East Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Kunyi Zhang
- School of Pharmacy, Xinxiang Medical University, 601 East Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Yakun Wang
- School of Pharmacy, Xinxiang Medical University, 601 East Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, 601 East Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia
| | - Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, 601 East Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| | - Lizhen Fang
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China
- School of Pharmacy, Xinxiang Medical University, 601 East Jinsui Avenue, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
3
|
Lam TP, Tran NVN, Pham LHD, Lai NVT, Dang BTN, Truong NLN, Nguyen-Vo SK, Hoang TL, Mai TT, Tran TD. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:4. [PMID: 38185713 PMCID: PMC10772047 DOI: 10.1007/s13659-023-00424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus remains a major global health issue, and great attention is directed at natural therapeutics. This systematic review aimed to assess the potential of flavonoids as antidiabetic agents by investigating their inhibitory effects on α-glucosidase and α-amylase, two key enzymes involved in starch digestion. Six scientific databases (PubMed, Virtual Health Library, EMBASE, SCOPUS, Web of Science, and WHO Global Index Medicus) were searched until August 21, 2022, for in vitro studies reporting IC50 values of purified flavonoids on α-amylase and α-glucosidase, along with corresponding data for acarbose as a positive control. A total of 339 eligible articles were analyzed, resulting in the retrieval of 1643 flavonoid structures. These structures were rigorously standardized and curated, yielding 974 unique compounds, among which 177 flavonoids exhibited inhibition of both α-glucosidase and α-amylase are presented. Quality assessment utilizing a modified CONSORT checklist and structure-activity relationship (SAR) analysis were performed, revealing crucial features for the simultaneous inhibition of flavonoids against both enzymes. Moreover, the review also addressed several limitations in the current research landscape and proposed potential solutions. The curated datasets are available online at https://github.com/MedChemUMP/FDIGA .
Collapse
Affiliation(s)
- Thua-Phong Lam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Ngoc-Vi Nguyen Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Long-Hung Dinh Pham
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Nghia Vo-Trong Lai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Bao-Tran Ngoc Dang
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Ngoc-Lam Nguyen Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Song-Ky Nguyen-Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Thuy-Linh Hoang
- California Northstate University College of Pharmacy, California, 95757, USA
| | - Tan Thanh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| |
Collapse
|
4
|
Kumari S, Saini R, Bhatnagar A, Mishra A. Exploring plant-based alpha-glucosidase inhibitors: promising contenders for combatting type-2 diabetes. Arch Physiol Biochem 2023:1-16. [PMID: 37767958 DOI: 10.1080/13813455.2023.2262167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Objective: This systematic review aimed to provide comprehensive details on the α-G inhibitory potential of various bioactive compounds derived from natural sources.Methods: A comprehensive literature search was conducted using various databases and search engines, including Science Direct, Google Scholar, SciFinder, Web of Science, and PubMed until May, 2023.Results and conclusions: The enzyme alpha-glucosidase (α-G) is found in the brush border epithelium of the small intestine and consists of duplicated glycoside hydrolase (GH31) domain. It involves the conversion of disaccharides and oligosaccharides into monosaccharides by acting on alpha (1 → 4) and (1 → 6) linked glucose residue. Once absorbed, glucose enters the bloodstream and elevates postprandial glucose, which is associated with the development of type 2 Diabetes (T2D). Epidemic obesity, cardiovascular disease, and nephropathy are linked to T2D. Traditional medicinal plants with α-G inhibitory potential are commonly used to treat T2D due to the adverse effects of currently used α-G inhibitors miglitol, acarbose, and voglibose. Various bioactive compounds derived from natural sources, including lupenone, Wilforlide A, Baicalein, Betulinic acid, Ursolic acid, Oleanolic acid, Katononic acid, Carnosol, Hypericin, Astilbin, lupeol, betulonic acid, Fagomine, Lactucaxanthin, Erythritol, GP90-1B, Procyanidins, Galangin, and vomifoliol retain α-G inhibitory potential for regulating hyperglycaemia.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
5
|
Wang J, Feng D, Xiang Y, Guo J, Huang N, Yu N, Yang H, Liu C, Zou K. Synthesis and inhibitory activity of euparin derivatives as potential dual inhibitors against α-glucosidase and protein tyrosine phosphatase 1B (PTP1B). Fitoterapia 2023; 169:105596. [PMID: 37364700 DOI: 10.1016/j.fitote.2023.105596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Diabetes mellitus is a serious threat to human life and health. The α-glucosidase and protein tyrosine phosphatase 1B (PTP1B) were important targets for the treatment of type 2 diabetes mellitus. In this paper, euparin, a natural product from Eupatorium chinense possessed extensive pharmacological activities, was selected as the lead compound. It was derived into chalcone compounds with high efficiency, and the inhibitory activities of these 30 products on α-glucosidase and PTP1B were tested. The results showed that compounds 12 and 15 had good inhibitory activities against both enzymes. The IC50 value of 12 to inhibit α-glucosidase and PTP1B was 39.77 and 39.31 μM, and the IC50 value of 15 to inhibit α-glucosidase and PTP1B was 9.02 and 3.47 μM, respectively. In addition, molecular docking results showed that compounds 12 and 15 exhibited good binding affinities toward both α -glucosidase and PTP1B with negative binding energies. The results of the present study demonstrate that compounds 12 and 15 might be beneficial in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Jinqiang Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Dandan Feng
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Yimin Xiang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Ji Guo
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Na Yu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Huishu Yang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China
| | - Chengxiong Liu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China..
