1
|
Everts V, Jansen IDC, de Vries TJ. Mechanisms of bone resorption. Bone 2022; 163:116499. [PMID: 35872106 DOI: 10.1016/j.bone.2022.116499] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Vincent Everts
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands; Department of Anatomy, Dental Faculty, Chulalongkorn University, Bangkok, Thailand.
| | - Ineke D C Jansen
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Russo S, Scotto di Carlo F, Gianfrancesco F. The Osteoclast Traces the Route to Bone Tumors and Metastases. Front Cell Dev Biol 2022; 10:886305. [PMID: 35646939 PMCID: PMC9139841 DOI: 10.3389/fcell.2022.886305] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts are highly specialized cells of the bone, with a unique apparatus responsible for resorption in the process of bone remodeling. They are derived from differentiation and fusion of hematopoietic precursors, committed to form mature osteoclasts in response to finely regulated stimuli produced by bone marrow-derived cells belonging to the stromal lineage. Despite a highly specific function confined to bone degradation, emerging evidence supports their relevant implication in bone tumors and metastases. In this review, we summarize the physiological role of osteoclasts and then focus our attention on their involvement in skeletal tumors, both primary and metastatic. We highlight how osteoclast-mediated bone erosion confers increased aggressiveness to primary tumors, even those with benign features. We also outline how breast and pancreas cancer cells promote osteoclastogenesis to fuel their metastatic process to the bone. Furthermore, we emphasize the role of osteoclasts in reactivating dormant cancer cells within the bone marrow niches for manifestation of overt metastases, even decades after homing of latent disseminated cells. Finally, we point out the importance of counteracting tumor progression and dissemination through pharmacological treatments based on a better understanding of molecular mechanisms underlying osteoclast lytic activity and their recruitment from cancer cells.
Collapse
Affiliation(s)
| | | | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Naples, Italy
| |
Collapse
|
3
|
Ascone G, Cao Y, Jansen ID, Di Ceglie I, van den Bosch MH, Blom AB, van Lent PL, Everts V, de Vries TJ. Increase in the Number of Bone Marrow Osteoclast Precursors at Different Skeletal Sites, Particularly in Long Bone and Jaw Marrow in Mice Lacking IL-1RA. Int J Mol Sci 2020; 21:ijms21113774. [PMID: 32471111 PMCID: PMC7312984 DOI: 10.3390/ijms21113774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, it was shown that interleukin-1β (IL-1β) has diverse stimulatory effects on different murine long bone marrow osteoclast precursors (OCPs) in vitro. In this study, interleukin-1 receptor antagonist deficient (Il1rn-/-) and wild-type (WT) mice were compared to investigate the effects of enhanced IL-1 signaling on the composition of OCPs in long bone, calvaria, vertebra, and jaw. Bone marrow cells were isolated from these sites and the percentage of early blast (CD31hi Ly-6C-), myeloid blast (CD31+ Ly-6C+), and monocyte (CD31- Ly-6Chi) OCPs was assessed by flow cytometry. At the time-point of cell isolation, Il1rn-/- mice showed no inflammation or bone destruction yet as determined by histology and microcomputed tomography. However, Il1rn-/- mice had an approximately two-fold higher percentage of OCPs in long bone and jaw marrow compared to WT. Conversely, vertebrae and calvaria marrow contained a similar composition of OCPs in both strains. Bone marrow cells were cultured with macrophage colony stimulating factor (M-CSF) and receptor of NfκB ligand (RANKL) on bone slices to assess osteoclastogenesis and on calcium phosphate-coated plates to analyze mineral dissolution. Deletion of Il1rn increased osteoclastogenesis from long bone, calvaria, and jaw marrows, and all Il1rn-/- cultures showed increased mineral dissolution compared to WT. However, osteoclast markers increased exclusively in Il1rn-/- osteoclasts from long bone and jaw. Collectively, these findings indicate that a lack of IL-1RA increases the numbers of OCPs in vivo, particularly in long bone and jaw, where rheumatoid arthritis and periodontitis develop. Thus, increased bone loss at these sites may be triggered by a larger pool of OCPs due to the disruption of IL-1 inhibitors.
Collapse
Affiliation(s)
- Giuliana Ascone
- Experimental Rheumatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (G.A.); (I.D.C.); (M.H.J.v.d.B.); (A.B.B.); (P.L.E.M.v.L.)
| | - Yixuan Cao
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Y.C.); (V.E.)
| | - Ineke D.C. Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam Gustav Mahlerlaan 2004, 1081 LA Amsterdam, The Netherlands;
| | - Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (G.A.); (I.D.C.); (M.H.J.v.d.B.); (A.B.B.); (P.L.E.M.v.L.)
| | - Martijn H.J. van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (G.A.); (I.D.C.); (M.H.J.v.d.B.); (A.B.B.); (P.L.E.M.v.L.)
| | - Arjen B. Blom
- Experimental Rheumatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (G.A.); (I.D.C.); (M.H.J.v.d.B.); (A.B.B.); (P.L.E.M.v.L.)
| | - Peter L.E.M. van Lent
- Experimental Rheumatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (G.A.); (I.D.C.); (M.H.J.v.d.B.); (A.B.B.); (P.L.E.M.v.L.)
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Y.C.); (V.E.)
