1
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
2
|
Saulacic N, Katagiri H, Fujioka-Kobayashi M, Ferrari SL, Gerbaix MC. Alternated activation with relaxation of periosteum stimulates bone modeling and remodeling. Sci Rep 2024; 14:11136. [PMID: 38750119 PMCID: PMC11096315 DOI: 10.1038/s41598-024-61902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Gradual elevation of the periosteum from the original bone surface, based on the principle of distraction osteogenesis, induces endogenous hard and soft tissue formation. This study aimed to assess the impact of alternating protocols of activation with relaxation (periosteal pumping) on bone modeling and remodeling. One hundred and sixty-two adult male Wistar rats were used in this study. Four test groups with different pumping protocols were created based on the relaxation applied. Two control groups underwent an activation period without relaxation or only a single activation. One group was sham-operated. Periosteal pumping without period of activation induced gene expression in bone and bone remodeling, and following activation period enhanced bone modeling. Four test groups and control group with activation period equaled the values of bone modeling at the end-consolidation period, showing significant downregulation of Sost in the bone and periosteum compared to that in the sham group (p < 0.001 and p < 0.001, respectively). When all test groups were pooled together, plate elevation from the bony surface increased bone remodeling on day 45 of the observation period (p = 0.003). Furthermore, bone modeling was significantly affected by plate elevation on days 17 and 45 (p = 0.047 and p = 0.005, respectively) and by pumping protocol on day 31 (p = 0.042). Periosteal pumping was beneficial for increasing bone repair when the periosteum remained in contact with the underlaying bony surface during the manipulation period. Following periosteal elevation, periosteal pumping accelerated bone formation from the bony surface by the modeling process.
Collapse
Affiliation(s)
- Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Bern, Bern, Switzerland.
| | - Hiroki Katagiri
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Bern, Bern, Switzerland
- Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, University of Bern, Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Serge L Ferrari
- Service of Bone Diseases, Department Medicine, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Maude C Gerbaix
- Service of Bone Diseases, Department Medicine, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
3
|
Wang N, Wang H, Shen L, Liu X, Ma Y, Wang C. Aging-Related Rotator Cuff Tears: Molecular Mechanisms and Implications for Clinical Management. Adv Biol (Weinh) 2024; 8:e2300331. [PMID: 38295015 DOI: 10.1002/adbi.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Indexed: 02/02/2024]
Abstract
Shoulder pain and disabilities are prevalent issues among the elderly population, with rotator cuff tear (RCT) being one of the leading causes. Although surgical treatment has shown some success, high postoperative retear rates remain a great challenge, particularly in elderly patients. Aging-related degeneration of muscle, tendon, tendon-to-bone enthesis, and bone plays a critical role in the development and prognosis of RCT. Studies have demonstrated that aging worsens muscle atrophy and fatty infiltration, alters tendon structure and biomechanical properties, exacerbates enthesis degeneration, and reduces bone density. Although recent researches have contributed to understanding the pathophysiological mechanisms of aging-related RCT, a comprehensive systematic review of this topic is still lacking. Therefore, this article aims to present a review of the pathophysiological changes and their clinical significance, as well as the molecular mechanisms underlying aging-related RCT, with the goal of shedding light on new therapeutic approaches to reduce the occurrence of aging-related RCT and improve postoperative prognosis in elderly patients.
Collapse
Affiliation(s)
- Ni Wang
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haoyuan Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Longxiang Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xudong Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yanhong Ma
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chongyang Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
4
|
Sims NA. Cellular Basis for Sequencing of Antiresorptive and Anabolic Therapies for Bone: Commentary on "Bone Remodeling and Modeling: Cellular Targets for Antiresorptive and Anabolic Treatments, Including Approaches Through the Parathyroid Hormone (PTH)/PTH-Related Protein Pathway". Neurospine 2023; 20:1110-1111. [PMID: 38171280 PMCID: PMC10762422 DOI: 10.14245/ns.2347242.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Affiliation(s)
- Natalie A. Sims
- St. Vincent’s Institute of Medical Research, Fitzroy, Australia
- Department of Medicine at St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Australia
| |
Collapse
|
5
|
Martin TJ, Seeman E. Bone Remodeling and Modeling: Cellular Targets for Antiresorptive and Anabolic Treatments, Including Approaches Through the Parathyroid Hormone (PTH)/PTH-Related Protein Pathway. Neurospine 2023; 20:1097-1109. [PMID: 38171279 PMCID: PMC10762382 DOI: 10.14245/ns.2346966.483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bone is continuously in a state of building and renewal, though the process of remodeling that takes place at many sites asynchronously throughout the skeleton, with bone formation and resorption equal at these sites (bone multicellular units). Remodeling takes place on bone surfaces, both on trabeculae and in the cortex, and serves the purposes of replacing old bone or that damaged by microfractures throughout the skeleton. The bone loss and consequent osteoporotic fractures that result from excess resorption over formation have mainly been prevented or treated by antiresorptive drugs that inhibit osteoclast formation and/or activity. Virtually all of the evidence leading to acceptance of antiresorptive drugs as treatment has depended upon their prevention of vertebral fractures. In recent decades, new prospects came of anabolic treatments that partly restore bone volume and microstructure restore bone that has been lost. The first of these was parathyroid hormone (PTH), shown by daily injection to increase markers of bone formation and prevent fractures. This field of interest enlarged with the discovery of PTH-related protein (PTHrP), so closely related in structure and action to PTH. The structural relationship between PTH and PTHrP is important in assessing their physiological and pharmacological roles, with the N-terminal domains of the 2 having virtually equal actions on target cells. Abaloparatide, a peptide analogue based on the structures of PTHrP and PTH, has been approved in some countries as a therapy for osteoporosis. Treatment through the PTH receptor activation pathway, and probably with any anabolic therapy, needs to be followed by antiresorptive treatment in order to maintain bone that has been restored. No matter how effective anabolic therapies for the skeleton become, it seems highly likely that there will be a continuing need for antiresorptive drugs.
Collapse
Affiliation(s)
- Thomas John Martin
- Department of Medicine and St. Vincent’s Institute of Medical Research, University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Department of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
6
|
Rayad S, Dobrzyński M, Kuźniarski A, Styczyńska M, Diakowska D, Gedrange T, Klimas S, Gębarowski T, Dominiak M. Mercury Content in Impacted Wisdom Teeth from Patients of the Legnica-Głogów Copper Area-An In Vitro Pilot Study. J Xenobiot 2023; 13:463-478. [PMID: 37754841 PMCID: PMC10532917 DOI: 10.3390/jox13030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of this study was to determine the content of mercury in impacted third molars from Legnica-Głogów Copper Area residents to emphasize the effects of environmental pollution on the human body. A group of 72 patients with an average age of 27.3 ± 6.9 years participated in the study. Within this study, the research group (Legnica-Głogów Copper Area residents) comprised 51 individuals, while the control group (residents of Wrocław) consisted of 21 participants. A higher number of female individuals participated in the research (55). The amount of mercury present in the samples was determined through atomic absorption spectrometry with the use of a SpectraAA atomic absorption spectrometer and a V2 AA240FS flame attachment that utilized an air-acetylene flame. The accumulation of Hg in the teeth of members of the control group residing in Wrocław was studied, with a focus on identifying the risk factors that contribute to this phenomenon. The final model analyzed the presence of various factors, including thyroid and parathyroid gland diseases, cardiac diseases, and interval-scale Vit. D3 concentration. Among these factors, the presence of cardiac diseases was deemed statistically significant in relation to an increase in Hg concentration in third molars (rate ratio = 2.27, p < 0.0001). The concentration of mercury increased with the age and time of residence in the L-G Copper District.
Collapse
Affiliation(s)
- Sadri Rayad
- Academic Dental Polyclinic of Dental Center, Technology Transfer Ltd., Krakowska 26, 50-425 Wroclaw, Poland
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Amadeusz Kuźniarski
- Department of Prosthetic Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Marzena Styczyńska
- Department of Human Nutrition, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland;
| | - Dorota Diakowska
- Department of Basic Sciences, Wroclaw Medical University, Chalubinskiego 3, 50-368 Wroclaw, Poland;
| | - Tomasz Gedrange
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (T.G.); (M.D.)
| | - Sylwia Klimas
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland;
| | - Marzena Dominiak
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (T.G.); (M.D.)
| |
Collapse
|
7
|
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2197. [PMID: 36767564 PMCID: PMC9915283 DOI: 10.3390/ijerph20032197] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the current understanding on the effects of five metals on bone tissue, namely iron, zinc, copper, cadmium, and mercury. Iron, zinc, and copper contribute significantly to human and animal metabolism when present in sufficient amounts, but their excess or shortage increases the risk of developing bone disorders. In contrast, cadmium and mercury serve no physiological purpose and their long-term accumulation damages the osteoarticular system. We discuss the methods of action and interactions between the discussed elements as well as the concentrations of each element in distinct bone structures.
Collapse
Affiliation(s)
- Żaneta Ciosek
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Iwona Rotter
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
8
|
Guelman R, Sánchez A, Varsavsky M, Brun LR, García ML, Sarli M, Paula R, Farias V, Zanchetta MB, Giacoia E, Salerni H, Maffei L, Premrou V, Oliveri B, Brance ML, Pavlove M, Karlsbrum S, Larroudé MS, Costanzo PR. Effect of Teriparatide on Bone Mineral Density and Bone Markers in Real-Life: Argentine Experience. Int J Endocrinol 2023; 2023:9355672. [PMID: 36686321 PMCID: PMC9859697 DOI: 10.1155/2023/9355672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/23/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To evaluate the effect of teriparatide (TPTD) on bone mineral density (BMD) and bone markers under clinical practice conditions. To assess whether the results in real-life match those published in clinical trials. METHODS Cross-sectional study of postmenopausal women treated with TPTD for at least 12 months. RESULTS 264 patients were included in the study. Main characteristics are as follows: age: 68.7 ± 10.2 years, previous fractures: 57.6%, and previously treated with antiresorptive (AR-prior): 79%. All bone turnover markers studied significantly increased after 6 months. CTX and BGP remained high up to 24 months, but total and bone alkaline phosphatase returned to basal values at month 18. There was a significant increase in lumbar spine (LS) BMD after 6 months (+6.2%), with a maximum peak at 24 months (+13%). Femoral neck (FN) and total hip (TH) BMD showed a significant increase later than LS (just at month 12), reaching a maximum peak at month 24 (FN + 7.9% and TH + 5.5%). A significant increase in LS BMD was found from month 6 to month 24 compared to basal in both AR-naïve, and AR-prior patients (+16.7% and +10.5%, respectively), without significant differences between the two groups. Comparable results were found in FN and TH BMD. Main conclusions. As reported in real-life clinical studies, treatment of osteoporotic postmenopausal women with TPTD induced a significant increase in bone turnover markers from month 6 onward and an increase in BMD from months 6-12 with continuous gain up to month 24. The real-life results of our study matched the results of randomized clinical trials. In addition, TPTD induced an increase in BMD, regardless of the previous use of AR.
