1
|
Shahedi M, Shahani R, Omidi N, Habibi Z, Yousefi M, Mohammadi M. Laccase-mediated chemoselective C-4 arylation of 5-aminopyrazoles. PLoS One 2024; 19:e0308036. [PMID: 39292681 PMCID: PMC11410246 DOI: 10.1371/journal.pone.0308036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/17/2024] [Indexed: 09/20/2024] Open
Abstract
Chemoselective arylation of 5-aminopyrazoles was performed through oxidative formation of orthoquinones from catechols catalyzed by Myceliophthora thermophila laccase (Novozym 51003), and subsequently nucleophilic attack of 5-aminopyrazole to the catechol intermediates. The C-4 arylated products were obtained under extremely mild conditions without the need for amine protection or halogenation of the substrates. From this method, 10 derivatives with moderate to good efficiency (42-94%) were prepared.
Collapse
Affiliation(s)
- Mansour Shahedi
- Department of Organic Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Rojina Shahani
- Department of Organic Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Niloofar Omidi
- Department of Organic Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Zohreh Habibi
- Department of Organic Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Bozdag M, Mertens F, Matheeussen A, Van Pelt N, Foubert K, Hermans N, De Meyer GRY, Augustyns K, Martinet W, Caljon G, Van der Veken P. Design and Synthesis of 1,3-Diarylpyrazoles and Investigation of Their Cytotoxicity and Antiparasitic Profile. Int J Mol Sci 2024; 25:4693. [PMID: 38731916 PMCID: PMC11487390 DOI: 10.3390/ijms25094693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Herein, we report a series of 1,3-diarylpyrazoles that are analogues of compound 26/HIT 8. We previously identified this molecule as a 'hit' during a high-throughput screening campaign for autophagy inducers. A variety of synthetic strategies were utilized to modify the 1,3-diarylpyrazole core at its 1-, 3-, and 4-position. Compounds were assessed in vitro to identify their cytotoxicity properties. Of note, several compounds in the series displayed relevant cytotoxicity, which warrants scrutiny while interpreting biological activities that have been reported for structurally related molecules. In addition, antiparasitic activities were recorded against a range of human-infective protozoa, including Trypanosoma cruzi, T. brucei rhodesiense, and Leishmania infantum. The most interesting compounds displayed low micromolar whole-cell potencies against individual or several parasitic species, while lacking cytotoxicity against human cells.
Collapse
Affiliation(s)
- Murat Bozdag
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium (K.A.)
| | - Freke Mertens
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; (F.M.); (G.R.Y.D.M.); (W.M.)
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; (A.M.); (N.V.P.); (G.C.)
| | - Natascha Van Pelt
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; (A.M.); (N.V.P.); (G.C.)
| | - Kenn Foubert
- Natural Products and Food Research and Analysis–Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; (K.F.); (N.H.)
| | - Nina Hermans
- Natural Products and Food Research and Analysis–Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; (K.F.); (N.H.)
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; (F.M.); (G.R.Y.D.M.); (W.M.)
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium (K.A.)
| | - Wim Martinet
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; (F.M.); (G.R.Y.D.M.); (W.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium; (A.M.); (N.V.P.); (G.C.)
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium (K.A.)
| |
Collapse
|
3
|
Özkul Ş, Tunca E, Mert S, Bayrakdar A, Kasımoğulları R. Synthesis, molecular docking analysis, drug-likeness evaluation, and inhibition potency of new pyrazole-3,4-dicarboxamides incorporating sulfonamide moiety as carbonic anhydrase inhibitors. J Biochem Mol Toxicol 2024; 38:e23704. [PMID: 38588035 DOI: 10.1002/jbt.23704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
A series of novel pyrazole-dicarboxamides were synthesized from pyrazole-3,4-dicarboxylic acid chloride and various primary and secondary sulfonamides. The structures of the new compounds were confirmed by FT-IR, 1H-NMR, 13C-NMR, and HRMS. Then the inhibition effects of newly synthesized molecules on human erythrocyte hCA I and hCA II isoenzymes were investigated. Ki values of the compounds were in the range of 0.024-0.496 µM for hCA I and 0.006-5.441 µM for hCA II. Compounds 7a and 7i showed nanomolar level of inhibition of hCA II, and these compounds exhibited high selectivity for this isoenzyme. Molecular docking studies were performed between the most active compounds 7a, 7b, 7i, and the reference inhibitor AAZ and the hCAI and hCAII to investigate the binding mechanisms between the compounds and the isozymes. These compounds showed better interactions than the AAZ. ADMET and drug-likeness analyses for the compounds have shown that the compounds can be used pharmacologically in living organisms.