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam Gustav Mahlerlaan 2004, 1081 LA Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
4
|
Wang DD, Luo HY, Guo CB, Meng JH. Clinical and immunohistochemical analysis of diffuse tenosynovial giant cell tumour of the temporomandibular joint. Int J Oral Maxillofac Surg 2020; 49:882-888. [PMID: 32014315 DOI: 10.1016/j.ijom.2019.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/08/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
The objective of this study was to summarize diagnostic points and treatment strategies for diffuse tenosynovial giant cell tumours (D-TSGCTs) of the temporomandibular joint (TMJ), and to evaluate the expression of proteins related to bone destruction and recurrence. The clinical and histopathological characteristics of 24 cases were analysed retrospectively. TRAP staining and immunohistochemical staining for MMP-9, MMP-13, and Ki-67 were performed. The median age of the patients was 45.5 years; the female to male ratio was 1.7:1. In 11 cases (45.8%), skull base destruction seen on computed tomography was confirmed by surgery. Computer-assisted navigation was performed in six cases. Four patients received adjuvant radiotherapy after first surgery. Five patients had recurrent lesions. Multinucleated giant cells were positive for TRAP, MMP-9, and MMP-13. The average Ki-67 index of the recurrent cases was significantly higher than that of the non-recurrent ones (P<0.05). This study demonstrates the aggressive and recurrent nature of D-TSGCT occurring in the TMJ. Computer-assisted navigation is helpful to protect vital structures and determine margins. Adjuvant postoperative radiotherapy is recommended for local control of residual or recurrent tumour. In conclusion, MMP-9 and MMP-13 may play a role in bone destruction of D-TSGCT, and the Ki-67 index has predictive significance for recurrence.
Collapse
Affiliation(s)
- D-D Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - H-Y Luo
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - C-B Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.
| | - J-H Meng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
5
|
Lunde NN, Bosnjak T, Solberg R, Johansen HT. Mammalian legumain – A lysosomal cysteine protease with extracellular functions? Biochimie 2019; 166:77-83. [DOI: 10.1016/j.biochi.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022]
|
6
|
Shreya S, Malavika D, Priya VR, Selvamurugan N. Regulation of Histone Deacetylases by MicroRNAs in Bone. Curr Protein Pept Sci 2019; 20:356-367. [PMID: 30381072 DOI: 10.2174/1389203720666181031143129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Formation of new bone by osteoblasts is mediated via the activation of signaling pathways, such as TGF-β, BMP, and Wnt. A number of transcription factors participate in the signaling cascades that are tightly regulated by other regulatory factors. Histone deacetylases (HDACs) are one such class of regulatory factors that play an essential role in influencing chromatin architecture and regulate the expression of the genes that play a role in osteoblast differentiation by the mechanism of deacetylation. Four classes of HDACs have been identified namely, class I, class II A, class II B, class III and class IV. MicroRNAs (miRNAs) are small fragments of non-coding RNAs typically 19-25 nucleotides long that target mRNAs to upregulate or downregulate gene expression at a post-transcriptional level. A number of miRNAs that target HDACs in bone have been recently reported. Hence, in this review, we elaborate on the various miRNAs that target the different classes of HDACs and impact of the same on osteogenesis.
Collapse
Affiliation(s)
- S Shreya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - D Malavika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - V Raj Priya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
7
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
8
|
Affiliation(s)
- Won-Ju Jeong
- Department of Orthopedic Surgery, Kyungpook National University School of Medicine, Daegu, Korea
| | - Ha-Jeong Kim
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
9
|
Le Goff B, Berthelot JM, Maugars Y, Heymann D. Osteoclasts in RA: diverse origins and functions. Joint Bone Spine 2013; 80:586-91. [PMID: 23731635 DOI: 10.1016/j.jbspin.2013.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 01/01/2023]
Abstract
Osteoclasts were recognized in the late 1990s as the cells responsible for generalized and focal bone loss in rheumatoid arthritis (RA). Concepts about osteoclast biology have changed radically based on recent evidence of considerable diversity in both the origins and the functions of osteoclasts. In addition, the role for osteoclasts is not confined to bone resorption but may also include active contributions to inflammatory and autoimmune responses. Thus, in RA, osteoclast progenitors may arise from both circulating cells and cells developed within the rheumatoid synovium or subchondral bone. Within the inflamed synovium, osteoclasts are activated by factors such as cytokines, immune complexes, or activators of the toll-like receptors, which are not found in healthy bone tissue. Finally, recent data suggest that osteoclasts may be capable of antigen presentation to T cells via major histocompatibility complex class I and class II molecules. Confirmation of this suggestion by future studies would indicate that osteoclasts might be involved not only in bone resorption, but also in autoimmune responses and antigen presentation. These data highlight the considerable complexity of interactions between bone tissue and the immune system. Research into these interactions may identify new targets for treatments against the bone abnormalities associated with chronic inflammatory disease.
Collapse
Affiliation(s)
- Benoit Le Goff
- Service de rhumatologie, Hôtel-Dieu, 1, place Alexis-Ricordeau, 44093 Nantes cedex 1, France; LUNAM université, 44000 Nantes, France; Inserm, UMR957, physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, 44035 Nantes, France; Université de Nantes, Nantes atlantique universités, 44035 Nantes, France.
| | | | | | | |
Collapse
|
10
|
|
11
|
Azari A, Schoenmaker T, de Souza Faloni AP, Everts V, de Vries TJ. Jaw and long bone marrow derived osteoclasts differ in shape and their response to bone and dentin. Biochem Biophys Res Commun 2011; 409:205-10. [DOI: 10.1016/j.bbrc.2011.04.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/23/2011] [Indexed: 01/19/2023]
|
12
|
Gurkan UA, Kishore V, Condon KW, Bellido TM, Akkus O. A scaffold-free multicellular three-dimensional in vitro model of osteogenesis. Calcif Tissue Int 2011; 88:388-401. [PMID: 21318400 PMCID: PMC10132772 DOI: 10.1007/s00223-011-9467-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/21/2011] [Indexed: 01/28/2023]
Abstract
In vitro models of osteogenesis are essential for investigating bone biology and the effects of pharmaceutical, chemical, and physical cues on bone formation. Osteogenesis takes place in a complex three-dimensional (3D) environment with cells from both mesenchymal and hematopoietic origins. Existing in vitro models of osteogenesis include two-dimensional (2D) single type cell monolayers and 3D cultures. However, an in vitro scaffold-free multicellular 3D model of osteogenesis is missing. We hypothesized that the self-inductive ossification capacity of bone marrow tissue can be harnessed in vitro and employed as a scaffold-free multicellular 3D model of osteogenesis. Therefore, rat bone marrow tissue was cultured for 28 days in three settings: 2D monolayer, 3D homogenized pellet, and 3D organotypic explant. The ossification potential of marrow in each condition was quantified by micro-computed tomography. The 3D organotypic marrow explant culture resulted in the greatest level of ossification with plate-like bone formations (up to 5 mm in diameter and 0.24 mm in thickness). To evaluate the mimicry of the organotypic marrow explants to newly forming native bone tissue, detailed compositional and morphological analyses were performed, including characterization of the ossified matrix by histochemistry, immunohistochemistry, Raman microspectroscopy, energy dispersive X-ray spectroscopy, backscattered electron microscopy, and micromechanical tests. The results indicated that the 3D organotypic marrow explant culture model mimics newly forming native bone tissue in terms of the characteristics studied. Therefore, this platform holds significant potential to be used as a model of osteogenesis, offering an alternative to in vitro monolayer cultures and in vivo animal models.
