1
|
Liu Q, Xue Y, Guo J, Tao L, Zhu Y. Citrate: a key signalling molecule and therapeutic target for bone remodeling disorder. Front Endocrinol (Lausanne) 2025; 15:1512398. [PMID: 39886032 PMCID: PMC11779597 DOI: 10.3389/fendo.2024.1512398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Bone remodeling is a continuous cyclic process that maintains and regulates bone structure and strength. The disturbance of bone remodeling leads to a series of bone metabolic diseases. Recent studies have shown that citrate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, plays an important role in bone remodeling. But the exact mechanism is still unclear. In this study, we focused on the systemic regulatory mechanism of citrate on bone remodeling, and found that citrate is involved in bone remodeling in multiple ways. The participation of citrate in oxidative phosphorylation (OXPHOS) facilitates the generation of ATP, thereby providing substantial energy for bone formation and resorption. Osteoclast-mediated bone resorption releases citrate from bone mineral salts, which is subsequently released as an energy source to activate the osteogenic differentiation of stem cells. Finally, the differentiated osteoblasts secrete into the bone matrix and participate in bone mineral salts formation. As a substrate of histone acetylation, citrate regulates the expression of genes related to bone formation and bone reabsorption. Citrate is also a key intermediate in the metabolism and synthesis of glucose, fatty acids and amino acids, which are three major nutrients in the organism. Citrate can also be used as a biomarker to monitor bone mass transformation and plays an important role in the diagnosis and therapeutic evaluation of bone remodeling disorders. Citrate imbalance due to citrate transporter could result in the supression of osteoblast/OC function through histone acetylation, thereby contributing to disorders in bone remodeling. Therefore, designing drugs targeting citrate-related proteins to regulate bone citrate content provides a new direction for the drug treatment of diseases related to bone remodeling disorders.
Collapse
Affiliation(s)
| | | | | | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
3
|
Kapat K, Kumbhakarn S, Sable R, Gondane P, Takle S, Maity P. Peptide-Based Biomaterials for Bone and Cartilage Regeneration. Biomedicines 2024; 12:313. [PMID: 38397915 PMCID: PMC10887361 DOI: 10.3390/biomedicines12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The healing of osteochondral defects (OCDs) that result from injury, osteochondritis, or osteoarthritis and bear lesions in the cartilage and bone, pain, and loss of joint function in middle- and old-age individuals presents challenges to clinical practitioners because of non-regenerative cartilage and the limitations of current therapies. Bioactive peptide-based osteochondral (OC) tissue regeneration is becoming more popular because it does not have the immunogenicity, misfolding, or denaturation problems associated with original proteins. Periodically, reviews are published on the regeneration of bone and cartilage separately; however, none of them addressed the simultaneous healing of these tissues in the complicated heterogeneous environment of the osteochondral (OC) interface. As regulators of cell adhesion, proliferation, differentiation, angiogenesis, immunomodulation, and antibacterial activity, potential therapeutic strategies for OCDs utilizing bone and cartilage-specific peptides should be examined and investigated. The main goal of this review was to study how they contribute to the healing of OCDs, either alone or in conjunction with other peptides and biomaterials.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
5
|
Cheng S, Zhao C, Liu S, Chen B, Chen H, Luo X, Wei L, Du C, Xiao P, Lei Y, Yan Y, Huang W. Injectable Self-Setting Ternary Calcium-Based Bone Cement Promotes Bone Repair. ACS OMEGA 2023; 8:16809-16823. [PMID: 37214722 PMCID: PMC10193540 DOI: 10.1021/acsomega.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Bone defects, especially large ones, are clinically difficult to treat. The development of new bone repair materials exhibits broad application prospects in the clinical treatment of trauma. Bioceramics are considered to be one of the most promising biomaterials owing to their good biocompatibility and bone conductivity. In this study, a self-curing bone repair material having a controlled degradation rate was prepared by mixing calcium citrate, calcium hydrogen phosphate, and semi-hydrated calcium sulfate in varying proportions, and its properties were comprehensively evaluated. In vitro cell experiments and RNA sequencing showed that the composite cement activated PI3K/Akt and MAPK/Erk signaling pathways to promote osteogenesis by promoting the proliferation and osteoblastic differentiation of mesenchymal stem cells. In a rat model with femoral condyle defects, the composite bone cement showed excellent bone repair effect and promoted bone regeneration. The injectable properties of the composite cement further improved its practical applicability, and it can be applied in bone repair, especially in the repair of irregular bone defects, to achieve superior healing.