Collapse
Affiliation(s)
- Rodolfo Guelman
- Servicio de Endocrinología y Medicina Nuclear, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Mariela Varsavsky
- Servicio de Endocrinología y Medicina Nuclear, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Lucas R. Brun
- CONICET, Rosario, Argentina
- Laboratorio de Biología Ósea, Fac Cs Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Marcelo Sarli
- Instituto de Investigaciones Metabólicas, Universidad del Salvador, Buenos Aires, Argentina
| | - Rey Paula
- Instituto de Investigaciones Metabólicas, Universidad del Salvador, Buenos Aires, Argentina
| | - Vanina Farias
- Instituto de Investigaciones Metabólicas, Universidad del Salvador, Buenos Aires, Argentina
| | - María Belén Zanchetta
- Instituto de Investigaciones Metabólicas, Universidad del Salvador, Buenos Aires, Argentina
| | - Evangelina Giacoia
- Servicio de Endocrinología y Metabolismo, Hospital Posadas, Buenos Aires, Argentina
| | - Helena Salerni
- Consultorios de Investigación Clínica Endocrinológica y del Metabolismo Óseo (CICEMO), Buenos Aires, Argentina
| | - Laura Maffei
- Consultorios Asociados de Endocrinología Dra. Laura Maffei, Buenos Aires, Argentina
| | - Valeria Premrou
- Consultorios Asociados de Endocrinología Dra. Laura Maffei, Buenos Aires, Argentina
| | | | - María Lorena Brance
- CONICET, Rosario, Argentina
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | | | | | | | - Pablo René Costanzo
- Servicio de Endocrinología y Medicina Nuclear, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Hong AR, Yang JY, Lee JY, Suh J, Lee YS, Kim JE, Kim SW. Reactivation of Bone Lining Cells are Attenuated Over Repeated Anti-sclerostin Antibody Administration. Calcif Tissue Int 2022; 111:495-505. [PMID: 35925416 DOI: 10.1007/s00223-022-01013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Reactivation of bone lining cells (BLCs) is a crucial mechanism governing the anabolic action of anti-sclerostin antibody (Scl-Ab) via modeling-based bone formation; however, it remains unclear whether this reactivation can be attenuated after persistent administration of Scl-Ab. Here, we aimed to investigate the reproducibility of persistent Scl-Ab administration for the reactivation of BLCs, and to elucidate the relationship between the activity of BLCs and serum levels of N-terminal procollagen type I (P1NP) during chronic Scl-Ab administration. We conducted an osteoblast lineage tracing study. Briefly, Dmp1-CreERt2(+):Rosa26R mice were injected with 1 mg of 4-hydroxy-tamoxifen weekly from postnatal weeks four to eight. Mice were treated twice with either vehicle or Scl-Ab (25 mg/kg) at weeks 12, 16, and 20, and were euthanized at weeks 8, 12, 13, 16, 17, 20, and 21 (4-6 mice in each group). After euthanization, the number and thickness of X-gal (+) cells on the periosteum of the femoral bones and the serum levels of P1NP were quantified at each time point. Scl-Ab induced a significant increase in the thickness of X-gal (+) cells on periosteal bone surfaces at postnatal weeks 13 (after 1st dose), 17 (after 2nd dose), and 21 (after 3rd dose) compared to that in vehicle-treated mice (all P < 0.001). In the Scl-Ab group, significant increases in the thickness of labeled cells were observed between weeks 16 and 17 and weeks 20 and 21 (both P < 0.001). The percentage increase in X-gal (+) cell thickness was 108.9% from week 12 to week 13, 54.6% from week 16 to week 17, and 49.2% from week 20 to week 21 in the Scl-Ab group. Although Scl-Ab treatment increased the serum levels of P1NP at postnatal weeks 13 and 17 compared with those at week 12 (P = 0.017 and P = 0.038, respectively), the same was not observed at week 21 (P = 0.296). A significant increase in P1NP levels was observed between weeks 16 and 17 and weeks 20 and 21 in the Scl-Ab group (P = 0.005 and P = 0.007, respectively). The percentage increase in P1NP levels was 141.7% from weeks 12 to 13, 114.8% from weeks 16 to 17, and 99.4% from weeks 20 to 21. Serum P1NP levels were positively correlated with X-gal (+) cell thickness (R2 = 0.732, P < 0.001). Reactivation of BLCs is modestly attenuated, but reproducible, during persistent Scl-Ab administration. Serum P1NP levels appear to be an indicator of the impact of Scl-Ab on the conversion of BLCs into mature osteoblasts on periosteal bone surfaces, thus contributing to modeling-based bone formation.
Collapse
Affiliation(s)
- A Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jae-Yeon Yang
- Department of Research and Experiment, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Ji Yeon Lee
- Department of Research and Experiment, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Boramae Medical Center, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061, South Korea.
| |
Collapse
|
10
|
Han J, Rhee SM, Kim YW, Park SH, Oh JH. Three-dimensionally printed recombinant human parathyroid hormone-soaked nanofiber sheet accelerates tendon-to-bone healing in a rabbit model of chronic rotator cuff tear. J Shoulder Elbow Surg 2022; 31:1628-1639. [PMID: 35337954 DOI: 10.1016/j.jse.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recombinant human parathyroid hormone (rhPTH) promotes tendon-to-bone healing in humans and animals with rotator cuff tear (RCT). However, problems regarding repeated systemic rhPTH injections in humans exist. This study was conducted to evaluate the effect of topical rhPTH administration using 3-dimensionally (3D) printed nanofiber sheets on tendon-to-bone healing in a rabbit RCT model compared to that of direct topical rhPTH administration. METHODS Eighty rabbits were randomly assigned to 5 groups (n = 16 each). To create the chronic RCT model, we induced complete supraspinatus tendon tears in both shoulders and left them untreated for 6 weeks. All transected tendons were repaired in a transosseous manner with saline injection in group A, hyaluronic acid (HA) injection in group B, 3D-printed nanofiber sheet fixation in group C, rhPTH and HA injection in group D, and 3D-printed rhPTH- and HA-soaked nanofiber sheet fixation in group E. Genetic (messenger RNA expression evaluation) and histologic evaluations (hematoxylin and eosin and Masson trichrome staining) were performed in half of the rabbits at 4 weeks postrepair. Genetic, histologic, and biomechanical evaluations (mode of tear and load to failure) were performed in the remaining rabbits at 12 weeks. RESULTS For genetic evaluation, group E showed a higher collagen type I alpha 1 expression level than did the other groups (P = .008) at 4 weeks. However, its expression level was downregulated, and there was no difference at 12 weeks. For histologic evaluation, group E showed greater collagen fiber continuity, denser collagen fibers, and more mature tendon-to-bone junction than did the other groups (P = .001, P = .001, and P = .003, respectively) at 12 weeks. For biomechanical evaluation, group E showed a higher load-to-failure rate than did the other groups (P < .001) at 12 weeks. CONCLUSION Three-dimensionally printed rhPTH-soaked nanofiber sheet fixation can promote tendon-to-bone healing of chronic RCT.
Collapse
Affiliation(s)
- Jian Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Republic of Korea
| | - Sung Min Rhee
- Department of Orthopaedic Surgery, KyungHee University Medical Center, Seoul, Republic of Korea
| | - Young Won Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Suk Hee Park
- School of Mechanical Engineering, Pusan National University, Republic of Korea.
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Republic of Korea.
| |
Collapse
|
11
|
Chavassieux P, Chapurlat R. Interest of Bone Histomorphometry in Bone Pathophysiology Investigation: Foundation, Present, and Future. Front Endocrinol (Lausanne) 2022; 13:907914. [PMID: 35966102 PMCID: PMC9368205 DOI: 10.3389/fendo.2022.907914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the development of non-invasive methods, bone histomorphometry remains the only method to analyze bone at the tissue and cell levels. Quantitative analysis of transiliac bone sections requires strict methodologic conditions but since its foundation more 60 years ago, this methodology has progressed. Our purpose was to review the evolution of bone histomorphometry over the years and its contribution to the knowledge of bone tissue metabolism under normal and pathological conditions and the understanding of the action mechanisms of therapeutic drugs in humans. The two main applications of bone histomorphometry are the diagnosis of bone diseases and research. It is warranted for the diagnosis of mineralization defects as in osteomalacia, of other causes of osteoporosis as bone mastocytosis, or the classification of renal osteodystrophy. Bone biopsies are required in clinical trials to evaluate the safety and mechanism of action of new therapeutic agents and were applied to anti-osteoporotic agents such as bisphosphonates and denosumab, an anti-RANKL, which induces a marked reduction of the bone turnover with a consequent elongation of the mineralization period. In contrast, an increased bone turnover with an extension of the formation site is observed with teriparatide. Romosozumab, an anti-sclerostin, has a dual effect with an early increased formation and reduced resorption. Bone histomorphometric studies allow us to understand the mechanism of coupling between formation and resorption and to evaluate the respective role of bone modeling and remodeling. The adaptation of new image analysis techniques will help bone biopsy analysis in the future.
Collapse
|
12
|
Kir MC, Onal MO, Uluer ET, Ulman C, Inan S. Continuous and intermittent parathyroid hormone administration promotes osteogenic differentiation and activity of programmable cells of monocytic origin. Biotech Histochem 2022; 97:593-603. [PMID: 35473476 DOI: 10.1080/10520295.2022.2049876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Bone healing deficiencies are challenging for orthopedic practice. The use of stem cells with scaffolds to treat bone tissue losses currently is popular for promoting regeneration of tissue. Programmable cells of monocytic origin (PCMO) may differentiate into three germ layers and may be a promising alternative treatment due to their stem cell-like properties. Parathyroid hormone (PTH) participates in bone metabolism. Intermittent administration of PTH promotes osteogenic activity of mesenchymal stem cdells (MSC). We investigated the osteogenic effects of continuous and intermittent administration of PTH on PCMO. Mononuclear cells were harvested from the peripheral blood of healthy donors. Isolated cells were cultured for six days in a de-differentiation medium. Indirect immunocytochemistry using anti-CD14, anti-CD45 and anti-CD90 primary antibodies, as well as electron microscopy were used to detect PCMO. PCMO then were cultured in an osteogenic differentiation medium supplemented with continuous or intermittent 50 ng/ml PTH. The PTH-free control group (CG), intermittent PTH treated group (IPG) and continuous PTH treated group (CPG) were cultured and assessed for their differentiation into osteogenic lineage cells by indirect immunocytochemistry using anti-collagen I, anti-osteonectin and anti-osteocalcin primary antibodies. Osteoblast-like cells obtained by continuous or intermittent PTH administration exhibited increased levels of collagen I, osteonectin and osteocalcin immunoreactivity. We found that continuous and intermittent PTH administration to PCMO enhanced their differentiation to osteogenic lineage cells and increased osteoblastic activity.