Collapse
Affiliation(s)
- Umut A Gurkan
- Center for Biomedical Engineering at Brigham and Women's Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | | | | | | | | |
Collapse
|
13
|
Henriksen K, Bollerslev J, Everts V, Karsdal MA. Osteoclast activity and subtypes as a function of physiology and pathology--implications for future treatments of osteoporosis. Endocr Rev 2011; 32:31-63. [PMID: 20851921 DOI: 10.1210/er.2010-0006] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoclasts have traditionally been associated exclusively with catabolic functions that are a prerequisite for bone resorption. However, emerging data suggest that osteoclasts also carry out functions that are important for optimal bone formation and bone quality. Moreover, recent findings indicate that osteoclasts have different subtypes depending on their location, genotype, and possibly in response to drug intervention. The aim of the current review is to describe the subtypes of osteoclasts in four different settings: 1) physiological, in relation to turnover of different bone types; 2) pathological, as exemplified by monogenomic disorders; 3) pathological, as identified by different disorders; and 4) in drug-induced situations. The profiles of these subtypes strongly suggest that these osteoclasts belong to a heterogeneous cell population, namely, a diverse macrophage-associated cell type with bone catabolic and anabolic functions that are dependent on both local and systemic parameters. Further insight into these osteoclast subtypes may be important for understanding cell-cell communication in the bone microenvironment, treatment effects, and ultimately bone quality.
Collapse
Affiliation(s)
- K Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | |
Collapse
|
14
|
de Souza Faloni AP, Schoenmaker T, Azari A, Katchburian E, Cerri PS, de Vries TJ, Everts V. Jaw and long bone marrows have a different osteoclastogenic potential. Calcif Tissue Int 2011; 88:63-74. [PMID: 20862464 PMCID: PMC3021190 DOI: 10.1007/s00223-010-9418-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 08/28/2010] [Indexed: 11/29/2022]
Abstract
Osteoclasts, the multinucleated bone-resorbing cells, arise through fusion of precursors from the myeloid lineage. However, not all osteoclasts are alike; osteoclasts at different bone sites appear to differ in numerous respects. We investigated whether bone marrow cells obtained from jaw and long bone differed in their osteoclastogenic potential. Bone marrow cells from murine mandible and tibiae were isolated and cultured for 4 and 6 days on plastic or 6 and 10 days on dentin. Osteoclastogenesis was assessed by counting the number of TRAP(+) multinucleated cells. Bone marrow cell composition was analyzed by FACS. The expression of osteoclast- and osteoclastogenesis-related genes was studied by qPCR. TRAP activity and resorptive activity of osteoclasts were measured by absorbance and morphometric analyses, respectively. At day 4 more osteoclasts were formed in long bone cultures than in jaw cultures. At day 6 the difference in number was no longer observed. The jaw cultures, however, contained more large osteoclasts on plastic and on dentin. Long bone marrow contained more osteoclast precursors, in particular the myeloid blasts, and qPCR revealed that the RANKL:OPG ratio was higher in long bone cultures. TRAP expression was higher for the long bone cultures on dentin. Although jaw osteoclasts were larger than long bone osteoclasts, no differences were found between their resorptive activities. In conclusion, bone marrow cells from different skeletal locations (jaw and long bone) have different dynamics of osteoclastogenesis. We propose that this is primarily due to differences in the cellular composition of the bone site-specific marrow.