Collapse
Affiliation(s)
- Shengwen Cheng
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Senrui Liu
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bowen Chen
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hong Chen
- College
of Physics, Sichuan University, Chengdu 610064, China
| | - Xuefeng Luo
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Pengcheng Xiao
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiting Lei
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yonggang Yan
- College
of Physics, Sichuan University, Chengdu 610064, China
| | - Wei Huang
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
7
|
Abdali Z, Aminzare M, Chow A, Dorval Courchesne NM. Bacterial collagen-templated synthesis and assembly of inorganic particles. Biomed Mater 2022; 18. [PMID: 36301706 DOI: 10.1088/1748-605x/ac9d7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Collagen has been used as a common template for mineralization and assembly of inorganic particles, because of the special arrangement of its fibrils and the presence of charged residues. Streptococcal bacterial collagen, which is inherently secreted on the surface ofStreptococcus pyogenes, has been progressively used as an alternative for type I animal collagen. Bacterial collagen is rich in charged amino acids, which can act as a substrate for the nucleation and growth of inorganic particles. Here, we show that bacterial collagen can be used to nucleate three different inorganic materials: hydroxyapatite crystals, silver nanoparticles, and silica nanoparticles. Collagen/mineral composites show an even distribution of inorganic particles along the collagen fibers, and the particles have a more homogenous size compared with minerals that are formed in the absence of the collagen scaffold. Furthermore, the gelation of silica occurring during mineralization represents a means to produce processable self-standing collagen composites, which is challenging to achieve with bacterial collagen alone. Overall, we highlight the advantage of simply combining bacterial collagen with minerals to expand their applications in the fields of biomaterials and tissue engineering, especially for bone regenerative scaffolds.
Collapse
Affiliation(s)
- Zahra Abdali
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Masoud Aminzare
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Amy Chow
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
8
|
Hu X, Gong H, Hou A, Wu X, Shi P, Zhang Y. Effects of continuous subcutaneous insulin infusion on the microstructures, mechanical properties and bone mineral compositions of lumbar spines in type 2 diabetic rats. BMC Musculoskelet Disord 2022; 23:511. [PMID: 35637472 PMCID: PMC9150354 DOI: 10.1186/s12891-022-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Continuous subcutaneous insulin infusion (CSII) for the treatment of type 2 diabetes (T2D) can improve the structure and strength of femur of rats, but the effect of CSII treatment on the lumbar spine of T2D rats is unknown. The purpose of this study is to investigate the effects of CSII on the microstructure, multi-scale mechanical properties and bone mineral composition of the lumbar spine in T2D rats. METHODS Seventy 6-week-old male Sprague-Dawley (SD) rats were divided into two batches, each including Control, T2D, CSII and Placebo groups, and the duration of insulin treatment was 4-week and 8-week, respectively. At the end of the experiment, the rats were sacrificed to take their lumbar spine. Microstructure, bone mineral composition and nanoscopic-mesoscopic-apparentand-macroscopic mechanical properties were evaluated through micro-computed tomography (micro-CT), Raman spectroscopy, nanoindentation test, nonlinear finite element analysis and compression test. RESULTS It was found that 4 weeks later, T2D significantly decreased trabecular thickness (Tb.Th), nanoscopic-apparent and partial mesoscopic mechanical parameters of lumbar spine (P < 0.05), and significantly increased bone mineral composition parameters of cortical bone (P < 0.05). It was shown that CSII significantly improved nanoscopic-apparent mechanical parameters (P < 0.05). In addition, 8 weeks later, T2D significantly decreased bone mineral density (BMD), bone volume fraction (BV/TV) and macroscopic mechanical parameters (P < 0.05), and significantly increased bone mineral composition parameters of cancellous bone (P < 0.05). CSII treatment significantly improved partial mesoscopic-macroscopic mechanical parameters and some cortical bone mineral composition parameters (P < 0.05). CONCLUSIONS CSII treatment can significantly improve the nanoscopic-mesoscopic-apparent-macroscopic mechanical properties of the lumbar spine in T2D rats, as well as the bone structure and bone mineral composition of the lumbar vertebrae, but it will take longer treatment time to restore the normal level. In addition, T2D and CSII treatment affected bone mineral composition of cortical bone earlier than cancellous bone of lumbar spine in rat. Our study can provide evidence for clinical prevention and treatment of T2D-related bone diseases.
Collapse
Affiliation(s)
- Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Aiqi Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Peipei Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
| |
Collapse
|
9
|
Vrchovecká K, Pávková-Goldbergová M, Engqvist H, Pujari-Palmer M. Cytocompatibility and Bioactive Ion Release Profiles of Phosphoserine Bone Adhesive: Bridge from In Vitro to In Vivo. Biomedicines 2022; 10:biomedicines10040736. [PMID: 35453486 PMCID: PMC9044752 DOI: 10.3390/biomedicines10040736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
One major challenge when developing new biomaterials is translating in vitro testing to in vivo models. We have recently shown that a single formulation of a bone tissue adhesive, phosphoserine modified cement (PMC), is safe and resorbable in vivo. Herein, we screened many new adhesive formulations, for cytocompatibility and bioactive ion release, with three cell lines: MDPC23 odontoblasts, MC3T3 preosteoblasts, and L929 fibroblasts. Most formulations were cytocompatible by indirect contact testing (ISO 10993-12). Formulations with larger amounts of phosphoserine (>50%) had delayed setting times, greater ion release, and cytotoxicity in vitro. The trends in ion release from the adhesive that were cured for 24 h (standard for in vitro) were similar to release from the adhesives cured only for 5−10 min (standard for in vivo), suggesting that we may be able to predict the material behavior in vivo, using in vitro methods. Adhesives containing calcium phosphate and silicate were both cytocompatible for seven days in direct contact with cell monolayers, and ion release increased the alkaline phosphatase (ALP) activity in odontoblasts, but not pre-osteoblasts. This is the first study evaluating how PMC formulation affects osteogenic cell differentiation (ALP), cytocompatibility, and ion release, using in situ curing conditions similar to conditions in vivo.