Collapse
Affiliation(s)
- M C Kir
- Department of Orthopedics and Traumatology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - M O Onal
- Department of Histology & Embryology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - E T Uluer
- Department of Histology & Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - C Ulman
- Department of Biochemistry, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - S Inan
- Department of Histology & Embryology, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
13
|
Tseng WJ, Lee W, Zhao H, Liu Y, Wang W, de Bakker CM, Li Y, Osuna C, Tong W, Wang L, Ma X, Qin L, Liu XS. Short Cyclic Regimen With Parathyroid Hormone (PTH) Results in Prolonged Anabolic Effect Relative to Continuous Treatment Followed by Discontinuation in Ovariectomized Rats. J Bone Miner Res 2022; 37:616-628. [PMID: 34957605 PMCID: PMC9284987 DOI: 10.1002/jbmr.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/06/2022]
Abstract
Despite the potent effect of intermittent parathyroid hormone (PTH) treatment on promoting new bone formation, bone mineral density (BMD) rapidly decreases upon discontinuation of PTH administration. To uncover the mechanisms behind this adverse phenomenon, we investigated the immediate responses in bone microstructure and bone cell activities to PTH treatment withdrawal and the associated long-term consequences. Unexpectedly, intact female and estrogen-deficient female rats had distinct responses to the discontinuation of PTH treatment. Significant tibial bone loss and bone microarchitecture deterioration occurred in estrogen-deficient rats, with the treatment benefits of PTH completely lost 9 weeks after discontinuation. In contrast, no adverse effect was observed in intact rats, with sustained treatment benefit 9 weeks after discontinuation. Intriguingly, there is an extended anabolic period during the first week of treatment withdrawal in estrogen-deficient rats, during which no significant change occurred in the number of osteoclasts, whereas the number of osteoblasts remained elevated compared with vehicle-treated rats. However, increases in number of osteoclasts and decreases in number of osteoblasts occurred 2 weeks after discontinuation of PTH treatment, leading to significant reduction in bone mass and bone microarchitecture. To leverage the extended anabolic period upon early withdrawal from PTH, a cyclic administration regimen with repeated cycles of on and off PTH treatment was explored. We demonstrated that the cyclic treatment regimen efficiently alleviated the PTH withdrawal-induced bone loss, improved bone mass, bone microarchitecture, and whole-bone mechanical properties, and extended the treatment duration. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wonsae Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chantal Mj de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos Osuna
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Tong
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luqiang Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyuan Ma
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, Shandong University Qilu Hospital, Shandong University, Jinan, China
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Appelman-Dijkstra NM, Oei HLDW, Vlug AG, Winter EM. The effect of osteoporosis treatment on bone mass. Best Pract Res Clin Endocrinol Metab 2022; 36:101623. [PMID: 35219602 DOI: 10.1016/j.beem.2022.101623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the last two decades there have been significant developments in the pharmacotherapy of osteoporosis. The therapeutic arsenal has expanded with monoclonal antibodies which have been developed based on discoveries of the molecular mechanisms underlying bone resorption and bone formation. Denosumab, the antibody binding RANKL, inhibits bone resorption, and romosozumab, the antibody binding sclerostin, inhibits bone resorption and stimulates bone formation as well. Both antibodies have shown potent anti-fracture efficacy in randomized clinical trials and this review will discuss the preclinical and clinical studies focusing on the effects on bone mass. After discontinuation of these antibodies, bone mineral density quickly returns to baseline and in the case of denosumab, discontinuation can not only induce rebound bone loss, but also the occurrence of vertebral fractures. Therefore, sequential antiresorptive therapy to maintain bone mass gains and anti-fracture efficacy is of utmost importance and will also be discussed in this review.
Collapse
Affiliation(s)
- Natasha M Appelman-Dijkstra
- Department of Internal Medicine; Division Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands.
| | - H Ling D W Oei
- Department of Internal Medicine; Division Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Internal Medicine, Jan van Goyen Medical Center, Amsterdam, the Netherlands.
| | - Annegreet G Vlug
- Department of Internal Medicine; Division Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands; Department of Internal Medicine, Jan van Goyen Medical Center, Amsterdam, the Netherlands.
| | - Elizabeth M Winter
- Department of Internal Medicine; Division Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
15
|
Poole KES, Treece GM, Pearson RA, Gee AH, Bolognese MA, Brown JP, Goemaere S, Grauer A, Hanley DA, Mautalen C, Recknor C, Yang Y, Rojeski M, Libanati C, Whitmarsh T. Romosozumab Enhances Vertebral Bone Structure in Women With Low Bone Density. J Bone Miner Res 2022; 37:256-264. [PMID: 34738660 PMCID: PMC9299688 DOI: 10.1002/jbmr.4465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Romosozumab monoclonal antibody treatment works by binding sclerostin and causing rapid stimulation of bone formation while decreasing bone resorption. The location and local magnitude of vertebral bone accrual by romosozumab and how it compares to teriparatide remains to be investigated. Here we analyzed the data from a study collecting lumbar computed tomography (CT) spine scans at enrollment and 12 months post-treatment with romosozumab (210 mg sc monthly, n = 17), open-label daily teriparatide (20 μg sc, n = 19), or placebo (sc monthly, n = 20). For each of the 56 women, cortical thickness (Ct.Th), endocortical thickness (Ec.Th), cortical bone mineral density (Ct.bone mineral density (BMD)), cancellous BMD (Cn.BMD), and cortical mass surface density (CMSD) were measured across the first lumbar vertebral surface. In addition, color maps of the changes in the lumbar vertebrae structure were statistically analyzed and then visualized on the bone surface. At 12 months, romosozumab improved all parameters significantly over placebo and resulted in a mean vertebral Ct.Th increase of 10.3% versus 4.3% for teriparatide, an Ec.Th increase of 137.6% versus 47.5% for teriparatide, a Ct.BMD increase of 2.1% versus a -0.1% decrease for teriparatide, and a CMSD increase of 12.4% versus 3.8% for teriparatide. For all these measurements, the differences between romosozumab and teriparatide were statistically significant (p < 0.05). There was no significant difference between the romosozumab-associated Cn.BMD gains of 22.2% versus 18.1% for teriparatide, but both were significantly greater compared with the change in the placebo group (-4.6%, p < 0.05). Cortical maps showed the topographical locations of the increase in bone in fracture-prone areas of the vertebral shell, walls, and endplates. This study confirms widespread vertebral bone accrual with romosozumab or teriparatide treatment and provides new insights into how the rapid prevention of vertebral fractures is achieved in women with osteoporosis using these anabolic agents. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kenneth ES Poole
- Department of MedicineUniversity of Cambridge and Addenbrooke's HospitalCambridgeUK
| | | | - Rose A Pearson
- Department of EngineeringUniversity of CambridgeCambridgeUK
| | - Andrew H Gee
- Department of EngineeringUniversity of CambridgeCambridgeUK
| | | | - Jacques P Brown
- CHU de Québec Research Centre and Laval UniversityQuebec CityCanada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Karim L, Kwaczala A, Vashishth D, Judex S. Dose-dependent effects of pharmaceutical treatments on bone matrix properties in ovariectomized rats. Bone Rep 2021; 15:101137. [PMID: 34660852 PMCID: PMC8503587 DOI: 10.1016/j.bonr.2021.101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
As both anabolic and anti-catabolic osteoporosis drugs affect bone formation and resorption processes, they may contribute to bone's overall mechanical behavior by altering the quality of the bone matrix. We used an ovariectomized rat model and a novel fracture mechanics approach to investigate whether treatment with an anabolic (parathyroid hormone) or anti-catabolic (alendronate) osteoporosis drugs will alter the organic and mineral matrix components and consequently cortical bone fracture toughness. Ovariectomized (at 5 months age) rats were treated with either parathyroid hormone or alendronate at low and high doses for 6 months (age 6–12 months). Specifically, treatment groups included untreated ovariectomized controls (n = 9), high-dose alendronate (n = 10), low-dose alendronate (n = 9), high-dose parathyroid hormone (n = 10), and low-dose parathyroid hormone (n = 9). After euthanasia, cortical microbeams from the lateral quadrant were extracted, notched, and tested in 3-point bending to measure fracture toughness. Portions of the bone were used to measure changes in the 1) organic matrix through quantification of advanced glycation end-products (AGEs) and non-collagenous proteins, and 2) mineral matrix through assessment of mineral crystallinity. Compared to the ovariectomized group, rats treated with high doses of parathyroid hormone and alendronate had significantly increased cortical bone fracture toughness, which corresponded primarily to increased non-collagenous proteins while there was no change in AGEs. Additionally, low-dose PTH treatment increased matrix crystallinity and decreased AGE levels. In summary, ovariectomized rats treated with pharmaceutical drugs had increased non-collagenous matrix proteins and improved fracture toughness compared to controls. Further investigation is required for different doses and longer treatment periods. Alendronate increases non-collagenous proteins and improves fracture toughness. Parathyroid hormone also increases collagen maturity and mineral crystallinity. Both treatments minimize accumulation of advanced glycation end-products.
Collapse
Affiliation(s)
- Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Andrea Kwaczala
- Department of Biomedical Engineering, Western New England University, Springfield, MA, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
17
|
Martin TJ, Sims NA, Seeman E. Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocr Rev 2021; 42:383-406. [PMID: 33564837 DOI: 10.1210/endrev/bnab005] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone (PTH) and the paracrine factor, PTH-related protein (PTHrP), have preserved in evolution sufficient identities in their amino-terminal domains to share equivalent actions upon a common G protein-coupled receptor, PTH1R, that predominantly uses the cyclic adenosine monophosphate-protein kinase A signaling pathway. Such a relationship between a hormone and local factor poses questions about how their common receptor mediates pharmacological and physiological actions of the two. Mouse genetic studies show that PTHrP is essential for endochondral bone lengthening in the fetus and is essential for bone remodeling. In contrast, the main postnatal function of PTH is hormonal control of calcium homeostasis, with no evidence that PTHrP contributes. Pharmacologically, amino-terminal PTH and PTHrP peptides (teriparatide and abaloparatide) promote bone formation when administered by intermittent (daily) injection. This anabolic effect is remodeling-based with a lesser contribution from modeling. The apparent lesser potency of PTHrP than PTH peptides as skeletal anabolic agents could be explained by lesser bioavailability to PTH1R. By contrast, prolongation of PTH1R stimulation by excessive dosing or infusion, converts the response to a predominantly resorptive one by stimulating osteoclast formation. Physiologically, locally generated PTHrP is better equipped than the circulating hormone to regulate bone remodeling, which occurs asynchronously at widely distributed sites throughout the skeleton where it is needed to replace old or damaged bone. While it remains possible that PTH, circulating within a narrow concentration range, could contribute in some way to remodeling and modeling, its main physiological role is in regulating calcium homeostasis.
Collapse
Affiliation(s)
- T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Ego Seeman
- The University of Melbourne, Department of Medicine at Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
18
|
Petrova NL, Donaldson NK, Bates M, Tang W, Jemmott T, Morris V, Dew T, Meacock L, Elias DA, Moniz CF, Edmonds ME. Effect of Recombinant Human Parathyroid Hormone (1-84) on Resolution of Active Charcot Neuro-osteoarthropathy in Diabetes: A Randomized, Double-Blind, Placebo-Controlled Study. Diabetes Care 2021; 44:1613-1621. [PMID: 34088701 PMCID: PMC8323189 DOI: 10.2337/dc21-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Fractures in Charcot neuro-osteoarthropathy (CN) often fail to heal despite prolonged immobilization with below-knee casting. The aim of the study was to assess the efficacy of recombinant human parathyroid hormone (PTH) in reducing time to resolution of CN and healing of fractures. RESEARCH DESIGN AND METHODS People with diabetes and acute (active) Charcot foot were randomized (double-blind) to either full-length PTH (1-84) or placebo therapy, both in addition to below-knee casting and calcium and vitamin D3 supplementation. The primary outcome was resolution of CN, defined as a skin foot temperature difference >2°C at two consecutive monthly visits. RESULTS Median time to resolution was 5 months (95% CI 4, 12) in intervention and 6 months (95% CI 2, 9) in control. On univariate mixed Cox and logistic regression, there was no significant difference in time to resolution between the groups (P = 0.64) or in the likelihood of resolution (P = 0.66). The hazard ratio of resolution was 0.84 (95% CI 0.41, 1.74; P = 0.64), and the odds ratio of resolution by 12 months was 0.80 (95% CI 0.3, 2.13; P = 0.66) (intervention vs. control). On linear regression analysis, there were no significant differences in the effect of treatment on fracture scores quantitated on MRI scans (coefficient 0.13 [95% CI -0.62, 0.88]; P = 0.73) and on foot and ankle X-rays (coefficient 0.30 [95% CI -0.03, 0.63]; P = 0.07). CONCLUSIONS This double-blind placebo-controlled trial did not reduce time to resolution or enhance fracture healing of CN. There was no added benefit of daily intervention with PTH (1-84) to below-knee casting in achieving earlier resolution of CN.