Collapse
Affiliation(s)
- Ana Paula de Souza Faloni
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), Rua Botucatu, 740 Vila Clementino, São Paulo, SP 04023-900 Brazil
- Department of Morphology, Dental School, Universidade Estadual Paulista (UNESP), Rua Humaitá 1680, Araraquara, SP 14801-903 Brazil
| | - Ton Schoenmaker
- Department of Oral Cell Biology and Periodontology, Academic Center of Dentistry Amsterdam (ACTA), Research Institute Move, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Azin Azari
- Department of Oral Cell Biology and Periodontology, Academic Center of Dentistry Amsterdam (ACTA), Research Institute Move, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Eduardo Katchburian
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), Rua Botucatu, 740 Vila Clementino, São Paulo, SP 04023-900 Brazil
| | - Paulo S. Cerri
- Department of Morphology, Dental School, Universidade Estadual Paulista (UNESP), Rua Humaitá 1680, Araraquara, SP 14801-903 Brazil
| | - Teun J. de Vries
- Department of Oral Cell Biology and Periodontology, Academic Center of Dentistry Amsterdam (ACTA), Research Institute Move, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Vincent Everts
- Department of Oral Cell Biology and Periodontology, Academic Center of Dentistry Amsterdam (ACTA), Research Institute Move, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
15
|
Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption--implications for osteoclast quality. BMC Musculoskelet Disord 2010; 11:109. [PMID: 20515459 PMCID: PMC2891608 DOI: 10.1186/1471-2474-11-109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 06/01/2010] [Indexed: 01/23/2023] Open
Abstract
Background Normal osteoclasts resorb bone by secretion of acid and proteases. Recent studies of patients with loss of function mutations affecting either of these processes have indicated a divergence in osteoclastic phenotypes. These difference in osteoclast phenotypes may directly or indirectly have secondary effects on bone remodeling, a process which is of importance for the pathogenesis of both osteoporosis and osteoarthritis. We treated human osteoclasts with different inhibitors and characterized their resulting function. Methods Human CD14 + monocytes were differentiated into mature osteoclasts using RANKL and M-CSF. The osteoclasts were cultured on bone in the presence or absence of various inhibitors: Inhibitors of acidification (bafilomycin A1, diphyllin, ethoxyzolamide), inhibitors of proteolysis (E64, GM6001), or a bisphosphonate (ibandronate). Osteoclast numbers and bone resorption were monitored by measurements of TRACP activity, the release of calcium, CTX-I and ICTP, as well as by counting resorption pits. Results All inhibitors of acidification were equally potent with respect to inhibition of both organic and inorganic resorption. In contrast, inhibition of proteolysis by E64 potently reduced organic resorption, but only modestly suppressed inorganic resorption. GM6001 alone did not greatly affect bone resorption. However, when GM6001 and E64 were combined, a complete abrogation of organic bone resorption was observed, without a great effect on inorganic resorption. Ibandronate abrogated both organic and inorganic resorption at all concentrations tested [0.3-100 μM], however, this treatment dramatically reduced TRACP activity. Conclusions We present evidence highlighting important differences with respect to osteoclast function, when comparing the different types of osteoclast inhibitors. Each class of osteoclast inhibitors will lead to different alterations in osteoclast quality, which secondarily may lead to different bone qualities.
Collapse
|
16
|
Zenger S, Ek-Rylander B, Andersson G. Long bone osteoclasts display an augmented osteoclast phenotype compared to calvarial osteoclasts. Biochem Biophys Res Commun 2010; 394:743-9. [PMID: 20230792 DOI: 10.1016/j.bbrc.2010.03.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/10/2010] [Indexed: 11/25/2022]
Abstract
Osteoclasts are multinucleated cells specialized in degrading bone and characterized by high expression of the enzymes tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CtsK). Recent studies show that osteoclasts exhibit phenotypic differences depending on their anatomical site of action. Using immunohistochemistry, RT-qPCR, FPLC chromatography and immunoblotting, we compared TRAP expression in calvaria and long bone. TRAP protein and enzyme activity levels were higher in long bones compared to calvaria. In addition, proteolytic processing of TRAP was more extensive in long bones than calvaria which correlated with higher cysteine proteinase activity and protein expression of CtsK. These two types of bones also exhibited a differential expression of monomeric TRAP and CtsK isoforms. Analysis of CtsK(-/-) mice revealed that CtsK is involved in proteolytic processing of TRAP in calvaria. Moreover, long bone osteoclasts exhibited higher expression of not only TRAP and CtsK but also of the membrane markers CD68 and CD163. The results suggest that long bone osteoclasts display an augmented osteoclastic phenotype with stronger expression of both membranous and secreted osteoclast proteins.
Collapse
Affiliation(s)
- Serhan Zenger
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, F46 Karolinska University Hospital, Huddinge SE-141 86, Sweden.
| | | | | |
Collapse
|
17
|
Gallina S, Barranco-Piedra S, Torres-Lagares D, Baroukh B, Llorens A, Gutiérrez-Pérez JL, Saffar JL, Cherruau M, Lesclous P. Estrogen Withdrawal Transiently Increased Bone Turnover Without Affecting the Bone Balance Along the Tooth Socket in Rats. J Periodontol 2009; 80:2035-44. [DOI: 10.1902/jop.2009.090297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Stanford K, Hao X, Xu S, McAllister TA, Larney F, Leonard JJ. Effects of age of cattle, turning technology and compost environment on disappearance of bone from mortality compost. BIORESOURCE TECHNOLOGY 2009; 100:4417-4422. [PMID: 19423336 DOI: 10.1016/j.biortech.2008.11.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/24/2008] [Accepted: 11/24/2008] [Indexed: 05/27/2023]
Abstract
As residual bones in mortality compost negatively impact subsequent tillage, two studies were performed. For the first study, windrows of mature cattle or calves were placed on a base of barley straw and covered with beef manure. Windrows were divided into two sections and turned at 3-month intervals. Approximately 5000 kg of finished compost per windrow was passed through a 6mm trommel screen, with bones collected and weighed. Bone weight was 0.66% of mature cattle compost and 0.38% of calf compost on a dry matter basis, but did not differ after adjustment for weights of compost ingredients. In a subsequent study, four windrows were constructed containing mortalities, straw and beef manure (STATC) or straw, manure and slaughter waste (STATW). Also, straw, beef manure and slaughter waste was added to an 850 L rolling drum composter (DRUMW). Fresh bovine long-bones from calves were collected, weighed and embedded in the compost. Bones were retrieved and weighed when windrows were turned, or with DRUMW, after 8 weeks. Temperatures achieved followed the order STATW>STATC>DRUMW (p<0.05). Rate of bone disappearance followed a pattern identical to temperature, with the weight of bones in STATW declining by 53.7% during 7 weeks of composting. For STATC, temperatures were uniform over three composting periods, but bone disappearance was improved (p<0.05) when compost dry matter was lower (46%), as compared to 58%. Using a ratio of five parts manure to one part mortalities, results of this study demonstrated that residual bone was <1% of cured cattle compost and may be reduced by maintaining a high compost temperature and moisture content.