Collapse
Affiliation(s)
- Kateřina Vrchovecká
- Department of Pathology Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (K.V.); (M.P.-G.)
| | - Monika Pávková-Goldbergová
- Department of Pathology Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (K.V.); (M.P.-G.)
| | - Håkan Engqvist
- Department of Materials Science and Engineering, Applied Material Science, Uppsala University, 75103 Uppsala, Sweden
- Correspondence: (H.E.); (M.P.-P.)
| | - Michael Pujari-Palmer
- Department of Materials Science and Engineering, Applied Material Science, Uppsala University, 75103 Uppsala, Sweden
- Correspondence: (H.E.); (M.P.-P.)
| |
Collapse
|
10
|
Wibowo H, Widiyanti P, Asmiragani S. The role of chondroitin sulfate to bone healing indicators and compressive strength. J Basic Clin Physiol Pharmacol 2021; 32:631-635. [PMID: 34214381 DOI: 10.1515/jbcpp-2020-0406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/21/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The function of bone is to protect the vital organs of the body. Mechanical strength, especially compressive strength, plays an important role in fulfilling its function. Fracture healing depends on several substances, such as collagen, glucosaminoglycane and proteoglycan. Chondroitin sulfate as part of proteoglycane is an important component in the formation of callus in fracture healing. The aim of this study is to prove chondroitin sulfate role in supporting fracture healing. METHODS The in vivo experiment has been performed to Rattus novergicus which met the inclusion criteria (age 3 months, 200-300 g weight), 18 males of R. norvegicus, Wistar strain, were divided into three equal groups of six rats each. After being anesthetized, fracturation was performed in a sterile manner to get simple fracture. The area of dissection is in half length of tibial bone and the fracture incision is about 1 cm. Then it followed by immobilization of the lower leg bone on one side with a cast. The first group was given chondroitin sulfate 7 mg in 2 mL distilled water/200 g weight for 2 weeks. The second group was given chondroitin sulfate 7 mg in 2 mL distilled water/200 g weight for 4 weeks. The third group was given distilled water. This research was focused on treatment of cartilage. The callus position is in half length of tibial bone. RESULTS There were significant differences in the increase of TGF-β, the number of osteoblasts and callus compressive strength in the groups with chondroitin sulfate treatment for 2 and 4 weeks, compared to the control group (p<0.01). CONCLUSIONS Administering chondroitin sulfate in a dose of 7 mg in 2 mL distilled water for 2 and 4 weeks may increase production of TGF-β, the osteoblast numbers and the callus compressive strength in fracture healing.
Collapse
Affiliation(s)
- Herry Wibowo
- Laboratory of Physiology, Department of Biomedical, Faculty of Medicine, Universitas Surabaya, Surabaya, Indonesia
| | - Prihartini Widiyanti
- Biomedical Engineering Study Program, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Syaifullah Asmiragani
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
11
|
Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2096. [PMID: 33919199 PMCID: PMC8122483 DOI: 10.3390/ma14092096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Regenerative medicine is becoming a rapidly evolving technique in today's biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (A.D.); (W.F.); (M.G.); (S.K.-K.); (D.S.); (A.T.)
| |
Collapse
|
12
|
Wu X, Dai H, Yu S, Zhao Y, Long Y, Li W, Tu J. Magnesium Calcium Phosphate Cement Incorporating Citrate for Vascularized Bone Regeneration. ACS Biomater Sci Eng 2020; 6:6299-6308. [PMID: 33449642 DOI: 10.1021/acsbiomaterials.0c00929] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of bioactive bone cement is still a challenge for vascularized bone regeneration. Citrate participated in multiple biological processes, such as energy metabolism, osteogenesis, and angiogenesis. However, it is difficult to obtain a thorough and comprehensive understanding on osteogenic effects of exogenous citrate from different experimental conditions and treatment methods. In this study, by using a magnesium calcium phosphate cement (MCPC) matrix, we investigated the dual effect of exogenous citrate on osteogenesis and angiogenesis. Our studies show that citrate elevates the osteogenic function of osteoblasts under low doses and the angiogenic function of vascular endothelial cells under a broader dose range. These findings furnish a new strategy for regulating angiogenesis and osteogenic differentiation by administration of citrate in MCPC, driving the development of bioactive bone repair materials.