Collapse
Affiliation(s)
- Nina L Petrova
- Diabetic Foot Clinic, King's College Hospital NHS Foundation Trust, London, U.K .,Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| | | | - Maureen Bates
- Diabetic Foot Clinic, King's College Hospital NHS Foundation Trust, London, U.K
| | - Wegin Tang
- Diabetic Foot Clinic, King's College Hospital NHS Foundation Trust, London, U.K
| | - Timothy Jemmott
- Diabetic Foot Clinic, King's College Hospital NHS Foundation Trust, London, U.K
| | - Victoria Morris
- Diabetic Foot Clinic, King's College Hospital NHS Foundation Trust, London, U.K
| | - Tracy Dew
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, U.K
| | - Lisa Meacock
- Department of Radiology, King's College Hospital NHS Foundation Trust, London, U.K
| | - David A Elias
- Department of Radiology, King's College Hospital NHS Foundation Trust, London, U.K
| | - Cajetan F Moniz
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, London, U.K
| | - Michael E Edmonds
- Diabetic Foot Clinic, King's College Hospital NHS Foundation Trust, London, U.K.,Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| |
Collapse
|
19
|
Gould NR, Williams KM, Joca HC, Torre OM, Lyons JS, Leser JM, Srikanth MP, Hughes M, Khairallah RJ, Feldman RA, Ward CW, Stains JP. Disparate bone anabolic cues activate bone formation by regulating the rapid lysosomal degradation of sclerostin protein. eLife 2021; 10:e64393. [PMID: 33779549 PMCID: PMC8032393 DOI: 10.7554/elife.64393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The downregulation of sclerostin in osteocytes mediates bone formation in response to mechanical cues and parathyroid hormone (PTH). To date, the regulation of sclerostin has been attributed exclusively to the transcriptional downregulation of the Sost gene hours after stimulation. Using mouse models and rodent cell lines, we describe the rapid, minute-scale post-translational degradation of sclerostin protein by the lysosome following mechanical load and PTH. We present a model, integrating both new and established mechanically and hormonally activated effectors into the regulated degradation of sclerostin by lysosomes. Using a mouse forelimb mechanical loading model, we find transient inhibition of lysosomal degradation or the upstream mechano-signaling pathway controlling sclerostin abundance impairs subsequent load-induced bone formation by preventing sclerostin degradation. We also link dysfunctional lysosomes to aberrant sclerostin regulation using human Gaucher disease iPSCs. These results reveal how bone anabolic cues post-translationally regulate sclerostin abundance in osteocytes to regulate bone formation.
Collapse
Affiliation(s)
- Nicole R Gould
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Katrina M Williams
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Humberto C Joca
- Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimoreUnited States
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - James S Lyons
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
| | - Marcus Hughes
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | | | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
| | - Christopher W Ward
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
20
|
Winzenrieth R, Ominsky MS, Wang Y, Humbert L, Weiss RJ. Differential effects of abaloparatide and teriparatide on hip cortical volumetric BMD by DXA-based 3D modeling. Osteoporos Int 2021; 32:575-583. [PMID: 33496831 PMCID: PMC7929959 DOI: 10.1007/s00198-020-05806-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022]
Abstract
UNLABELLED In postmenopausal osteoporotic women in ACTIVE, abaloparatide reduced fracture risk and increased areal bone mineral density (BMD) more than teriparatide at the hip and wrist. DXA-based 3D modeling showed significantly greater increases in hip cortical volumetric BMD with abaloparatide versus teriparatide. This may explain differences reported in aBMD by DXA. INTRODUCTION In ACTIVE, abaloparatide (ABL) increased bone mineral density (BMD) shown by dual-energy X-ray absorptiometry (DXA) while reducing fracture incidence in postmenopausal osteoporotic women. Changes in DXA BMD with ABL, 80 μg, were significantly greater than with open-label teriparatide (TPTD), 20 μg, at cortical sites including total hip, femoral neck, and 1/3 distal radius. The purpose of this study was to better understand the relative effects of ABL and TPTD on cortical and cancellous compartments in the proximal femur. METHODS Hip DXA images from a subset of randomly selected patients in the ACTIVE trial (n = 250/arm) were retrospectively analyzed using three-dimensional modeling methods (3D-SHAPER software) to evaluate changes from baseline at months 6 and 18. RESULTS Similar significant increases in trabecular volumetric BMD (vBMD, + 9%) and cortical thickness (+ 1.5%) were observed with ABL and TPTD by 3D-DXA at 18 months. In contrast, only ABL significantly increased cortical vBMD versus baseline (+ 1.3%), and changes in both cortical vBMD and cortical surface BMD were significantly greater with ABL versus TPTD. In the TPTD group, changes in cortical vBMD were inversely correlated with changes in serum CTX (carboxy-terminal telopeptide of type I collagen) and PINP (procollagen type I N-terminal propeptide), suggesting that higher bone turnover may have attenuated cortical gains. CONCLUSION These results suggest previously reported differences in areal BMD increases between ABL and TPTD may be due to differential effects on cortical vBMD. Further studies are warranted to investigate how these differences affect therapeutic impact on hip strength in postmenopausal women with osteoporosis.
Collapse
Affiliation(s)
- R Winzenrieth
- Galgo Medical, Carrer de París, 179 2°, Barcelona, 08036, Spain
| | - M S Ominsky
- Radius Health, Inc., 950 Winter Street, Waltham, MA, 02451, USA
| | - Y Wang
- Radius Health, Inc., 950 Winter Street, Waltham, MA, 02451, USA
| | - L Humbert
- Galgo Medical, Carrer de París, 179 2°, Barcelona, 08036, Spain
| | - R J Weiss
- Radius Health, Inc., 950 Winter Street, Waltham, MA, 02451, USA.
| |
Collapse
|
21
|
Kato T, Mizobuchi M, Sasa K, Yamada A, Ogata H, Honda H, Sakashita A, Kamijo R. Osteoblastic differentiation of bone marrow mesenchymal stem cells in uremic rats. Biochem Biophys Res Commun 2020; 532:11-18. [PMID: 32826057 DOI: 10.1016/j.bbrc.2020.05.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/13/2020] [Indexed: 11/19/2022]
Abstract
Severe secondary hyperparathyroidism (SHPT) represents a high turnover bone disease, osteitis fibrosa, but the pathogenesis of osteitis fibrosa remains to be fully elucidated. We examined the characteristics of the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts in uremic rats. We bred 5/6 nephrectomized (Nx) rats with a high phosphorus (P) diet to induce SHPT (Nx + HP), or Nx (Nx + ND) and normal rats (Nc + ND) fed a standard diet (ND). After 8 weeks, BMSCs were isolated from the femur and serum were analyzed. BMSCs underwent flow cytometric examination for the expression patterns of cell surface markers (CD90+, CD29+, CD45-, and CD31-). Serum creatinine (Cre) levels were significantly elevated in the Nx + NP rats compared with the Nc + NP rats. Cre levels in the Nx + HP rats were levels to those in the Nx + ND rats. Serum P and PTH levels were significantly elevated in the Nx + HP rats compared with the Nx + ND rats. Bone morphometrical analysis showed increases in both osteoid volume and eroded surfaces in the Nx + HP but not in the Nx + ND rats. The populations of harvested BMSCs were similar between all three groups. Alp, Runx2, Pth1r and Cyclin D1 mRNA expression in the BMSCs from the Nx + ND rats were significantly suppressed compared with those isolated from the Nc + ND groups. Alizarin red staining tended to be similar to the expression of these mRNA. These results suggest that the BMSCs differentiation into osteoblasts was disturbed in the uremic rats.
Collapse
MESH Headings
- Alkaline Phosphatase/genetics
- Alkaline Phosphatase/metabolism
- Animals
- Calcification, Physiologic
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Creatinine/blood
- Disease Models, Animal
- Hyperparathyroidism, Secondary/etiology
- Hyperparathyroidism, Secondary/pathology
- Hyperparathyroidism, Secondary/physiopathology
- Male
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Osteoblasts/metabolism
- Osteoblasts/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Uremia/complications
- Uremia/pathology
- Uremia/physiopathology
Collapse
Affiliation(s)
- Tadashi Kato
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan; Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan.
| | - Masahide Mizobuchi
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Hiroaki Ogata
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Akiko Sakashita
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
22
|
Physical Activity-Dependent Regulation of Parathyroid Hormone and Calcium-Phosphorous Metabolism. Int J Mol Sci 2020; 21:ijms21155388. [PMID: 32751307 PMCID: PMC7432834 DOI: 10.3390/ijms21155388] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Exercise perturbs homeostasis, alters the levels of circulating mediators and hormones, and increases the demand by skeletal muscles and other vital organs for energy substrates. Exercise also affects bone and mineral metabolism, particularly calcium and phosphate, both of which are essential for muscle contraction, neuromuscular signaling, biosynthesis of adenosine triphosphate (ATP), and other energy substrates. Parathyroid hormone (PTH) is involved in the regulation of calcium and phosphate homeostasis. Understanding the effects of exercise on PTH secretion is fundamental for appreciating how the body adapts to exercise. Altered PTH metabolism underlies hyperparathyroidism and hypoparathyroidism, the complications of which affect the organs involved in calcium and phosphorous metabolism (bone and kidney) and other body systems as well. Exercise affects PTH expression and secretion by altering the circulating levels of calcium and phosphate. In turn, PTH responds directly to exercise and exercise-induced myokines. Here, we review the main concepts of the regulation of PTH expression and secretion under physiological conditions, in acute and chronic exercise, and in relation to PTH-related disorders.
Collapse
|
23
|
Abstract
Parathyroid hormone is an essential regulator of extracellular calcium and phosphate. PTH enhances calcium reabsorption while inhibiting phosphate reabsorption in the kidneys, increases the synthesis of 1,25-dihydroxyvitamin D, which then increases gastrointestinal absorption of calcium, and increases bone resorption to increase calcium and phosphate. Parathyroid disease can be an isolated endocrine disorder or part of a complex syndrome. Genetic mutations can account for diseases of parathyroid gland formulation, dysregulation of parathyroid hormone synthesis or secretion, and destruction of the parathyroid glands. Over the years, a number of different options are available for the treatment of different types of parathyroid disease. Therapeutic options include surgical removal of hypersecreting parathyroid tissue, administration of parathyroid hormone, vitamin D, activated vitamin D, calcium, phosphate binders, calcium-sensing receptor, and vitamin D receptor activators to name a few. The accurate assessment of parathyroid hormone also provides essential biochemical information to properly diagnose parathyroid disease. Currently available immunoassays may overestimate or underestimate bioactive parathyroid hormone because of interferences from truncated parathyroid hormone fragments, phosphorylation of parathyroid hormone, and oxidation of amino acids of parathyroid hormone.