Collapse
Affiliation(s)
- K Stanford
- Alberta Agriculture and Rural Development, Agriculture Centre, AB, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Everts V, de Vries TJ, Helfrich MH. Osteoclast heterogeneity:. Biochim Biophys Acta Mol Basis Dis 2009; 1792:757-65. [DOI: 10.1016/j.bbadis.2009.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 01/11/2023]
|
20
|
Morko J, Kiviranta R, Mulari MTK, Ivaska KK, Väänänen HK, Vuorio E, Laitala-Leinonen T. Overexpression of cathepsin K accelerates the resorption cycle and osteoblast differentiation in vitro. Bone 2009; 44:717-28. [PMID: 19118660 DOI: 10.1016/j.bone.2008.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 10/15/2008] [Accepted: 11/19/2008] [Indexed: 11/27/2022]
Abstract
Bone resorption is a multistep process including osteoclast attachment, cytoskeletal reorganization, formation of four distinct plasma membrane domains, and matrix demineralization and degradation followed by cell detachment. The present study describes the intracellular mechanisms by which overexpression of cathepsin K in osteoclasts results in enhanced bone resorption. Osteoclasts and bone marrow-derived osteoclast and osteoblast precursors were isolated from mice homozygous (UTU17(+/+)) and negative for the transgene locus. Cells cultured on bovine cortical bone slices were analyzed by fluorescence and confocal laser scanning microscopy, and bone resorption was studied by measurements of biochemical resorption markers, morphometry, and FESEM. Excessive cathepsin K protein and enzyme activity were microscopically observed in various intracellular vesicles and in the resorption lacunae of cathepsin K-overexpressing osteoclasts. The number of cathepsin K-containing vesicles in UTU17(+/+) osteoclasts was highly increased, and co-localization with markers for the biosynthetic and transcytotic pathways was observed throughout the cytoplasm. As a functional consequence of cathepsin K overexpression, biochemical resorption markers were increased in culture media of UTU17(+/+) osteoclasts. Detailed morphometrical analysis of the erosion in bone slices indicated that the increased biosynthesis of cathepsin K was sufficient to accelerate the osteoclastic bone resorption cycle. Cathepsin K overexpression also enhanced osteogenesis and induced the formation of exceptionally small, actively resorbing osteoclasts from their bone marrow precursors in vitro. The present study describes for the first time how enhancement in one phase of the osteoclastic resorption cycle also stimulates its other phases and further demonstrate that tight control and temporal coupling of mesenchymal and hematopoietic bone cells in this multistep process.
Collapse
Affiliation(s)
- Jukka Morko
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
21
|
van den Bos T, Speijer D, Bank RA, Brömme D, Everts V. Differences in matrix composition between calvaria and long bone in mice suggest differences in biomechanical properties and resorption: Special emphasis on collagen. Bone 2008; 43:459-68. [PMID: 18583211 DOI: 10.1016/j.bone.2008.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/29/2008] [Accepted: 05/08/2008] [Indexed: 01/07/2023]
Abstract
The mammalian skeleton consists of bones that are formed in two different ways: long bones via endochondral ossification and flat bones via intramembranous ossification. These different formation modes may result in differences in the composition of the two bone types. Using the 2D-difference in gel electrophoresis technique and mass spectrometry, we analyzed the composition of murine mineral-associated proteins of calvaria and long bone. Considerable differences in protein composition were observed. Flat bones (calvariae) contained more soluble collagen (8x), pigment epithelium derived factor (3x) and osteoglycin (4x); whereas long bones expressed more chondrocalcin (3x), thrombospondin- 1 (4x), fetuin (4x), secreted phosphoprotein 24 (3x), and thrombin (7x). Although cystatin motifs containing proteins, such as secreted phosphoprotein 24 and fetuin are highly expressed in long bone, they did not inhibit the activity of the cysteine proteinases cathepsin B and K. The solubility of collagen differed which coincided with differences in collagen crosslinking, long bone containing 3x more (hydroxylysine)-pyridinoline. The degradation of long bone collagen by MMP2 (but not by cathepsin K) was impaired. These differences in collagen crosslinking may explain the differences in the proteolytic pathways osteoclasts use to degrade bone. Our data demonstrate considerable differences in protein composition of flat and long bones and strongly suggest functional differences in formation, resorption, and mechanical properties of these bone types.
Collapse
Affiliation(s)
- T van den Bos
- Department of Periodontology, Academic Center for Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Gramoun A, Shorey S, Bashutski JD, Dixon SJ, Sims SM, Heersche JNM, Manolson MF. Effects of Vitaxin, a novel therapeutic in trial for metastatic bone tumors, on osteoclast functions in vitro. J Cell Biochem 2008; 102:341-52. [PMID: 17390341 DOI: 10.1002/jcb.21296] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The integrin alphavbeta3 mediates cell-matrix interactions. Vitaxin(R), a humanized monoclonal antibody that blocks human and rabbit alphavbeta3 integrins, is in clinical trials for metastatic melanoma and prostate cancer. alphavbeta3 is the predominant integrin on osteoclasts, the cells responsible for bone resorption in health and disease. Here, we report the first investigation of Vitaxin's effects on osteoclast activity. Vitaxin (100-300 ng/ml) decreased total resorption by 50%, but did not alter resorptive activity per osteoclast. Vitaxin (300 ng/ml) decreased osteoclast numbers on plastic by 35% after 48 h. Similarly, attachment after 2 h was reduced by 30% when osteoclasts were incubated with Vitaxin (300 ng/ml) for 25 min prior to plating; however, the rate of fusion of osteoclast precursors in Vitaxin-treated and control groups was equal. Using time-lapse microscopy, we evaluated the effect of Vitaxin on osteoclast morphology and found a significant reduction in osteoclast planar area only when cells were pretreated with macrophage colony stimulating factor (M-CSF). Extracellular Ca(2+) and M-CSF have opposite effects on alphavbeta3 conformation. Elevation of extracellular Ca(2+) eliminated the inhibitory effect of Vitaxin on osteoclast attachment. In contrast, the effect of Vitaxin was enhanced in cells pretreated with M-CSF. This action of M-CSF was suppressed by the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor wortmannin, suggesting that M-CSF increases Vitaxin's inhibitory effect by inside-out activation of alphavbeta3. In conclusion, Vitaxin decreases resorption by impairing osteoclast attachment, without affecting osteoclast formation and multinucleation. Our data also show that Vitaxin's inhibitory effects on osteoclasts can be modulated by factors known to alter the conformation of alphavbeta3.