Collapse
Affiliation(s)
- Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Suchun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yanan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yanpiao Long
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Wenqin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
13
|
Hulsart-Billström G, Stelzl C, Procter P, Pujari-Palmer M, Insley G, Engqvist H, Larsson S. In vivo safety assessment of a bio-inspired bone adhesive. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:24. [PMID: 32036502 PMCID: PMC7007900 DOI: 10.1007/s10856-020-6362-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/08/2020] [Indexed: 05/14/2023]
Abstract
A new class of materials, bone adhesives, could revolutionise the treatment of highly fragmented fractures. We present the first biological safety investigation of a bio-inspired bone adhesive. The formulation was based upon a modified calcium phosphate cement that included the amino acid phosphoserine. This material has recently been described as substantially stronger than other bioresorbable calcium phosphate cements. Four adhesive groups with the active substance (phosphoserine) and two control groups without phosphoserine were selected for in vitro and in vivo biocompatibility testing. The test groups were subject for cell viability assay and subcutaneous implantation in rats that was followed by gene expression analysis and histology assessment after 6 and 12 weeks. All adhesive groups supported the same rate of cell proliferation compared to the α-TCP control and had viability between 45-64% when compared to cell control. There was no evidence of an increased immune response or ectopic bone formation in vivo. To conclude, this bio-inspired bone adhesive has been proven to be safe, in the present study, without any harmful effects on the surrounding soft tissue.
Collapse
Affiliation(s)
- Gry Hulsart-Billström
- Division of Orthopaedics, Department of Surgical Sciences, Uppsala University, Uppsala, 751 85, Sweden.
| | - Christina Stelzl
- Division of Orthopaedics, Department of Surgical Sciences, Uppsala University, Uppsala, 751 85, Sweden
| | - Philip Procter
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, 751 21, Sweden
| | - Michael Pujari-Palmer
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, 751 21, Sweden
| | - Gerard Insley
- GPBio Ltd, Unit 4D, Western Business Park, Shannnon, Co. Clare, Ireland
| | - Håkan Engqvist
- Division of Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, 751 21, Sweden
| | - Sune Larsson
- Division of Orthopaedics, Department of Surgical Sciences, Uppsala University, Uppsala, 751 85, Sweden
| |
Collapse
|
14
|
Li X, Pujari-Palmer M, Wenner D, Procter P, Insley G, Engqvist H. Adhesive Cements That Bond Soft Tissue Ex Vivo. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2473. [PMID: 31382566 PMCID: PMC6695630 DOI: 10.3390/ma12152473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to evaluate the soft tissue bond strength of a newly developed, monomeric, biomimetic, tissue adhesive called phosphoserine modified cement (PMC). Two types of PMCs were evaluated using lap shear strength (LSS) testing, on porcine skin: a calcium metasilicate (CS1), and alpha tricalcium phosphate (αTCP) PMC. CS1 PCM bonded strongly to skin, reaching a peak LSS of 84, 132, and 154 KPa after curing for 0.5, 1.5, and 4 h, respectively. Cyanoacrylate and fibrin glues reached an LSS of 207 kPa and 33 kPa, respectively. αTCP PMCs reached a final LSS of ≈110 kPa. In soft tissues, stronger bond strengths were obtained with αTCP PMCs containing large amounts of amino acid (70-90 mol%), in contrast to prior studies in calcified tissues (30-50 mol%). When αTCP particle size was reduced by wet milling, and for CS1 PMCs, the strongest bonding was obtained with mole ratios of 30-50% phosphoserine. While PM-CPCs behave like stiff ceramics after setting, they bond to soft tissues, and warrant further investigation as tissue adhesives, particularly at the interface between hard and soft tissues.
Collapse
Affiliation(s)
- Xiuwen Li
- Applied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden
| | - Michael Pujari-Palmer
- Applied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden
| | - David Wenner
- Applied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden
| | - Philip Procter
- Applied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden
| | - Gerard Insley
- Applied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden
- GPBio Ltd., Unit 4D, Western Business Park, Shannon, V14 RW92 Co. Clare, Ireland
| | - Håkan Engqvist
- Applied Material Science, Department of Engineering, Uppsala University, 75121 Uppsala, Sweden.