Collapse
Affiliation(s)
- Edward Ki Yun Leung
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
24
|
Miyamura G, Wakabayashi H, Nagao N, Kato S, Nakagawa T, Naito Y, Sudo A. Prevention of bone loss and improvement of pain-related behavior in hind limb-unloaded mice by administration of teriparatide and bisphosphonate. Mod Rheumatol 2020; 31:733-742. [PMID: 32646253 DOI: 10.1080/14397595.2020.1782592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES There are few reports on the comparison between teriparatide (PTH) and bisphosphonate (BP) in terms of osteoporosis pain-related behavior and immunohistochemical findings. The aims of this study were to evaluate skeletal pain associated with osteoporosis and to examine the inhibitory effect of PTH and BP on pain and bone loss in hind limb-unloaded (HU) mice. The mechanism of osteoporotic pain in HU mice was evaluated by examining pain-related behavior and immunohistochemical findings. The effects of PTH and alendronate (ALN), a potent osteoclast inhibitor, on these parameters were also assessed. METHODS Eight-week-old male ddY mice were tail-suspended for 2 weeks and assigned to four groups: hind limb-loaded (HL) mice with only tail suspension treated with vehicle; HU mice with tail suspension treated with vehicle; HU mice treated with PTH; and HU mice treated with ALN. Starting immediately after reloading, vehicle, PTH, or ALN was injected subcutaneously. After a 2-week treatment, mechanical sensitivity was examined using von Frey filaments. Bilateral hind limbs were removed for micro-computed tomography, immunohistochemical analysis, and messenger RNA (mRNA) expression analysis. RESULTS HU mice with tail suspension developed bone loss and mechanical hyperalgesia in the hind limbs. The HU mice showed an increased osteoclasts and sclerostin-positive cells in the hind limb bone. Furthermore, PTH and ALN both prevented HU-induced bone loss and mechanical hyperalgesia in the osteoporotic animal models. Histological examination of the hind limb bone revealed that, similar to ALN, PTH inhibited the osteoclasts and sclerostin-positive cells. The mRNA levels of TNFα and IL-6 tended to decrease with ALN or PTH treatment compared with those without any treatment. CONCLUSIONS Treatment with PTH as well as BP prevented bone loss, mechanical hyperalgesia, osteoclast increase, and osteocyte increase. Similar to BP, the inhibitory effect of PTH on osteoclasts might contribute to the improvement of skeletal pain.
Collapse
Affiliation(s)
- Gaku Miyamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroki Wakabayashi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Nobuto Nagao
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Sho Kato
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Taro Nakagawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Yohei Naito
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
25
|
Park JY, Heo HA, Park S, Pyo SW. Enhancement of peri-implant bone formation via parathyroid hormone administration in a rat model at risk for medication-related osteonecrosis of the jaw. J Periodontal Implant Sci 2020; 50:121-131. [PMID: 32395390 PMCID: PMC7192826 DOI: 10.5051/jpis.2020.50.2.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Dental implant-associated medication-related osteonecrosis of the jaw has been frequently reported in patients administered bisphosphonates (BPs) to prevent osteoporosis. The aim of this study was to investigate the effect of intermittent administration of parathyroid hormone (PTH) on peri-implant bone in the maxillae of ovariectomized rats systemically administered BPs. Methods Thirty 8-week-old female Sprague-Dawley rats were randomly divided into 3 groups. The OVX-ZP group included ovariectomized rats administered 60 µg/kg of zoledronate once a week for 6 weeks and 30 µg/kg PTH after implant installation. The OVX-Z group included ovariectomized rats administered 60 µg/kg of zoledronate once a week for 6 weeks and saline after implant installation, and the control group included rats that underwent a sham operation and were then administered saline. Rats were sacrificed 4 weeks after implant placement for histomorphometric and micro-computed tomography (CT) analyses. Results The average bone area percentage was greater in the OVX-ZP group than in the OVX-Z group (53.4%±4.0% vs. 28.9%±9.5%, P=0.01). The bone-to-implant contact ratio was 50.8%±1.4% in the OVX-ZP group and 16.9%±2.4% in the OVX-Z group (P=0.012). The average bone volume ratio as shown on micro-CT was 31.3%±19.8% in the OVX-ZP group and 19.4%±9.3% in the OVX-Z group (P=0.045). The OVX-ZP and OVX-Z groups displayed similar trabecular thickness (0.06±0.004 mm vs. 0.06±0.002 mm) (P>0.05) and trabecular separation (0.21±0.02 mm vs. 0.29±0.13 mm) (P>0.05). However, the number of trabeculae in the OVX-ZP group was significantly higher than that in the OVX-Z group (4.3±1.33/mm3 vs. 2.2±0.19/mm3) (P=0.024). Conclusions The present findings indicate that intermittently-administered PTH can promote peri-implant bone formation and suggest that PTH administration may aid in effective treatment for medication-related osteonecrosis of the jaw after dental implantation.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Dentistry, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Hyun A Heo
- Department of Dentistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Suhyun Park
- Department of Dentistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Woon Pyo
- Department of Dentistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
26
|
Seeman E, Martin TJ. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat Rev Rheumatol 2020; 15:225-236. [PMID: 30755735 DOI: 10.1038/s41584-019-0172-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone volume, microstructure and its material composition are maintained by bone remodelling, a cellular activity carried out by bone multicellular units (BMUs). BMUs are focally transient teams of osteoclasts and osteoblasts that respectively resorb a volume of old bone and then deposit an equal volume of new bone at the same location. Around the time of menopause, bone remodelling becomes unbalanced and rapid, and an increased number of BMUs deposit less bone than they resorb, resulting in bone loss, a reduction in bone volume and microstructural deterioration. Cortices become porous and thin, and trabeculae become thin, perforated and disconnected, causing bone fragility. Antiresorptive agents reduce fracture risk by reducing the rate of bone remodelling so that fewer BMUs are available to remodel bone. Bone fragility is not abolished by these drugs because existing microstructural deterioration is not reversed, unsuppressed remodelling continues producing microstructural deterioration and unremodelled bone that becomes more mineralized can become brittle. Anabolic agents reduce fracture risk by stimulating new bone formation, which partly restores bone volume and microstructure. To guide fracture prevention, this Review provides an overview of the structural basis of bone fragility, the mechanisms of remodelling and how anabolic and antiresorptive agents target remodelling defects.
Collapse
Affiliation(s)
- Ego Seeman
- Departments of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia. .,Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - T J Martin
- Department of Medicine and St Vincent's Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Sheikh Z, Chen G, Al-Jaf F, Thévenin M, Banks K, Glogauer M, Young RN, Grynpas MD. In Vivo Bone Effects of a Novel Bisphosphonate-EP4a Conjugate Drug (C3) for Reversing Osteoporotic Bone Loss in an Ovariectomized Rat Model. JBMR Plus 2019; 3:e10237. [PMID: 31844825 PMCID: PMC6894726 DOI: 10.1002/jbm4.10237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/15/2019] [Accepted: 09/06/2019] [Indexed: 01/30/2023] Open
Abstract
Pathological bone loss is a regular feature of postmenopausal osteoporosis, and the microstructural changes along with the bone loss make the individual prone to getting hip, spine, and wrist fractures. We have developed a new conjugate drug named C3, which has a synthetic, stable EP4 agonist (EP4a) covalently linked to an inactive alendronate (ALN) that binds to bone and allows physiological remodeling. After losing bone for 12 weeks, seven groups of rats were treated for 8 weeks via tail‐vein injection. The groups were: C3 conjugate at low and high doses, vehicle‐treated ovariectomy (OVX) and sham, C1 (a similar conjugate, but with active ALN at high dose), inactive ALN alone, and a mixture of unconjugated ALN and EP4a to evaluate the conjugation effects. Bone turnover was determined by dynamic and static histomorphometry; μCT was employed to determine bone microarchitecture; and bone mechanical properties were evaluated via biomechanical testing. Treatment with C3 significantly increased trabecular bone volume and vertebral BMD versus OVX controls. There was also significant improvement in the vertebral load‐bearing abilities and stimulation of bone formation in femurs after C3 treatment. This preclinical research revealed that C3 resulted in significant anabolic effects on trabecular bone, and EP4a and ALN conjugation components are vital to conjugate anabolic efficacy. A combined therapy using an EP4 selective agonist anabolic agent linked to an inactive ALN is presented here that produces significant anabolic effects, allows bone remodeling, and has the potential for treating postmenopausal osteoporosis or other diseases where bone strengthening would be beneficial. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Lunenfeld-Tanenbaum Research Institute Mount Sinai Hospital Toronto Ontario Canada.,Department of Laboratory Medicine and Pathology University of Toronto Toronto Ontario Canada.,Faculty of Dentistry University of Toronto Toronto Ontario Canada.,Faculty of Dentistry Dalhousie University Halifax Nova Scotia Canada
| | - Gang Chen
- Department of Chemistry Simon Fraser University Burnaby British Columbia Canada
| | - Faik Al-Jaf
- Faculty of Dentistry University of Toronto Toronto Ontario Canada
| | - Marion Thévenin
- Department of Chemistry Simon Fraser University Burnaby British Columbia Canada
| | - Kate Banks
- Division of Comparative Medicine University of Toronto Toronto Ontario Canada.,Department of Physiology University of Toronto Toronto Ontario Canada
| | - Michael Glogauer
- Faculty of Dentistry University of Toronto Toronto Ontario Canada.,Department of Dental Oncology and Maxillofacial Prosthetics Princess Margaret Cancer Centre Toronto Ontario Canada
| | - Robert N Young
- Department of Chemistry Simon Fraser University Burnaby British Columbia Canada
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute Mount Sinai Hospital Toronto Ontario Canada.,Department of Laboratory Medicine and Pathology University of Toronto Toronto Ontario Canada.,Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto Ontario Canada
| |
Collapse
|
28
|
The factors related to the poor ADL in the patients with osteoporotic vertebral fracture after instrumentation surgery. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 29:1597-1605. [PMID: 31401687 DOI: 10.1007/s00586-019-06092-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/02/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Osteoporotic vertebral fracture (OVF) with nonunion or neurological deficit may be a candidate for surgical treatment. However, some patients do not show improvement as expected. Therefore, we conducted a nationwide multicenter study to determine the predictors for postoperative poor activity of daily living (ADL) in patients with OVF. METHODS We retrospectively reviewed the case histories of 309 patients with OVF who underwent surgery. To determine the factors predicting postoperative poor ADL, uni- and multivariate statistical analyses were performed. RESULTS The frequency of poor ADL at final follow-up period was 9.1%. In univariate analysis, preoperative neurological deficit (OR, 4.1; 95% CI, 1.8-10.3; P < 0.001), perioperative complication (OR, 3.4; P = 0.006), absence of preoperative bone-modifying agent (BMA) administration (OR, 2.7; P = 0.03), and absence of postoperative recombinant human parathyroid hormone (rPTH) administration (OR, 3.9; P = 0.006) were significantly associated. In multivariate analysis, preoperative neurological deficit (OR, 4.6; P < 0.001), perioperative complication (OR, 3.4; P = 0.01), and absence of postoperative rPTH administration (OR, 3.9; P = 0.02) showed statistical significance. CONCLUSIONS Preoperative neurological deficit, perioperative complication, and absence of postoperative rPTH administration were considered as predictors for postoperative poor ADL in patients with OVF. Neurological deficits and complications are often inevitable factors; therefore, rPTH is an important option for postoperative treatment for OVF. These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