Collapse
Affiliation(s)
- Şüheda Özkul
- Department of Biochemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Ekrem Tunca
- Department of Biochemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Samet Mert
- Department of Chemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| | - Alpaslan Bayrakdar
- Vocational School of Higher Education for Healthcare Services, Iğdır University, Iğdır, Turkey
| | - Rahmi Kasımoğulları
- Department of Chemistry, Faculty of Arts and Sciences, Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
4
|
The Pharmacokinetics of Diclofenac and its Interaction with Sulfadoxine-Trimethoprim in Sheep. Small Rumin Res 2023. [DOI: 10.1016/j.smallrumres.2023.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Discovery of New 1,4,6-Trisubstituted-1H-pyrazolo[3,4-b]pyridines with Anti-Tumor Efficacy in Mouse Model of Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15030787. [PMID: 36986648 PMCID: PMC10057642 DOI: 10.3390/pharmaceutics15030787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Purine analogues are important therapeutic tools due to their affinity to enzymes or receptors that are involved in critical biological processes. In this study, new 1,4,6-trisubstituted pyrazolo[3,4-b]pyridines were designed and synthesized, and their cytotoxic potential was been studied. The new derivatives were prepared through suitable arylhydrazines, and upon successive conversion first to aminopyrazoles, they were converted then to 1,6-disubstituted pyrazolo[3,4-b]pyridine-4-ones; this served as the starting point for the synthesis of the target compounds. The cytotoxic activity of the derivatives was evaluated against several human and murine cancer cell lines. Substantial structure activity relationships (SARs) could be extracted, mainly concerning the 4-alkylaminoethyl ethers, which showed potent in vitro antiproliferative activity in the low μM level (0.75–4.15 μΜ) without affecting the proliferation of normal cells. The most potent analogues underwent in vivo evaluation and were found to inhibit tumor growth in vivo in an orthotopic breast cancer mouse model. The novel compounds exhibited no systemic toxicity; they affected only the implanted tumors and did not interfere with the immune system of the animals. Our results revealed a very potent novel compound which could be an ideal lead for the discovery of promising anti-tumor agents, and could also be further explored for combination treatments with immunotherapeutic drugs.
Collapse
|
6
|
Optimization of Pyrazole Compounds as Antibiotic Adjuvants Active against Colistin- and Carbapenem-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:antibiotics11121832. [PMID: 36551489 PMCID: PMC9774939 DOI: 10.3390/antibiotics11121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The diffusion of antibiotic-resistant, Gram-negative, opportunistic pathogens, an increasingly important global public health issue, causes a significant socioeconomic burden. Acinetobacter baumannii isolates, despite causing a lower number of infections than Enterobacterales, often show multidrug-resistant phenotypes. Carbapenem resistance is also rather common, prompting the WHO to include carbapenem-resistant A. baumannii as a "critical priority" for the discovery and development of new antibacterial agents. In a previous work, we identified several series of compounds showing either direct-acting or synergistic activity against relevant Gram-negative species, including A. baumannii. Among these, two pyrazole compounds, despite being devoid of any direct-acting activity, showed remarkable synergistic activity in the presence of a subinhibitory concentration of colistin on K. pneumoniae and A. baumannii and served as a starting point for the synthesis of new analogues. In this work, a new series of 47 pyrazole compounds was synthesized. Some compounds showed significant direct-acting antibacterial activity on Gram-positive organisms. Furthermore, an evaluation of their activity as potential antibiotic adjuvants allowed for the identification of two highly active compounds on MDR Acinetobacter baumannii, including colistin-resistant isolates. This work confirms the interest in pyrazole amides as a starting point for the optimization of synergistic antibacterial compounds active on antibiotic-resistant, Gram-negative pathogens.
Collapse
|
7
|
Dhameliya TM, Devani AA, Patel KA, Shah KC. Comprehensive Coverage on Anti‐mycobacterial Endeavour Reported in 2021. ChemistrySelect 2022. [DOI: 10.1002/slct.202200921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Aanal A. Devani
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Krupa A. Patel
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| | - Kashvi C. Shah
- L. M. College of Pharmacy, Navrangpura Ahmedabad 380 009 Gujarat India
| |
Collapse
|
8
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022; 10:biomedicines10051124. [PMID: 35625859 PMCID: PMC9139179 DOI: 10.3390/biomedicines10051124] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Pyrazoles are five-membered heterocyclic compounds that contain nitrogen. They are an important class of compounds for drug development; thus, they have attracted much attention. In the meantime, pyrazole derivatives have been synthesized as target structures and have demonstrated numerous biological activities such as antituberculosis, antimicrobial, antifungal, and anti-inflammatory. This review summarizes the results of published research on pyrazole derivatives synthesis and biological activities. The published research works on pyrazole derivatives synthesis and biological activities between January 2018 and December 2021 were retrieved from the Scopus database and reviewed accordingly.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
9
|
Qin R, Wang P, Wang B, Fu L, Batt SM, Besra GS, Wu C, Wang Y, Huang H, Lu Y, Li G. Identification of thiophene-benzenesulfonamide derivatives for the treatment of multidrug-resistant tuberculosis. Eur J Med Chem 2022; 231:114145. [PMID: 35101648 DOI: 10.1016/j.ejmech.2022.114145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
A series of thiophene-benzenesulfonamide derivatives was designed and synthesized by exploring the structure-activity relationship of lead compounds 2,3-disubstituted thiophenes 25a and 297F as antituberculosis agents, which displayed potent antimycobacterial activity against drug-susceptible and clinically isolated drug-resistant tuberculosis. In particular, compound 17b, which had improved activity (minimum inhibitory concentration of 0.023 μg/mL) compared with the lead compounds, displayed good intracellular antimycobacterial activity in macrophages with a reduction of 1.29 log10 CFU. A druggability evaluation indicated that compound 17b had favorable hepatocyte stability, low cytotoxicity, and low hERG channel inhibition. Moreover, compound 17b exhibited modest in vivo efficacy in an acute mouse model of tuberculosis. In addition, the molecular docking study elucidated the binding mode of compound 17b in the active site of DprE1. Therefore, compound 17b may be a promising antituberculosis lead for further research.