| |
Collapse
|
15
|
Poli E, Magnaudeix A, Damia C, Lalloué F, Chaleix V, Champion E, Sol V. Advanced protocol to functionalize CaP bioceramic surface with peptide sequences and effect on murine pre-osteoblast cells proliferation. Bioorg Med Chem Lett 2019; 29:1069-1073. [PMID: 30852082 DOI: 10.1016/j.bmcl.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 11/25/2022]
Abstract
To bring osteoinductive properties to calcium phosphate (CaP) bioceramics, a silicon-substituted hydroxyapatite was functionalized by integrin-adhesive cyclic-pentapeptides (c-(DfKRG)). A new two-step protocol was set up to immobilize peptides at low and controlled density on the ceramic surface and limit contamination by adsorbed molecules. To this aim, a spacer bearing c-(DfKRG)-S-PEG6-NHS molecule was synthesized and bonded to an organosilane previously covalently bonded to the ceramic surface. The functionalized ceramic was tested in vitro for MC3T3-E1 murine pre-osteoblasts. CaP ceramic surface retained good biological properties thanks to low density of bonded molecules preserving part of the bioactive CaP surface free of bioorganic molecules. The final SiHA-T-PEG6-S-c-(DfKRG) was shown to increase cell density and to improve proliferation. Furthermore, the use of a strong and stable covalent bond between inorganic and organic parts prevented early burst release of the peptide and increased the persistence of its bioactivity over time. So, this CaP ceramic associating c-(DfKRG) by covalent grafting could be considered as promising new biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Evelyne Poli
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | | | - Chantal Damia
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France.
| | - Fabrice Lalloué
- Université de Limoges, CAPTuR, EA3842, F-87000 Limoges, France
| | - Vincent Chaleix
- Université de Limoges, Laboratoire PEIRENE, EA 7500, F-87000 Limoges, France
| | - Eric Champion
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE, EA 7500, F-87000 Limoges, France
| |
Collapse
|
16
|
Citrate-based materials fuel human stem cells by metabonegenic regulation. Proc Natl Acad Sci U S A 2018; 115:E11741-E11750. [PMID: 30478052 DOI: 10.1073/pnas.1813000115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A comprehensive understanding of the key microenvironmental signals regulating bone regeneration is pivotal for the effective design of bioinspired orthopedic materials. Here, we identified citrate as an osteopromotive factor and revealed its metabonegenic role in mediating citrate metabolism and its downstream effects on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Our studies show that extracellular citrate uptake through solute carrier family 13, member 5 (SLC13a5) supports osteogenic differentiation via regulation of energy-producing metabolic pathways, leading to elevated cell energy status that fuels the high metabolic demands of hMSC osteodifferentiation. We next identified citrate and phosphoserine (PSer) as a synergistic pair in polymeric design, exhibiting concerted action not only in metabonegenic potential for orthopedic regeneration but also in facile reactivity in a fluorescent system for materials tracking and imaging. We designed a citrate/phosphoserine-based photoluminescent biodegradable polymer (BPLP-PSer), which was fabricated into BPLP-PSer/hydroxyapatite composite microparticulate scaffolds that demonstrated significant improvements in bone regeneration and tissue response in rat femoral-condyle and cranial-defect models. We believe that the present study may inspire the development of new generations of biomimetic biomaterials that better recapitulate the metabolic microenvironments of stem cells to meet the dynamic needs of cellular growth, differentiation, and maturation for use in tissue engineering.
Collapse
|
17
|
Rentsch B, Bernhardt A, Henß A, Ray S, Rentsch C, Schamel M, Gbureck U, Gelinsky M, Rammelt S, Lode A. Trivalent chromium incorporated in a crystalline calcium phosphate matrix accelerates materials degradation and bone formation in vivo. Acta Biomater 2018; 69:332-341. [PMID: 29355718 DOI: 10.1016/j.actbio.2018.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/19/2017] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
Remodeling of calcium phosphate bone cements is a crucial prerequisite for their application in the treatment of large bone defects. In the present study trivalent chromium ions were incorporated into a brushite forming calcium phosphate cement in two concentrations (10 and 50 mmol/mol β-tricalcium phosphate) and implanted into a femoral defect in rats for 3 and 6 month, non-modified brushite was used as reference. Based on our previous in vitro findings indicating both an enhanced osteoclastic activity and cytocompatibility towards osteoprogenitor cells we hypothesized a higher in vivo remodeling rate of the Cr3+ doped cements compared to the reference. A significantly enhanced degradation of the modified cements was evidenced by micro computed tomography, X-ray and histological examinations. Furthermore the formation of new bone tissue after 6 month of implantation was significantly increased from 29% to 46% during remodeling of cements, doped with the higher Cr3+ amount. Time of flight secondary ion mass spectrometry (ToF-SIMS) of histological sections was applied to investigate the release of Cr3+ ions from the cement after implantation and to image their distribution in the implant region and the surrounding bone tissue. The relatively weak incorporation of chromium into the newly formed bone tissue is in agreement to the low chromium concentrations which were released from the cements in vitro. The faster degradation of the Cr3+ doped cements was also verified by ToF-SIMS. The positive effect of Cr3+ doping on both degradation and new bone formation is discussed as a synergistic effect of Cr3+ bioactivity on osteoclastic resorption on one hand and improvement of cytocompatibility and solubility by structural changes in the calcium phosphate matrix on the other hand. STATEMENT OF SIGNIFICANCE While biologically active metal ions like strontium, magnesium and zinc are increasingly applied for the modification of ceramic bone graft materials, the present study is the first report on the incorporation of low doses of trivalent chromium ions into a calcium phosphate based biomaterial and testing of its performance in bone defect regeneration in vivo. Chromium(III)-doped calcium phosphate bone cements show improved cytocompatibility and both degradation rate and new bone formation in vivo are significantly increased compared to the reference cement. This important discovery might be the starting point for the application of trivalent chromium salts for the modification of bone graft materials to increase their remodelling rate.