29
|
Dillon S, Staines KA, Millán JL, Farquharson C. How To Build a Bone: PHOSPHO1, Biomineralization, and Beyond. JBMR Plus 2019; 3:e10202. [PMID: 31372594 PMCID: PMC6659447 DOI: 10.1002/jbm4.10202] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Since its characterization two decades ago, the phosphatase PHOSPHO1 has been the subject of an increasing focus of research. This work has elucidated PHOSPHO1's central role in the biomineralization of bone and other hard tissues, but has also implicated the enzyme in other biological processes in health and disease. During mineralization PHOSPHO1 liberates inorganic phosphate (Pi) to be incorporated into the mineral phase through hydrolysis of its substrates phosphocholine (PCho) and phosphoethanolamine (PEA). Localization of PHOSPHO1 within matrix vesicles allows accumulation of Pi within a protected environment where mineral crystals may nucleate and subsequently invade the organic collagenous scaffold. Here, we examine the evidence for this process, first discussing the discovery and characterization of PHOSPHO1, before considering experimental evidence for its canonical role in matrix vesicle–mediated biomineralization. We also contemplate roles for PHOSPHO1 in disorders of dysregulated mineralization such as vascular calcification, along with emerging evidence of its activity in other systems including choline synthesis and homeostasis, and energy metabolism. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Scott Dillon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA USA
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| |
Collapse
|
30
|
Heo HA, Park S, Jeon YS, Pyo SW. Effect of Raloxifene Administration on Bone Response Around Implant in the Maxilla of Osteoporotic Rats. IMPLANT DENT 2019; 28:272-278. [DOI: 10.1097/id.0000000000000881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Xie Z, Chen Y, Gurbuz S, Zhang B, Li Y, Bai F, Chen Y. Effects of teriparatide in Chinese and Caucasian women with osteoporosis: bridging study on efficacy. Clin Interv Aging 2019; 14:959-968. [PMID: 31213783 PMCID: PMC6542327 DOI: 10.2147/cia.s181929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective To bridge the efficacy and compare the safety of the 24-week teriparatide treatment in a Chinese osteoporosis study (NCT00414973) to a large international trial (FPT, NCT00670501) to determine whether long-term results from the international study were applicable to Chinese patients. Methods In this post-hoc analysis, a propensity score matching method was used to select patients with similar baseline characteristics. Patients were female with osteoporosis at high risk of fracture, aged ≥55 years, and had no history of rheumatoid arthritis or corticosteroid use. Outcomes included percentage changes in lumbar-spine bone mineral density (LS-BMD) from baseline to 24 weeks, safety in matched-pair patients, and long-term percentage changes in LS-BMD and fragility fracture incidence in the matched fracture prevention trial (FPT) population. The determination of the acceptability of bridging results was based on the International Conference on Harmonization E5 guidelines. Results A total number of 228 patients from each study were matched and paired. Patients were similar at baseline (P-values >0.33) except for ethnicity (98% Caucasian for FPT). For changes in LS-BMD from baseline to week 24, treatment with teriparatide showed significantly greater increases (P-values <0.001; least-squares mean difference: 5.0% in the Chinese study and 5.4% in FPT) than comparator (calcitonin/placebo). The safety profiles over 24 weeks were similar between two studies. For matched-pair FPT patients, long-term changes in LS-BMD were significantly greater (least-squares mean difference: 11.5%, P<0.001) and the fragility fracture rate was marginally lower in the teriparatide group compared with the placebo group (13.1% vs 22.3%, P=0.070). Conclusion Assuming similar pharmacokinetic profiles for teriparatide between populations, comparable increases in LS-BMD and consistent safety profiles within 24 weeks of the treatment suggest long-term LS-BMD results from the FPT may be applicable to Chinese population.
Collapse
Affiliation(s)
- Zhongjian Xie
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory of Metabolic Bone Diseases and National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,
| | - Yun Chen
- Eli Lilly Suzhou Pharmaceutical Co., Ltd, Shanghai, People's Republic of China
| | | | - Bin Zhang
- Eli Lilly Suzhou Pharmaceutical Co., Ltd, Shanghai, People's Republic of China
| | - Yujie Li
- Eli Lilly Suzhou Pharmaceutical Co., Ltd, Shanghai, People's Republic of China
| | - Fan Bai
- Eli Lilly Suzhou Pharmaceutical Co., Ltd, Shanghai, People's Republic of China
| | - Yu Chen
- Eli Lilly Suzhou Pharmaceutical Co., Ltd, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Torgomyan AL. 1–34 PTH Effect on the Chondroprogenitor Cells Differentiation, As Well As on the Microstructure of the Subchondral None Tissue, and the Regeneration of Articular Cartilage in Rats. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Effect of Recombinant Human Parathyroid Hormone on Rotator Cuff Healing After Arthroscopic Repair. Arthroscopy 2019; 35:1064-1071. [PMID: 30857903 DOI: 10.1016/j.arthro.2018.11.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess the effect of teriparatide, a recombinant human parathyroid hormone, on rotator cuff healing after arthroscopic repair compared with patients who were not treated with teriparatide. METHODS This was a prospective propensity-matched study. Thirty-one patients who underwent arthroscopic rotator cuff repair for tears >2 cm in size between January 2015 and June 2016 were recruited (group I). Daily subcutaneous injections of teriparatide 20 μg were administered for 3 months following surgery. In the same period, propensity score matching (1-to-4) was performed to generate an untreated control group undergoing rotator cuff repair alone (group II) with the same tear size. Magnetic resonance imaging evaluation of tendon healing was performed at least 1 year postoperatively, as well as the range of shoulder motion, American Shoulder and Elbow Surgeons score, Constant score, and simple shoulder test. RESULTS There was no significant difference of the retraction size, the anterior to posterior dimension of torn rotator cuff, or the preoperative bone mineral density in groups I and II (P = .78, .87, and .96, respectively). The rate of retear was significantly lower in group I than in group II (16% vs 33.9%; P = .04). Range of motion and functional scores were not significantly different between the 2 groups (P > .05). CONCLUSIONS Teriparatide, a recombinant human parathyroid hormone, can be a systemic treatment option that significantly enhances the tendon-to-bone healing after arthroscopic rotator cuff repair for patients with rotator cuff tears >2 cm. LEVEL OF EVIDENCE Level III, case-control study.
Collapse
|
34
|
Abstract
Parathyroid hormone (PTH) is the major secretory product of the parathyroid glands, and in hypocalcemic conditions, can enhance renal calcium reabsorption, increase active vitamin D production to increase intestinal calcium absorption, and mobilize calcium from bone by increasing turnover, mainly but not exclusively in cortical bone. PTH has therefore found clinical use as replacement therapy in hypoparathyroidism. PTH also may have a physiologic role in augmenting bone formation, particularly in trabecular and to some extent in cortical bone. This action has been applied to the clinic to provide anabolic therapy for osteoporosis.
Collapse
Affiliation(s)
- David Goltzman
- Department of Medicine and Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada; Departments of Medicine and of Physiology, McGill University, 845 Sherbrooke St West, Montreal, Quebec H3A 0B9, Canada.
| |
Collapse
|
35
|
Brown HK, Allocca G, Ottewell PD, Wang N, Brown NJ, Croucher PI, Eaton CL, Holen I. Parathyroid Hormone (PTH) Increases Skeletal Tumour Growth and Alters Tumour Distribution in an In Vivo Model of Breast Cancer. Int J Mol Sci 2018; 19:ijms19102920. [PMID: 30261597 PMCID: PMC6213905 DOI: 10.3390/ijms19102920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 01/29/2023] Open
Abstract
Breast cancer cells colonize the skeleton by homing to specific niches, but the involvement of osteoblasts in tumour cell seeding, colonization, and progression is unknown. We used an in vivo model to determine how increasing the number of cells of the osteoblast lineage with parathyroid hormone (PTH) modified subsequent skeletal colonization by breast cancer cells. BALB/c nude mice were injected for five consecutive days with PBS (control) or PTH and then injected with DiD-labelled breast cancer cells via the intra-cardiac route. Effects of PTH on the bone microenvironment and tumour cell colonization and growth was analyzed using bioluminescence imaging, two-photon microscopy, and histological analysis. PTH treatment caused a significant, transient increase in osteoblast numbers compared to control, whereas bone volume/structure in the tibia was unaffected. There were no differences in the number of tumour cells seeding to the tibias, or in the number of tumours in the hind legs, between the control and PTH group. However, animals pre-treated with PTH had a significantly higher number of tumour colonies distributed throughout skeletal sites outside the hind limbs. This is the first demonstration that PTH-induced stimulation of osteoblastic cells may result in alternative skeletal sites becoming available for breast cancer cell colonization.
Collapse
Affiliation(s)
- Hannah K Brown
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, UK.
| | - Gloria Allocca
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, UK.
| | - Penelope D Ottewell
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, UK.
| | - Ning Wang
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, UK.
| | - Nicola J Brown
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, UK.
| | - Peter I Croucher
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | - Colby L Eaton
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, UK.
| | - Ingunn Holen
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, UK.
| |
Collapse
|
36
|
Siddique N, Fallon N, Steen G, Walsh JB, Casey MC. Treatment of osteoporosis with recombinant parathyroid hormone, utilisation of total body DXA to observe treatment effects on total body composition and factors determining response to therapy. Ir J Med Sci 2018; 188:505-515. [PMID: 30032480 DOI: 10.1007/s11845-018-1875-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Recombinant parathyroid hormone (rPTH) increases bone mineral density (BMD). However, certain other potential effects of rPTH remain to be studied. The aim of this study is to identify whether bone turnover markers, relevant biochemical parameters or total body fat and muscle composition affect the response to rPTH and to establish if these parameters in particular change during treatment. METHODS One hundred seventy-two participants were treated with rPTH, and 128 subjects who fully complied with the therapy and completed their investigations including biochemical bone markers and total body composition at baseline, 6 months and 1 year of the treatment were divided into responder and non-responder groups. A total body dual-energy X-ray absorptiometry (DXA) scanner was used to assess the body muscle, fat and bone composition. RESULTS rPTH significantly increased BMD spine at 1 year (p = 0.000). Twenty-four-hour urinary calcium was significantly increased at 6 months in the responder group (p = 0.00). There was a trend to an increase in the fat and muscle mass (p = 0.52 and 0.45, respectively), and it was not negatively affected by rPTH. Bone turnover markers (P1NP and OC) did not show statistically significant difference over time between responders and non-responders (p = 0.74 and p = 0.19, respectively). CONCLUSIONS Hypercalciuria which is a frequent feature in osteoporotic population may predict non-responders at 6 months of rPTH, and it may help to optimise individual patient's treatment. Unlike endogenous PTH in pathological conditions, rPTH is anabolic to bone and has no detrimental effects on the body fat and muscle composition.