Collapse
Affiliation(s)
- Rongfei Qin
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, PR China
| | - Pengxu Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, PR China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing, 101149, PR China
| | - Lei Fu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing, 101149, PR China
| | - Sarah M Batt
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Chengwei Wu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, PR China
| | - Yanan Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, PR China
| | - Haihong Huang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, PR China.
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing, 101149, PR China.
| | - Gang Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, PR China.
| |
Collapse
|
10
|
Sacramento M, Reis AS, Martins CC, Luchese C, Wilhelm EA, Alves D. Synthesis and Evaluation of Antioxidant, Anti-Edematogenic and Antinociceptive Properties of Selenium-Sulfa Compounds. ChemMedChem 2022; 17:e202100507. [PMID: 34854233 DOI: 10.1002/cmdc.202100507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Indexed: 01/10/2023]
Abstract
Herein we describe results for the synthesis and synthetic application of 4-amino-3-(arylselenyl)benzenesulfonamides, and preliminary evaluation of antioxidant, anti-edematogenic and antinociceptive properties. This class of compounds was synthesized in good yields by a reaction of commercially available sulfanilamide and diorganyl diselenides in the presence of 10 mol% of I2 . Furthermore, the synthesized compound 4-amino-3-(phenylselenyl)benzenesulfonamide (3 a) was evaluated on complete Freund's adjuvant (CFA)-induced acute inflammatory pain. Dose- and time-response curves of antinociceptive effect of compound 3 a were performed using this experimental model. Also, the effect of compound 3 a was monitored in a hot-plate test to evaluate the acute non-inflammatory antinociception. The open-field test was performed to evaluate the locomotor and exploratory behaviors of mice. Oxidative stress markers, such as glutathione peroxidase activity; reactive species, non-protein thiols, and lipid peroxidation levels were performed to investigate the antioxidant action of compound 3 a. Our findings suggest that the antioxidant effect of compound 3 a may contribute to reducing the nociception and suppress the signaling pathways of inflammation on the local injury induced by CFA. Thus, compound 3 a reduced the paw edema as well as the hyperalgesic behavior in mice, being a promising therapeutic agent for the treatment of painful conditions.
Collapse
Affiliation(s)
- Manoela Sacramento
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angélica S Reis
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Carolina C Martins
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
11
|
Larroza A, Krüger R, Fronza MG, Pesarico AP, de Oliveira DH, Savegnago L, Alves D. Synthesis of sulfamoyl-triazolyl-carboxamides as pharmacological myeloperoxidase inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01926d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfamoyl-triazolyl-carboxamides were synthesized using DBU as a catalyst, and their molecular docking and MPO activity analyses were performed.
Collapse
Affiliation(s)
- Allya Larroza
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Roberta Krüger
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Mariana G. Fronza
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Ana Paula Pesarico
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Daniela H. de Oliveira
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
12
|
Alzahrani AY, Ammar YA, Salem MA, Abu-Elghait M, Ragab A. Design, synthesis, molecular modeling, and antimicrobial potential of novel 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives as DNA gyrase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100266. [PMID: 34747519 DOI: 10.1002/ardp.202100266] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
A series of 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives were designed using the molecular hybridization method, characterized using different spectroscopic techniques, and evaluated for their in vitro antimicrobial activity. Most of the target compounds demonstrated good to moderate antimicrobial activity compared with ciprofloxacin and fluconazole. Four compounds (8b, 9a, 9c, and 10a) showed encouraging results, with minimal inhibitory concentration (MIC) values (53.45-258.32 µM) comparable to those of norfloxacin (100.31-200.63 µM) and ciprofloxacin (48.33-96.68 µM). Noticeably, the four derivatives revealed excellent bactericidal and fungicidal activities, except for the bacteriostatic potential of compounds 8b and 9a against Escherichia coli and Staphylococcus aureus, respectively. The time-killing kinetic study against S. aureus confirmed the efficacy of these derivatives. Furthermore, two of the four promising derivatives, 9a and 10a, could prevent the formation of biofilms of S. aureus without affecting the bacterial growth at low concentrations. A combination study with seven commercial antibiotics against the multidrug-resistant bacterium P. aeruginosa showed a notable reduction in the antibiotic MIC values, represented mainly through a synergistic or additive effect. The enzymatic assay implied that the most active derivatives had inhibition potency against DNA gyrase comparable to that of ciprofloxacin. Molecular docking and density functional theory calculations were performed to explore the binding mode and study the reactivity of the promising compounds.
Collapse
Affiliation(s)
- Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|