Collapse
|
18
|
Lécuyer T, Teston E, Ramirez-Garcia G, Maldiney T, Viana B, Seguin J, Mignet N, Scherman D, Richard C. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 2016; 6:2488-2524. [PMID: 27877248 PMCID: PMC5118608 DOI: 10.7150/thno.16589] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/18/2016] [Indexed: 12/27/2022] Open
Abstract
Imaging nanoprobes are a group of nanosized agents developed for providing improved contrast for bioimaging. Among various imaging probes, optical sensors capable of following biological events or progresses at the cellular and molecular levels are actually actively developed for early detection, accurate diagnosis, and monitoring of the treatment of diseases. The optical activities of nanoprobes can be tuned on demand by chemists by engineering their composition, size and surface nature. This review will focus on researches devoted to the conception of nanoprobes with particular optical properties, called persistent luminescence, and their use as new powerful bioimaging agents in preclinical assays.
Collapse
Affiliation(s)
- Thomas Lécuyer
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Eliott Teston
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Gonzalo Ramirez-Garcia
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Thomas Maldiney
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Bruno Viana
- Chimie-ParisTech, PSL, 75005 Paris, France
- Institut de Recherche de Chimie-Paris, CNRS UMR 8247, Chimie-ParisTech, 75005 Paris, France
| | - Johanne Seguin
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Nathalie Mignet
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Daniel Scherman
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Cyrille Richard
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| |
Collapse
|
19
|
Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV. The role of peptides in bone healing and regeneration: a systematic review. BMC Med 2016; 14:103. [PMID: 27400961 PMCID: PMC4940902 DOI: 10.1186/s12916-016-0646-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bone tissue engineering and the research surrounding peptides has expanded significantly over the last few decades. Several peptides have been shown to support and stimulate the bone healing response and have been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration. METHODS A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study. RESULTS Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists. Several peptides were found to upregulate the bone healing response in experimental models and could act as potential candidates for future clinical applications. However, from the available peptides that reached the level of clinical trials, the presented results are limited. CONCLUSION Further research is desirable to shed more light into the processes governing the osteoprogenitor cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment modalities for bone repair will emerge.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Michalis Panteli
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | | | - Elena Jones
- Unit of Musculoskeletal Disease, Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James University Hospital, University of Leeds, LS9 7TF, Leeds, UK
| | - Giorgio Maria Calori
- Department of Trauma & Orthopaedics, School of Medicine, ISTITUTO ORTOPEDICO GAETANO PINI, Milan, Italy
| | - Peter V Giannoudis
- Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, LS7 4SA Leeds, West Yorkshire, Leeds, UK.
| |
Collapse
|
20
|
Synthesis and modification of apatite nanoparticles for use in dental and medical applications. JAPANESE DENTAL SCIENCE REVIEW 2015. [DOI: 10.1016/j.jdsr.2015.03.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Biodegradable Materials for Bone Repair and Tissue Engineering Applications. MATERIALS 2015; 8:5744-5794. [PMID: 28793533 PMCID: PMC5512653 DOI: 10.3390/ma8095273] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/09/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022]
Abstract
This review discusses and summarizes the recent developments and advances in the use of biodegradable materials for bone repair purposes. The choice between using degradable and non-degradable devices for orthopedic and maxillofacial applications must be carefully weighed. Traditional biodegradable devices for osteosynthesis have been successful in low or mild load bearing applications. However, continuing research and recent developments in the field of material science has resulted in development of biomaterials with improved strength and mechanical properties. For this purpose, biodegradable materials, including polymers, ceramics and magnesium alloys have attracted much attention for osteologic repair and applications. The next generation of biodegradable materials would benefit from recent knowledge gained regarding cell material interactions, with better control of interfacing between the material and the surrounding bone tissue. The next generations of biodegradable materials for bone repair and regeneration applications require better control of interfacing between the material and the surrounding bone tissue. Also, the mechanical properties and degradation/resorption profiles of these materials require further improvement to broaden their use and achieve better clinical results.