Collapse
Affiliation(s)
- Najia Siddique
- Bone Health Unit, Mercers Institute for Successful Aging, St. James's Hospital, Dublin, Ireland.
| | - Nessa Fallon
- Bone Health Unit, Mercers Institute for Successful Aging, St. James's Hospital, Dublin, Ireland
| | - Georgina Steen
- Bone Health Unit, Mercers Institute for Successful Aging, St. James's Hospital, Dublin, Ireland
| | - James B Walsh
- Bone Health Unit, Mercers Institute for Successful Aging, St. James's Hospital, Dublin, Ireland
| | - Miriam C Casey
- Bone Health Unit, Mercers Institute for Successful Aging, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
37
|
Lisowska B, Kosson D, Domaracka K. Lights and shadows of NSAIDs in bone healing: the role of prostaglandins in bone metabolism. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1753-1758. [PMID: 29950809 PMCID: PMC6014392 DOI: 10.2147/dddt.s164562] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, we discuss the current data about the anatomy and function of bone tissue with particular regard to influence of prostaglandins. Bone tissue dynamics are characterized by a constant remodeling process that involves all bone tissue cells. The communication between bone component cells and other organs is necessary for bone remodeling equilibrium and confirms the dynamic character of bone tissue. Remodeling is also a vital element of healing processes and in adapting bone tissue to stress responses. Therefore, in our review we present the role and significance of bone cells and signaling pathways enabling maintenance of bone homeostasis and remodeling process stability. Cyclooxygenase (COX) is a crucial enzyme in the production of prostaglandins and thromboxane. We focus on the role of COX isoenzymes with highlighting their connection with bone formation, resorption and repair. Prostaglandins are known as arachidonic acid metabolites acting through specific membrane receptors and play an important role in the regulation of osteoblast and osteoclast functions. Prostaglandin PGE2 with its four defined receptors (EP1R, EP2R, EP3R and EP4R) is crucial to maintain balanced bone turnover. Their stimulatory or inhibitory effects appear to depend on different structure-activity relations and signaling pathways. We have described the role of these receptors in bone metabolism and healing. We conclude that the activity of prostaglandins in bone tissue is defined by maintaining bone remodeling balance and its reactions to humoral mediators and mechanical stress. Most data confirm that among prostaglandins, PGE2 takes part in all processes of trauma response, including homeostasis, inflammation and healing, and plays a key role in bone physiology.
Collapse
Affiliation(s)
- Barbara Lisowska
- Department of Anesthesiology and Intensive Care, John Paul II Western Hospital in Grodzisk Mazowiecki, Grodzisk Mazowiecki, Poland
| | - Dariusz Kosson
- Division of Teaching, Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Domaracka
- Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
38
|
Komatsu J, Nagura N, Iwase H, Igarashi M, Ohbayashi O, Nagaoka I, Kaneko K. Effect of intermittent administration of teriparatide on the mechanical and histological changes in bone grafted with β-tricalcium phosphate using a rabbit bone defect model. Exp Ther Med 2018; 15:19-30. [PMID: 29387179 PMCID: PMC5768114 DOI: 10.3892/etm.2017.5424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/10/2017] [Indexed: 11/10/2022] Open
Abstract
Grafting β-tricalcium phosphate (TCP) is a well-established method for restoring bone defects; however, there is concern that the mechanical stability of the grafted β-TCP is not maintained during bone translation. Teriparatide has an anabolic effect, stimulating bone formation and increasing bone mineral density for the treatment of osteoporosis. The aim of the present study was to evaluate the effect of intermittent teriparatide treatment on changes in bone grafted with β-TCP using a rabbit bone defect model. Bone defects (5×15 mm) were created in the distal femoral condyle of Japanese white rabbits, and β-TCP granules of two different total porosities were manually grafted. Teriparatide (40 µg/kg) or 0.2% rabbit serum albumin solution as a vehicle control was subcutaneously injected three times per week following the surgery. At 4 or 8 weeks post-surgery, serum samples were obtained and the levels of γ-carboxylated osteocalcin (Gla-OC) were quantified using ELISA. Histomorphometry was also performed using sections of graft sites following staining for tartrate resistant acid phosphatase. Activity and mechanical strength (maximum shear strength, maximum shear stiffness and total energy absorption) were evaluated using an axial push-out load to failure test. Teriparatide treatment significantly increased (P<0.05) the serum levels of Gla-OC, a specific marker for bone formation, suggesting that teriparatide enhances bone formation in β-TCP-grafted rabbits. Furthermore teriparatide increased the degradation of β-TCP by bone remodeling (P<0.05) and promoted the formation of new bone following application of the graft compared with the control group (P<0.01). Furthermore, teriparatide suppressed the reduction in mechanical strength (P<0.05) during bone translation in bone defects grafted with β-TCP. The results of the present study demonstrate that teriparatide is effective in maintaining the mechanical stability of grafted β-TCP, possibly by promoting new bone formation.
Collapse
Affiliation(s)
- Jun Komatsu
- Department of Medicine for Motor Organs, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nana Nagura
- Department of Medicine for Motor Organs, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hideaki Iwase
- Department of Bio-Engineering, Juntendo University Institute of Casualty Center, Izunokuni, Shizuoka 410-2295, Japan
| | - Mamoru Igarashi
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Osamu Ohbayashi
- Department of Orthopaedic Surgery, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka 410-2295, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organs, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
39
|
Altman-Singles AR, Jeong Y, Tseng WJ, de Bakker CMJ, Zhao H, Lott C, Robberts J, Qin L, Han L, Kim DG, Liu XS. Intermittent Parathyroid Hormone After Prolonged Alendronate Treatment Induces Substantial New Bone Formation and Increases Bone Tissue Heterogeneity in Ovariectomized Rats. J Bone Miner Res 2017; 32:1703-1715. [PMID: 28467646 PMCID: PMC5550334 DOI: 10.1002/jbmr.3165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/15/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023]
Abstract
Postmenopausal osteoporosis is often treated with bisphosphonates (eg, alendronate, [ALN]), but oversuppression of bone turnover by long-term bisphosphonate treatment may decrease bone tissue heterogeneity. Thus, alternate treatment strategies after long-term bisphosphonates are of great clinical interest. The objective of the current study was to determine the effect of intermittent parathyroid hormone (PTH) following 12 weeks of ALN (a bisphosphonate) treatment in 6-month-old, ovariectomized (OVX) rats on bone microarchitecture, bone remodeling dynamics, and bone mechanical properties at multiple length scales. By using in vivo μCT and 3D in vivo dynamic bone histomorphometry techniques, we demonstrated the efficacy of PTH following ALN therapy for stimulating new bone formation, and increasing trabecular thickness and bone volume fraction. In healthy bone, resorption and formation are coupled and balanced to sustain bone mass. OVX results in resorption outpacing formation, and subsequent bone loss and reduction in bone tissue modulus and tissue heterogeneity. We showed that ALN treatment effectively reduced bone resorption activity and regained the balance with bone formation, preventing additional bone loss. However, ALN treatment also resulted in significant reductions in the heterogeneity of bone tissue mineral density and tissue modulus. On the other hand, PTH treatment was able to shift the bone remodeling balance in favor of formation, with or without a prior treatment with ALN. Moreover, by altering the tissue mineralization, PTH alleviated the reduction in heterogeneity of tissue material properties induced by prolonged ALN treatment. Furthermore, switching to PTH treatment from ALN improved bone's postyield mechanical properties at both the whole bone and apparent level compared to ALN alone. The current findings suggest that intermittent PTH treatment should be considered as a viable treatment option for patients with prior treatment with bisphosphonates. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Allison R. Altman-Singles
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Yonghoon Jeong
- College of Dentistry, Division of Orthodontics, The Ohio State University, Columbus, OH, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chantal M. J. de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, China
| | - Carina Lott
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juhanna Robberts
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Do-Gyoon Kim
- College of Dentistry, Division of Orthodontics, The Ohio State University, Columbus, OH, USA
| | - X. Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Zebaze R, Takao-Kawabata R, Peng Y, Zadeh AG, Hirano K, Yamane H, Takakura A, Isogai Y, Ishizuya T, Seeman E. Increased cortical porosity is associated with daily, not weekly, administration of equivalent doses of teriparatide. Bone 2017; 99:80-84. [PMID: 28323145 DOI: 10.1016/j.bone.2017.03.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The pharmacokinetic profile of parathyroid hormone (PTH) determines its effects on bone resorption and formation. When administered intermittently, anabolic effects are favored in comparison with the continuous treatment. Among the intermittent treatment regimens, lower frequency of administration may have a lower effect on bone remodeling. We therefore hypothesized that weekly administration of teriparatide will produce less increase in intracortical remodeling and porosity than reported using daily treatment. METHODS We treated 17 female New Zealand white rabbits aged 6months for 1month with teriparatide [human PTH(1-34)] as follows. (i) Vehicle-treated Control (n=4); (ii) 20μg/kg daily (n=3); (iii) 40μg/kg daily (n=3); (iv) 140μg/kg weekly (n=3); (v) 280μg/kg weekly (n=4). Proximal femurs were imaged ex vivo using micro-CT (Scanco Viva CT-40) at 15μmvoxel size. Areas, pore size, and porosity were analyzed on the total, compact cortex (CC), and transitional zones in a 10mm length region of interest (ROI) starting at the midshaft using StrAx1.0. RESULTS Compared to controls, the 20μg/kg daily was associated with 3.0% higher porosity in the transitional zone (p=0.09) while the 40μg/kg daily was associated with a higher porosity in the cortex (8.7%; p=0.04) and in the transitional zone (5.7%; p=0.007). The daily regimens were also associated with a greater proportion of porosity due to pores >15μm2; particularly in the transitional zone where 20 and 40μg/kg daily increased porosity 2 fold (p=0.06) and 5 fold (p=0.04) relative controls respectively. The 140 and 280μg/kg weekly were not associated with an increase in porosity. There was no difference in total, compact or transitional zone cross sectional areas between the groups. CONCLUSION Effects of intermittent teriparatide depend on the dose and frequency of administration. Daily dosing, particularly the higher dose, but not weekly dosing, increased cortical porosity. Work is needed to investigate the effects of the regimens on bone formation.
Collapse
Affiliation(s)
- Roger Zebaze
- Dept Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia; StraxCorp PTY LTD, Melbourne, Australia.
| | - Ryoko Takao-Kawabata
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Yu Peng
- StraxCorp PTY LTD, Melbourne, Australia
| | - Ali Ghasem Zadeh
- Dept Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia
| | - Kyoko Hirano
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Hiroshi Yamane
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Aya Takakura
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Yukihiro Isogai
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Toshinori Ishizuya
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Ego Seeman
- Dept Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia; StraxCorp PTY LTD, Melbourne, Australia; Institute for Health and Ageing, Australian Catholic University, Australia
| |
Collapse
|
41
|
Ma YL, Hamang M, Lucchesi J, Bivi N, Zeng Q, Adrian MD, Raines SE, Li J, Kuhstoss SA, Obungu V, Bryant HU, Krishnan V. Time course of disassociation of bone formation signals with bone mass and bone strength in sclerostin antibody treated ovariectomized rats. Bone 2017; 97:20-28. [PMID: 27939957 DOI: 10.1016/j.bone.2016.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Sclerostin antibodies increase bone mass by stimulating bone formation. However, human and animal studies show that bone formation increases transiently and returns to pre-treatment level despite ongoing antibody treatment. To understand its mechanism of action, we studied the time course of bone formation, correlating the rate and extent of accrual of bone mass and strength after sclerostin antibody treatment. Ovariectomized (OVX) rats were treated with a sclerostin-antibody (Scle-ab) at 20mg/kg sc once weekly and sacrificed at baseline and 2, 3, 4, 6, and 8weeks post-treatment. In Scle-ab treated rats, serum PINP and OCN rapidly increased at week 1, peaked around week 3, and returned to OVX control levels by week 6. Transcript analyses from the distal femur revealed an early increase in bone formation followed by a sustained decrease in bone resorption genes. Lumbar vertebral (LV) osteoblast surface increased 88% by week 2, and bone formation rate (BFR/BS) increased 138% by week 4. Both parameters were below OVX control by week 8. Bone formation was primarily a result of modeling based formation. Endocortical and periosteal BFR/BS peaked around week 4 at 313% and 585% of OVX control, respectively. BFR/BS then declined but remained higher than OVX control on both surfaces through week 8. Histomorphometric analyses showed LV-BV/TV did not further increase after week 4, while BMD continued to increase at LV, mid femur (MF), and femoral neck (FN) through week 8. Biomechanical tests showed a similar improvement in bone strength through 8weeks in MF and FN, but bone strength plateaued between weeks 6 and 8 for LV. Our data suggest that bone formation with Scle-ab treatment is rapid and modeling formation dominated in OVX rats. Although transient, the bone formation response persists longer in cortical than trabecular bone.