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, PR China..
| |
Collapse
|
6
|
Zhu WJ, Yu X, Liu HY, Liu Y, Zhao JB, Zhang PF, Xia CC, Li FR. Synthesis of ( E)-2-(1-(methoxyimino)ethyl)-2-phenylbenzofuran-3(2 H)-ones from ( E)-1-(benzofuran-2-yl)ethan-1-one O-methyl oximes and iodobenzenes via a palladium-catalyzed dearomative arylation/oxidation reaction. Org Biomol Chem 2023; 21:6307-6311. [PMID: 37492010 DOI: 10.1039/d3ob00772c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A new method has been successfully developed that offers a facile and reliable approach for synthesizing (E)-2-(1-(methoxyimino)ethyl)-2-phenylbenzofuran-3(2H)-one, providing 28 compounds. This optimized process enables efficient preparation of a wide range of compounds using readily available (E)-1-(benzofuran-2-yl)ethan-1-one O-methyl oxime and iodobenzene, and provides alternative ideas for the structural modification of benzofuran ketones.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Xiao Yu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Hong-Yan Liu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Yi Liu
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Jin-Bo Zhao
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Peng-Fei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Cheng-Cai Xia
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| | - Fu-Rong Li
- School of Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
| |
Collapse
|
7
|
Anti-Toxoplasma gondii agent isolated from Orostachys malacophylla (Pallas) Fischer. Exp Parasitol 2022; 242:108397. [DOI: 10.1016/j.exppara.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
|
8
|
Kashtoh H, Baek KH. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202722. [PMID: 36297746 PMCID: PMC9612090 DOI: 10.3390/plants11202722] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Diabetes is a common metabolic disorder marked by unusually high plasma glucose levels, which can lead to serious consequences such as retinopathy, diabetic neuropathy and cardiovascular disease. One of the most efficient ways to reduce postprandial hyperglycemia (PPHG) in diabetes mellitus, especially insulin-independent diabetes mellitus, is to lower the amount of glucose that is absorbed by inhibiting carbohydrate hydrolyzing enzymes in the digestive system, such as α-glucosidase and α-amylase. α-Glucosidase is a crucial enzyme that catalyzes the final stage of carbohydrate digestion. As a result, α-glucosidase inhibitors can slow D-glucose release from complex carbohydrates and delay glucose absorption, resulting in lower postprandial plasma glucose levels and control of PPHG. Many attempts have been made in recent years to uncover efficient α-glucosidase inhibitors from natural sources to build a physiologic functional diet or lead compound for diabetes treatment. Many phytoconstituent α-glucosidase inhibitors have been identified from plants, including alkaloids, flavonoids, anthocyanins, terpenoids, phenolic compounds, glycosides and others. The current review focuses on the most recent updates on different traditional/medicinal plant extracts and isolated compounds' biological activity that can help in the development of potent therapeutic medications with greater efficacy and safety for the treatment of type 2 diabetes or to avoid PPHG. For this purpose, we provide a summary of the latest scientific literature findings on plant extracts as well as plant-derived bioactive compounds as potential α-glucosidase inhibitors with hypoglycemic effects. Moreover, the review elucidates structural insights of the key drug target, α-glucosidase enzymes, and its interaction with different inhibitors.