Collapse
|
22
|
Iline-Vul T, Matlahov I, Grinblat J, Keinan-Adamsky K, Goobes G. Changes to the Disordered Phase and Apatite Crystallite Morphology during Mineralization by an Acidic Mineral Binding Peptide from Osteonectin. Biomacromolecules 2015. [PMID: 26207448 DOI: 10.1021/acs.biomac.5b00465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Noncollagenous proteins regulate the formation of the mineral constituent in hard tissue. The mineral formed contains apatite crystals coated by a functional disordered calcium phosphate phase. Although the crystalline phase of bone mineral was extensively investigated, little is known about the disordered layer's composition and structure, and less is known regarding the function of noncollagenous proteins in the context of this layer. In the current study, apatite was prepared with an acidic peptide (ON29) derived from the bone/dentin protein osteonectin. The mineral formed comprises needle-shaped hydroxyapatite crystals like in dentin and a stable disordered phase coating the apatitic crystals as shown using X-ray diffraction, transmission electron microscopy, and solid-state NMR techniques. The peptide, embedded between the mineral particles, reduces the overall phosphate content in the mineral formed as inferred from inductively coupled plasma and elemental analysis results. Magnetization transfers between disordered phase species and apatitic phase species are observed for the first time using 2D (1)H-(31)P heteronuclear correlation NMR measurements. The dynamics of phosphate magnetization transfers reveal that ON29 decreases significantly the amount of water molecules in the disordered phase and increases slightly their content at the ordered-disordered interface. The peptide decreases hydroxyl to disordered phosphate transfers within the surface layer but does not influence transfer within the bulk crystalline mineral. Overall, these results indicate that control of crystallite morphology and properties of the inorganic component in hard tissue by biomolecules is more involved than just direct interaction between protein functional groups and mineral crystal faces. Subtler mechanisms such as modulation of the disordered phase composition and structural changes at the ordered-disordered interface may be involved.
Collapse
Affiliation(s)
- Taly Iline-Vul
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| | - Irina Matlahov
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| | - Judith Grinblat
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| | | | - Gil Goobes
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| |
Collapse
|
23
|
Wei Q, Lu J, Wang Q, Fan H, Zhang X. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates. NANOTECHNOLOGY 2015; 26:115605. [PMID: 25719911 DOI: 10.1088/0957-4484/26/11/115605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inspired by coralline-derived hydroxyapatite, we designed a methodological route to synthesize carbonated-hydroxyapatite microspheres from the conversion of CaCO3 spherulite templates within a collagen matrix under mild conditions and thus constructed the composite hydrogel of collagen/hydroxyapatite-microspheres. Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) were employed to confirm the successful generation of the carbonated hydroxyapatite phase originating from CaCO3, and the ratios of calcium to phosphate were tracked over time. Variations in the weight portion of the components in the hybrid gels before and after the phase transformation of the CaCO3 templates were identified via thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) shows these composite hydrogels have a unique multiscale microstructure consisting of a collagen nanofibril network and hydroxyapatite microspheres. The relationship between the hydroxyapatite nanocrystals and the collagen fibrils was revealed by transmission electron microscopy (TEM) in detail, and the selected area electron diffraction (SAED) pattern further confirmed the results of the XRD analyses which show the typical low crystallinity of the generated hydroxyapatite. This smart synthesis strategy achieved the simultaneous construction of microscale hydroxyapatite particles and collagen fibrillar hydrogel, and appears to provide a novel route to explore an advanced functional hydrogel materials with promising potentials for applications in bone tissue engineering and reconstruction medicine.
Collapse
Affiliation(s)
- Qingrong Wei
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Hardy JG, Sukhavasi RC, Aguilar D, Villancio-Wolter MK, Mouser DJ, Geissler SA, Nguy L, Chow JK, Kaplan DL, Schmidt CE. Electrical stimulation of human mesenchymal stem cells on biomineralized conducting polymers enhances their differentiation towards osteogenic outcomes. J Mater Chem B 2015; 3:8059-8064. [DOI: 10.1039/c5tb00714c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tissue scaffolds allowing the behaviour of the cells that reside on them to be controlled are of particular interest for tissue engineering.
Collapse
Affiliation(s)
- John G. Hardy
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
- Department of Biomedical Engineering
| | - Rushi C. Sukhavasi
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin
- USA
| | - David Aguilar
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin
- USA
| | | | - David J. Mouser
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin
- USA
| | - Sydney A. Geissler
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
- Department of Biomedical Engineering
| | - Lindsey Nguy
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin
- USA
| | - Jacqueline K. Chow
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin
- USA
| | - David L. Kaplan
- Department of Biomedical Engineering
- Tufts University
- Medford
- USA
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
- Department of Biomedical Engineering
| |
Collapse
|
25
|
Förster Y, Rentsch C, Schneiders W, Bernhardt R, Simon JC, Worch H, Rammelt S. Surface modification of implants in long bone. BIOMATTER 2014; 2:149-57. [PMID: 23507866 PMCID: PMC3549868 DOI: 10.4161/biom.21563] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.