Collapse
Affiliation(s)
- Yanfei L Ma
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Matthew Hamang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan Lucchesi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Nicoletta Bivi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Qianqiang Zeng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mary D Adrian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Sarah E Raines
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jiliang Li
- Indiana University-Purdue University, Indianapolis, IN, USA
| | - Stuart A Kuhstoss
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Victor Obungu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Henry U Bryant
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Venkatesh Krishnan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
42
|
Martin TJ, Seeman E. Abaloparatide Is an Anabolic, but Does It Spare Resorption? J Bone Miner Res 2017; 32:11-16. [PMID: 27859635 DOI: 10.1002/jbmr.3042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 01/04/2023]
Affiliation(s)
- T John Martin
- St Vincent's Institute of Medical Research, Melbourne, Australia
- Department of Medicine, St Vincent's Health, University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia
- Institute of Health and Ageing, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
43
|
Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:831-40. [DOI: 10.1016/j.msec.2016.07.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 01/05/2023]
|
44
|
Abstract
Abaloparatide is an investigational analog of human PTHrP (1-34) being developed for the treatment of osteoporosis. The amino-acid sequence of abaloparatide is identical to that of PTHrP in the first 20 amino-acids, while over half of the remaining amino-acids are different. Some studies in animals and in humans reported that abaloparatide presented a potent anabolic activity with reduced effects on bone resorption as compared to that observed with teriparatide. This may be due to a more transient signaling response of abaloparatide related to differing affinities of the two drugs to the specific conformations of the PTH1 receptor. In the ACTIVE study, a phase 3 fracture prevention trial, 2460 postmenopausal osteoporotic women at high risk for fracture were randomized to receive 18-months of either daily abaloparatide 80 μg s.c., placebo or teriparatide 20 μg s.c. The reduction in vertebral fracture rate with respect to placebo was 86% in the abaloparatide group and 80% in the teriparatide group. Abaloparatide also produced a significant 43% reduction in the rate of nonvertebral fractures (2.7 vs 4.0% with placebo, p=0.04) whereas teriparatide determined a 28% reduction (2.9 vs 4.0% with placebo, p=NS). Abaloparatide or teriparatide showed similar increases in BMD at lumbar spine, while the patients of the abaloparatide group showed significantly greater increases in BMD at both total hip (4.18 vs 3.26%) and femoral neck (3.60 vs 2.66%). Therefore, if the preliminary data of the ACTIVE study is confirmed, abaloparatide may become an important option for the anabolic treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
45
|
|
46
|
Nishikawa A, Ishida T, Taketsuna M, Yoshiki F, Enomoto H. Safety and effectiveness of daily teriparatide in a prospective observational study in patients with osteoporosis at high risk of fracture in Japan: final report. Clin Interv Aging 2016; 11:913-25. [PMID: 27462147 PMCID: PMC4939987 DOI: 10.2147/cia.s107285] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This postmarketing surveillance study assessed the safety and effectiveness of teriparatide in patients with osteoporosis at high risk of fracture in Japan. The patients received teriparatide 20 μg daily by subcutaneous injection, for a maximum of 24 months. Safety and effectiveness analyses were based on data from 1,847 patients who were predominantly female (92.6%) with a mean age of 75.4 years. A total of 157 adverse drug reactions (ADRs) were reported in 140 (7.58%) patients; the most common ADRs were hyperuricemia, nausea, and dizziness. Only six (0.32%) patients reported serious ADRs, the most common being nausea (two patients; 0.1%). Persistence with teriparatide treatment was 60.8% and 39.1% at 18 and 24 months, respectively. There were significant increases in biomarkers for bone formation (procollagen type I N-terminal propeptide and bone-specific alkaline phosphatase) and bone resorption (collagen type I cross-linked C telopeptide and tartrate-resistant acid phosphatase 5b) throughout the study. These were accompanied by significant increases in bone mineral density and low incidences of new vertebral and nonvertebral fractures. Patient-reported measurements for health-related quality of life revealed significant improvements from baseline in back pain and overall health-related quality of life (Short Form-8™ health survey). The results of this 24-month postmarketing surveillance study imply that teriparatide has a favorable safety profile and is effective in the treatment of patients with osteoporosis at high risk of fracture in Japan. Teriparatide may also be a useful treatment for osteoporosis in other societies with aging populations.
Collapse
Affiliation(s)
| | - Takehiro Ishida
- Clinical Development Operations and Innovations, Medicine Development Unit Japan
| | | | - Fumito Yoshiki
- Medical Sciences, Medicines Development Unit Japan, Eli Lilly Japan K.K., Kobe, Japan
| | - Hiroyuki Enomoto
- Medical Sciences, Medicines Development Unit Japan, Eli Lilly Japan K.K., Kobe, Japan
| |
Collapse
|
47
|
Eriksen EF, Brown JP. Commentary: Concurrent administration of PTH and antiresorptives: Additive effects or DXA cosmetics. Bone 2016; 86:139-42. [PMID: 26944033 DOI: 10.1016/j.bone.2016.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 02/15/2016] [Accepted: 02/20/2016] [Indexed: 01/08/2023]
Abstract
Osteoanabolic therapy with parathyroid hormone (PTH(1-84)) or the PTH analogues teriparatide (PTH(1-34), TPTD) and abaloparatide induces a positive remodeling balance and increases modeling and remodeling activity on bone surfaces. As the anabolic action of PTH is primarily remodeling based increased bone turnover maximizes bone accrual. Increased remodeling, however, also increases cortical porosity and reduces mineralization of newly formed bone, which may cause initial reductions in BMD, particularly at sites rich in cortical bone. Increased cortical porosity may also have negative consequences for bone strength. Consequently, an interest developed in concurrent therapies offsetting the potential early negative cortical bone effects developed, and several studies using varying concurrent combinations of TPTD or PTH(1-84) with various antiresorptive (anti-catabolic) agents (estrogen, SERMs, bisphosphonates and denosumab) have been published. This commentary addresses the discrepancy between changes in areal bone mineral density (BMD) and bone turnover markers (BTM) in concurrent therapy studies leading to possible misinterpretations of the results. In studies of concurrent therapies increases in BMD are generally accompanied by decreases in biochemical markers of bone turnover. This includes Procollagen Type I N-Terminal Propetide (PINP), which has emerged as a reliable marker of bone formation during osteoanabolic therapy. We therefore want to submit, that the larger increases in BMD seen initially in patients on concurrent therapy mask the potential for later reduced osteoanabolic action of PTH. This notion is corroborated by: 1) the lesser impairment of bone anabolism seen with milder antiresorptive modalities like hormone replacement therapy (HRT) or Selective Estrogen Receptor Modulators (SERMs); 2) the changes in BMD seen in extension studies where treatment naïve patients previously treated with PTH alone are crossed over to antiresorptive drugs. We therefore advise against a general use of concurrent therapy with PTH and antiresorptive agents, as it entails blunting of osteoanabolic action of PTH in the long run.
Collapse
Affiliation(s)
- Erik Fink Eriksen
- Dept. of Clinical Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Norway
| | - Jacques P Brown
- Dept. of Rheumatology, Laval University and CHU de Québec (CHUL) Research Centre, Quebec City, Canada
| |
Collapse
|
48
|
Ischiopubic rami excision for obstructive dyspareunia in hyperparathyroidism. CURRENT ORTHOPAEDIC PRACTICE 2016. [DOI: 10.1097/bco.0000000000000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Current Knowledge, Drug-Based Therapeutic Options and Future Directions in Managing Osteoporosis. Clin Rev Bone Miner Metab 2016. [DOI: 10.1007/s12018-016-9207-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Chen B, Lin T, Yang X, Li Y, Xie D, Cui H. Intermittent parathyroid hormone (1-34) application regulates cAMP-response element binding protein activity to promote the proliferation and osteogenic differentiation of bone mesenchymal stromal cells, via the cAMP/PKA signaling pathway. Exp Ther Med 2016; 11:2399-2406. [PMID: 27284327 DOI: 10.3892/etm.2016.3177] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/01/2016] [Indexed: 12/14/2022] Open
Abstract
The potential effects of intermittent parathyroid hormone (1-34) [PTH (1-34)] administration on bone formation have previously been investigated. A number of studies have suggested that the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway is associated with PTH-induced osteogenic differentiation. However, the precise signaling pathways and molecular mechanism by which PTH (1-34) induces the osteogenic differentiation of bone mesenchymal stromal cells (BMSCs) remain elusive. The purpose of the present study was to investigate the mechanism underlying the effect of intermittent PTH (1-34) application on the proliferation and osteogenic differentiation of BMSCs. BMSCs were randomly divided into four groups, as follows: Osteogenic medium (control group); osteogenic medium and intermittent PTH (1-34); osteogenic medium and intermittent PTH (1-34) plus the adenylyl cyclase activator forskolin; and osteogenic medium and intermittent PTH (1-34) plus the PKA inhibitor H-89. A cell proliferation assay revealed that PTH (1-34) stimulates BMSC proliferation via the cAMP/PKA pathway. Furthermore, reverse transcription-quantitative polymerase chain reaction, alkaline phosphatase activity testing and cell examination using Alizarin Red S staining demonstrated that PTH (1-34) administration promotes osteogenic differentiation and mineralization, mediated by the cAMP/PKA pathway. Crucially, the results of western blot analyses suggested that PTH (1-34) treatment and, to a greater degree, PTH (1-34) plus forskolin treatment caused an increase in phosphorylated cAMP response element binding protein (p-CREB) expression, but the effect of PTH on p-CREB expression was blocked by H-89. In conclusion, the current study demonstrated that intermittent PTH (1-34) administration regulates downstream proteins, particularly p-CREB, in the cAMP/PKA signaling pathway, to enhance the proliferation, osteogenic differentiation and mineralization of BMSCs.
Collapse
Affiliation(s)
- Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Lin
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoxi Yang
- Department of Spine Surgery, Chinese PLA General Hospital (301 Hospital), Beijing 100853, P.R. China
| | - Yiqiang Li
- Department of Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Denghui Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Haowen Cui
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|