Collapse
Affiliation(s)
- Azza Gramoun
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Zenger S, Hollberg K, Ljusberg J, Norgård M, Ek-Rylander B, Kiviranta R, Andersson G. Proteolytic processing and polarized secretion of tartrate-resistant acid phosphatase is altered in a subpopulation of metaphyseal osteoclasts in cathepsin K-deficient mice. Bone 2007; 41:820-32. [PMID: 17765026 DOI: 10.1016/j.bone.2007.07.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/05/2007] [Accepted: 07/11/2007] [Indexed: 02/04/2023]
Abstract
Tartrate-resistant acid phosphatase (TRAP) is an enzyme highly expressed in osteoclasts and thought to participate in osteoclast-mediated bone turnover. Cathepsin K (Ctsk) is the major collagenolytic cysteine proteinase expressed in osteoclasts and has recently been shown to be able to proteolytically process and activate TRAP in vitro. In this study, 4-week-old Ctsk(-/-) mice were analysed for TRAP expression at the mRNA, protein and enzyme activity levels to delineate a role of cathepsin K in TRAP processing in osteoclasts in vivo. The absence of cathepsin K in osteoclasts was associated with increased expression of TRAP mRNA, monomeric TRAP protein and total TRAP activity. Proteolytic processing of TRAP was not abolished but prematurely arrested at an intermediate stage without changing enzyme activity, a finding confirmed with RANKL-differentiated osteoclast-like cell line RAW264.7 treated with the cysteine proteinase inhibitor E-64. Thus, the increase in total TRAP activity was mainly due to increased cellular content of monomeric TRAP. The increase in monomeric TRAP expression was more pronounced in osteoclasts of the distal compared to the proximal part of the metaphyseal trabecular bone, suggesting a site-dependent role for cathepsin K in TRAP processing. Moreover, intracellular localization of monomeric TRAP was altered in distal metaphyseal osteoclasts from Ctsk(-/-) mice. Additionally, TRAP was secreted into the ruffled border as the processed form in osteoclasts of Ctsk(-/-) mice, unlike in osteoclasts from wild-type mice which secreted TRAP to the resorption lacuna as the monomeric form. The results demonstrate that cathepsin K is not only involved in proteolytic processing but also affects the intracellular trafficking of TRAP, particularly in osteoclasts of the distal metaphysis. However, contribution by other yet unidentified protease(s) to TRAP processing must also be invoked since proteolytic cleavage of TRAP is not abolished in Ctsk(-/-) mice. Importantly, this study highlights functional differences between bone-resorbing clasts within the trabecular metaphyseal bone, suggesting potentially important differences in the regulation of differentiation and activation depending on the precise anatomical localization of the clast population.
Collapse
Affiliation(s)
- Serhan Zenger
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Sørensen MG, Henriksen K, Schaller S, Karsdal MA. Biochemical markers in preclinical models of osteoporosis. Biomarkers 2007; 12:266-86. [PMID: 17453741 DOI: 10.1080/13547500601070842] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although several treatments for osteoporosis exist, further understanding of the mode of action of current treatments, as well as development of novel treatments, are of interest. Thus, preclinical models of osteoporosis are very useful, as they provide the possibility for gaining knowledge about the cellular mechanisms underlying the disease and for studying pharmaceutical prevention or intervention of the disease in simple and strictly controlled systems. In this review, we present a comprehensive collection of studies using biochemical markers of bone turnover for investigation of preclinical models of osteoporosis. These range from pure and simple in vitro systems, such as osteoclast cultures, to ex vivo models, such as cultures of embryonic murine tibiae and, finally, to in vivo models, such as ovariectomy and orchidectomy of rats. We discuss the relevance of the markers in the individual models, and compare their responses to those observed using 'golden standard' methods.