Collapse
|
9
|
Phenolic Glycosides from Orostachys malacophylla. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Aggul AG, Uzun N, Kuzu M, Taslimi P, Gulcin I. Some phenolic natural compounds as carbonic anhydrase inhibitors: An in vitro and in silico study. Arch Pharm (Weinheim) 2022; 355:e2100476. [DOI: 10.1002/ardp.202100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Naim Uzun
- Department of Biochemistry Agri Ibrahim Cecen University Agri Turkey
| | - Muslum Kuzu
- Department of Nutrition and Dietetics Karabuk University Karabuk Turkey
| | - Parham Taslimi
- Department of Biotechnology Bartin University Bartin Turkey
| | - Ilhami Gulcin
- Department of Chemistry Ataturk University Erzurum Turkey
| |
Collapse
|
11
|
Structure related α-glucosidase inhibitory activity and molecular docking analyses of phenolic compounds from Paeonia suffruticosa. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02830-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
13
|
Chemical Constituents of Hylotelephium erythrostictum. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Wu J, Hu B, Lu S, Duan R, Deng H, Li L, He L, Zhao Y, Wang J, Yu Z. Identification of raloxifene as a novel α-glucosidase inhibitor using a systematic drug repurposing approach in combination with cross molecular docking-based virtual screening and experimental verification. Carbohydr Res 2021; 511:108478. [PMID: 34801925 DOI: 10.1016/j.carres.2021.108478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023]
Abstract
α-Glucosidase is a promising target for the treatment of diabetes. Drug repurposing can increase the chances of discovering an active inhibitor. Therefore, this study aimed to identify potential α-glucosidase inhibitor using drug repurposing and in silico strategies. We identified critical amino acid residues of the three α-glucosidase proteins. Based on cross molecular docking studies of three α-glucosidase proteins and drugs in the FDA database, we screened hits with the favorable binding affinities and modes targeting the three proteins. Subsequently, an in vitro activity assay showed that raloxifene was an excellent inhibitor of α-glucosidase. Moreover, molecular dynamics simulations of raloxifene and three proteins were performed to assess the stability of the protein-hit systems in physiological conditions and clarify protein-hit interactions. We also performed the binding free energy calculation, Hirshfeld surface and alanine scanning mutagenesis analyses. These results demonstrated that binding between raloxifene and the three proteins was stable, and the critical amino acid residues of the three proteins formed stable contacts with raloxifene. The molecular mechanisms agree well with its activity, reinforcing that raloxifene is a candidate α-glucosidase inhibitor. Our study smoothes the path for the development of novel a-glucosidase inhibitors with high efficacy and low toxicity for the treatment of diabetes.
Collapse
Affiliation(s)
- Jiaofeng Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Baichun Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Shuaizhong Lu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Rong Duan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Haoran Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lele Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lijuan He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yunli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Zhiguo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
15
|
Linking the Phytochemicals and the α-Glucosidase and α-Amylase Enzyme Inhibitory Effects of Nigella sativa Seed Extracts. Foods 2021; 10:foods10081818. [PMID: 34441595 PMCID: PMC8393492 DOI: 10.3390/foods10081818] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Nigella sativa L. (Ranunculaceae), commonly referred to as black seeds or black cumin, is used in popular medicine (herbal) all over the world for the treatment and prevention of several diseases, including diabetes. This study aims to investigate the inhibitory effect of N. sativa extracts and fractions against the activities of intestinal α-glucosidase and pancreatic α-amylase in vitro, and to explain the inhibitory effect of these fractions against these enzymes by identifying their active compounds responsible for this effect and determine their modes of inhibition. To do so, N. sativa hexane and acetone extracts were prepared and analyzed by GC-MS and HPLC-DAD, respectively. The hexane extract was further fractioned into eight different fractions, while the acetone extract generated eleven fractions. The extracts as well as the resulting fractions were characterized and evaluated for their potential in vitro antidiabetic activity using intestinal α-glucosidase and pancreatic α-amylase inhibitory assays in vitro. Hexane extract and fractions were less active than acetone extract and fractions. In the case of intestinal α-glucosidase activity, the acetone fraction SA3 had a high inhibitory effect on intestinal α-glucosidase activity with 72.26 ± 1.42%, comparable to the effect of acarbose (70.90 ± 1.12%). For the pancreatic α-amylase enzymatic inhibitory assay, the acetone fractions showed an inhibitory capacity close to that for acarbose. In particular, the SA2 fraction had an inhibitory effect of 67.70 ± 0.58% and was rich in apigenin and gallic acid. From these fractions, apigenin, (-)-catechin, and gallic acid were further characterized for their inhibitory actions. IC50 and inhibition mode were determined by analyzing enzyme kinetic parameters and by molecular modeling. Interestingly, (-)-catechin showed a possible synergistic effect with acarbose toward α-glucosidase enzyme inhibition, whereas apigenin showed an additive effect with acarbose toward α-amylase enzymatic inhibition. Furthermore, we studied the toxicity of N. sativa hexane and acetone extracts as well as that of acetone fractions. The result of acute toxicity evaluation demonstrated that N. sativa extracts were nontoxic up to a concentration of 10 g/kg, except for fraction SA3. Taken together, these results indicate that N. sativa extracts and/or derived compounds could constitute promising nutraceuticals for the prevention and treatment of type 2 diabetes mellitus.
Collapse
|