Collapse
Affiliation(s)
- M G Sørensen
- Pharmos Bioscience A/S, Herlev Hovedgade, Herlev, Denmark
| | | | | | | |
Collapse
|
25
|
Lutgens SPM, Cleutjens KBJM, Daemen MJAP, Heeneman S. Cathepsin cysteine proteases in cardiovascular disease. FASEB J 2007; 21:3029-41. [PMID: 17522380 DOI: 10.1096/fj.06-7924com] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Extracellular matrix (ECM) remodeling is one of the underlying mechanisms in cardiovascular diseases. Cathepsin cysteine proteases have a central role in ECM remodeling and have been implicated in the development and progression of cardiovascular diseases. Cathepsins also show differential expression in various stages of atherosclerosis, and in vivo knockout studies revealed that deficiency of cathepsin K or S reduces atherosclerosis. Furthermore, cathepsins are involved in lipid metabolism. Cathepsins have the capability to degrade low-density lipoprotein and reduce cholesterol efflux from macrophages, aggravating foam cell formation. Although expression studies also demonstrated differential expression of cathepsins in cardiovascular diseases like aneurysm formation, neointima formation, and neovascularization, in vivo studies to define the exact role of cathepsins in these processes are lacking. Evaluation of the feasibility of cathepsins as a diagnostic tool revealed that serum levels of cathepsins L and S seem to be promising as biomarkers in the diagnosis of atherosclerosis, whereas cathepsin B shows potential as an imaging tool. Furthermore, cathepsin K and S inhibitors showed effectiveness in (pre) clinical evaluation for the treatment of osteoporosis and osteoarthritis, suggesting that cathepsin inhibitors may also have therapeutic effects for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Suzanne P M Lutgens
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
26
|
Mehta D, Daudia A, Birchall JP, Banerjee AR. The localization of matrix metalloproteinases-8 and -13 in cholesteatoma, deep-meatal and post-auricular skin: a comparative analysis. Acta Otolaryngol 2007; 127:138-42. [PMID: 17364344 DOI: 10.1080/00016480600781807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CONCLUSION The presence of matrix metalloproteinase (MMP)-8 and MMP-13 was found to be significantly higher in cholesteatoma compared with post-auricular skin. The results show that the control group used has implications for further studies. OBJECTIVES To compare the presence of MMP-8 and MMP-13 in cholesteatoma, deep meatal and post-auricular skin. Our null hypothesis was that there was no difference in expressions of MMP-8 and MMP-13 in the three groups. MATERIALS AND METHODS The study was carried out in a secondary care specialist centre and used prospective retrieval of specimens for immunohistological localization of MMP-8 and MMP-13. Eleven patients undergoing cholesteatoma surgery were recruited for the study. Eleven cholesteatoma specimens, 10 deep meatal skin specimens and 10 post-auricular skin specimens were analysed. Specimens were analysed by immunohistochemistry using monoclonal antibodies to MMP-8 and MMP-13. Two observers scored the slides independently in a blind fashion. RESULTS The presence of MMP-8 and MMP-13 was found to be significantly higher in cholesteatoma compared to post-auricular skin (p=0.02, p=0.03, respectively). There were no significant differences in expression of MMP-8 and MMP-13 between cholesteatoma and deep meatal skin (p=0.08, p=0.09, respectively). There were no significant differences in the control groups.
Collapse
Affiliation(s)
- D Mehta
- Departments of ENT, University Hospital, Queen's Medical Centre, Nottingham, UK
| | | | | | | |
Collapse
|
27
|
Perez-Amodio S, Jansen DC, Schoenmaker T, Vogels IMC, Reinheckel T, Hayman AR, Cox TM, Saftig P, Beertsen W, Everts V. Calvarial osteoclasts express a higher level of tartrate-resistant acid phosphatase than long bone osteoclasts and activation does not depend on cathepsin K or L activity. Calcif Tissue Int 2006; 79:245-54. [PMID: 17033726 DOI: 10.1007/s00223-005-0289-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Bone resorption by osteoclasts depends on the activity of various proteolytic enzymes, in particular those belonging to the group of cysteine proteinases. Next to these enzymes, tartrate-resistant acid phosphatase (TRAP) is considered to participate in this process. TRAP is synthesized as an inactive proenzyme, and in vitro studies have shown its activation by cysteine proteinases. In the present study, the possible involvement of the latter enzyme class in the in vivo modulation of TRAP was investigated using mice deficient for cathepsin K and/or L and in bones that express a high (long bone) or low (calvaria) level of cysteine proteinase activity. The results demonstrated, in mice lacking cathepsin K but not in those deficient for cathepsin L, significantly higher levels of TRAP activity in long bone. This higher activity was due to a higher number of osteoclasts. Next, we found considerable differences in TRAP activity between calvarial and long bones. Calvarial bones contained a 25-fold higher level of activity than long bones. This difference was seen in all mice, irrespective of genotype. Osteoclasts isolated from the two types of bone revealed that calvarial osteoclasts expressed higher enzyme activity as well as a higher level of mRNA for the enzyme. Analysis of TRAP-deficient mice revealed higher levels of nondigested bone matrix components in and around calvarial osteoclasts than in long bone osteoclasts. Finally, inhibition of cysteine proteinase activity by specific inhibitors resulted in increased TRAP activity. Our data suggest that neither cathepsin K nor L is essential in activating TRAP. The findings also point to functional differences between osteoclasts from different bone sites in terms of participation of TRAP in degradation of bone matrix. We propose that the higher level of TRAP activity in calvarial osteoclasts compared to that in long bone cells may partially compensate for the lower cysteine proteinase activity found in calvarial osteoclasts and TRAP may contribute to the degradation of noncollagenous proteins during the digestion of this type of bone.
Collapse
Affiliation(s)
- S Perez-Amodio
- Experimental Periodontology, Academic Center for Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Louwesweg 1, 1066 EA Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Everts V, Korper W, Hoeben KA, Jansen IDC, Bromme D, Cleutjens KBJM, Heeneman S, Peters C, Reinheckel T, Saftig P, Beertsen W. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res 2006; 21:1399-408. [PMID: 16939398 DOI: 10.1359/jbmr.060614] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Osteoclastic bone degradation involves the activity of cathepsin K. We found that in addition to this enzyme other, yet unknown, cysteine proteinases participate in digestion. The results support the notion that osteoclasts from different bone sites use different enzymes to degrade the collagenous bone matrix. INTRODUCTION The osteoclast resorbs bone by lowering the pH in the resorption lacuna, which is followed by secretion of proteolytic enzymes. One of the enzymes taken to be essential in resorption is the cysteine proteinase, cathepsin K. Some immunolabeling and enzyme inhibitor data, however, suggest that other cysteine proteinases and/or proteolytic enzymes belonging to the group of matrix metalloproteinases (MMPs) may participate in the degradation. In this study, we investigated whether, in addition to cathepsin K, other enzymes participate in osteoclastic bone degradation. MATERIALS AND METHODS In bones obtained from mice deficient for cathepsin K, B, or L or a combination of K and L, the bone-resorbing activity of osteoclasts was analyzed at the electron microscopic level. In addition, bone explants were cultured in the presence of different selective cysteine proteinase inhibitors and an MMP inhibitor, and the effect on resorption was assessed. Because previous studies showed differences in resorption by calvarial osteoclasts compared with those present in long bones, in all experiments, the two types of bone were compared. Finally, bone extracts were analyzed for the level of activity of cysteine proteinases and the effect of inhibitors hereupon. RESULTS The analyses of the cathepsin-deficient bone explants showed that, in addition to cathepsin K, calvarial osteoclasts use other cysteine proteinases to degrade bone matrix. It was also shown that, in the absence of cathepsin K, long bone osteoclasts use MMPs for resorption. Cathepsin L proved to be involved in the MMP-mediated resorption of bone by calvarial osteoclasts; in the absence of this cathepsin, calvarial osteoclasts do not use MMPs for resorption. Selective inhibitors of cathepsin K and other cysteine proteinases showed a stronger effect on calvarial resorption than on long bone resorption. CONCLUSIONS Our findings suggest that (1) cathepsin K-deficient long bone osteoclasts compensate the lack of this enzyme by using MMPs in the resorption of bone matrix; (2) cathepsin L is involved in MMP-mediated resorption by calvarial osteoclasts; (3) in addition to cathepsin K, other, yet unknown, cysteine proteinases are likely to participate in skull bone degradation; and finally, (4) the data provide strong additional support for the existence of functionally different bone-site specific osteoclasts.
Collapse
Affiliation(s)
- Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Laitala-Leinonen T, Rinne R, Saukko P, Väänänen HK, Rinne A. Cystatin B as an intracellular modulator of bone resorption. Matrix Biol 2006; 25:149-57. [PMID: 16321512 DOI: 10.1016/j.matbio.2005.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
Degradation of organic bone matrix requires proteinase activity. Cathepsin K is a major osteoclast proteinase needed for bone resorption, although osteoclasts also express a variety of other cysteine- and matrix metalloproteinases that are involved in bone remodellation. Cystatin B, an intracellular cysteine proteinase inhibitor, exhibits a lysosomal distribution preferentially in osteoclasts but it's role in osteoclast physiology has remained unknown. The current paper describes a novel regulatory function for cystatin B in bone-resorbing osteoclasts in vitro. Rat osteoclasts were cultured on bovine bone and spleen-derived cystatin B was added to the cultures. Nuclear morphology was evaluated and the number of actively resorbing osteoclasts and resorption pits was counted. Intracellular cathepsin K and tartrate-resistant acid phosphatase (TRACP) activities were monitored using fluorescent enzyme substrates and immunohistology was used to evaluate distribution of cystatin B in rat metaphyseal bone. Microscopical evaluation showed that cystatin B inactivated osteoclasts, thus resulting in impaired bone resorption. Cathepsin K and TRACP positive vesicles disappeared dose-dependently from the cystatin B-treated osteoclasts, indicating a decreased intracellular trafficking of bone degradation products. At the same time, cystatin B protected osteoclasts from experimentally induced apoptosis. These data show for the first time that, in addition to regulating cysteine proteinase activity and promoting cell survival in the nervous system, cystatin B inhibits bone resorption by down-regulating intracellular cathepsin K activity despite increased osteoclast survival.
Collapse
Affiliation(s)
- Tiina Laitala-Leinonen
- Bone Biology Research Consortium, Department of Anatomy, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
30
|
Henriksen K, Sørensen MG, Nielsen RH, Gram J, Schaller S, Dziegiel MH, Everts V, Bollerslev J, Karsdal MA. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. J Bone Miner Res 2006; 21:58-66. [PMID: 16355274 DOI: 10.1359/jbmr.050905] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 07/18/2005] [Accepted: 08/31/2005] [Indexed: 02/07/2023]
Abstract
UNLABELLED Osteoclasts degrade bone matrix by secretion of hydrochloric acid and proteases. We studied the processes involved in the degradation of the organic matrix of bone in detail and found that lysosomal acidification is involved in this process and that MMPs are capable of degrading the organic matrix in the absence of cathepsin K. INTRODUCTION Osteoclasts resorb bone by secretion of acid by the vacuolar H+-adenosine triphosphatase (V-ATPase) and the chloride channel ClC-7, followed by degradation of the matrix, mainly collagen type I, by cathepsin K and possibly by matrix metalloproteinases (MMPs). However, the switch from acidification to proteolysis and the exact roles of both the ion transporters and the proteinases still remain to be studied. MATERIALS AND METHODS We isolated CD14+ monocytes from human peripheral blood from either controls or patients with autosomal dominant osteopetrosis type II (ADOII) caused by defective ClC-7 function and cultured them in the presence of RANKL and macrophage-colony stimulating factor (M-CSF) to generate osteoclasts. We decalcified cortical bovine bone slices and studied the osteoclasts with respect to morphology, markers, and degradation of the decalcified matrix in the presence of various inhibitors of osteoclast acidification and proteolysis, using normal calcified bone as a reference. RESULTS We found that ADOII osteoclasts not only have reduced resorption of the calcified matrix, but also 40% reduced degradation of the organic phase of bone. We found that both acidification inhibitors and cathepsin K inhibitors reduced degradation of the organic matrix by 40% in normal osteoclasts, but had no effect in the ADOII osteoclasts. Furthermore, we showed that inhibition of MMPs leads to a 70% reduction in the degradation of the organic bone matrix and that MMPs and cathepsin K have additive effects. Finally, we show that osteoclastic MMPs mediate release of the carboxyterminal telopeptide of type I collagen (ICTP) fragment in the absence of cathepsin K activity, and therefore, to some extent, are able to compensate for the loss of cathepsin K activity. CONCLUSIONS These data clearly show that osteoclastic acidification of the lysosomes plays a hitherto nonrecognized role in degradation of the organic matrix. Furthermore, these data shed light on the complicated interplay between acidification dependent and independent proteolytic processes, mediated by cathepsin K and the MMPs, respectively.
Collapse
Affiliation(s)
- Kim Henriksen
- Pharmos Bioscience, Nordic Bioscience and Center for Clinical and Basic Research A/S, Herlev, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|