Collapse
Affiliation(s)
- Yvonne Förster
- Department of Trauma and Reconstructive Surgery, Center for Translational Bone, Joint and Soft Tissue Research, Dresden University Hospital Carl Gustav Carus, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
TheinHan W, Liu J, Tang M, Chen W, Cheng L, Xu HHK. Induced pluripotent stem cell-derived mesenchymal stem cell seeding on biofunctionalized calcium phosphate cements. Bone Res 2013; 4:371-384. [PMID: 24839581 DOI: 10.4248/br201304008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs), and investigate iPSC-MSC proliferati on and osteogenic differentiation on calcium phosphate cement (CPC) containing biofunctional agents for the first time. Human iPSCs were derived from marrow CD34+ cells which were reprogrammed by a single episomal vector. iPSCs were cultured to form embryoid bodies (EBs), and MSCs migrated out of EBs. Five biofunctional agents were incorporated into CPC: RGD (Arg-Gly-Asp) peptides, fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and platelet concentrate. iPSC-MSCs were seeded on five biofunctionalized CPCs: CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. iPSC-MSCs on biofunctional CPCs had enhanced proliferation, actin fiber expression, osteogenic differentiation and mineralization, compared to control. Cell proliferation was greatly increased on biofunctional CPCs. iPSC-MSCs underwent osteogenic differentiation with increased alkaline phosphatase, Runx2 and collagen-I expressions. Mineral synthesis by iPSC-MSCs on CPC-Platelets was 3-fold that of CPC control. In conclusion, iPSCs showed high potential for bone engineering. iPSC-MSCs on biofunctionalized CPCs had cell proliferation and bone mineralization that were much better than traditional CPC. iPSC-MSC-CPC constructs are promising to promote bone regeneration in craniofacial/orthopedic repairs.
Collapse
Affiliation(s)
- WahWah TheinHan
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Jun Liu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Minghui Tang
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Wenchuan Chen
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Linzhao Cheng
- Stem Cell Program in Institute for Cell Engineering and Division of Hematology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA ; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA ; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA ; Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA
| |
Collapse
|
27
|
Fu K, Xu Q, Czernuszka J, Triffitt JT, Xia Z. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Biomed Mater 2013; 8:065007. [PMID: 24288015 DOI: 10.1088/1748-6041/8/6/065007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A partially converted, biodegradable coralline hydroxyapatite/calcium carbonate (CHACC) composite comprising a coral calcium carbonate scaffold enveloped by a thin layer of hydroxyapatite was used in the present study. The CHACC was characterized using powder x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. The ability of the CHACC to promote conductive osteogenesis was assessed in vitro using human mesenchymal stem cells (hMSCs) and in vivo using an immunodeficient mouse model. The clinical performance of CHACC as a bone substitute to fill voids caused by excision of bone tumours was also observed in 16 patients. The CHACC was found to consist of two overlapping layers both morphologically and chemically. Hydroxyapatite formed a thin layer of nanocrystals on the surface and a thick rough crystal layer of around 30 µm in thickness enveloping the rock-like core calcium carbonate exoskeletal architecture. hMSCs cultured on CHACC in osteogenic medium demonstrated significant osteogenic differentiation. After subcutaneous implantation of CHACC incorporating osteogenically differentiated hMSCs and an anti-resorptive agent, risedronate, into an immunodeficient mouse model, bone formation was observed on the surface of the implants. Clinical application of CHACC alone in 16 patients for bone augmentation after tumour removal showed that after implantation, visible callus formation was observed at one month and clinical bone healing achieved at four months. The majority of the implanted CHACC was degraded in 18-24 months. In conclusion, CHACC appears to be an excellent biodegradable bone graft material. It biointegrates with the host, is osteoconductive, biodegradable and can be an attractive alternative to autogenous grafts.
Collapse
Affiliation(s)
- Kun Fu
- Department of Orthopaedic Surgery, Affiliated Hospital, Hainan Medical College, #33 Longhua Road, Haikou, Hainan Province, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
Ying X, Chen X, Cheng S, Guo X, Chen H, Xu HZ. Phosphoserine promotes osteogenic differentiation of human adipose stromal cells through bone morphogenetic protein signalling. Cell Biol Int 2013; 38:309-17. [PMID: 24155130 DOI: 10.1002/cbin.10203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 10/04/2013] [Indexed: 01/03/2023]
Abstract
Phosphoserine has potential effectiveness as a simple substrate in preparing bone replacement materials, which could enhance bone forming ability. However, there is a need to investigate the independent effect of phosphoserine on osteogenic differentiation of human adipose stem cells (hADSCs). hADSCs were cultured in an osteogenic medium with phosphoserine. Cell proliferation was analysed by CCK8 and osteogenic differentiation was measured by alkaline phosphatase (ALP) activity, von Kossa staining and real time-polymerase chain reaction (RT-PCR). No stimulatory effect of phosphoserine on cell proliferation was noted at Days 1, 4 and 7. Deposition of calcium increased after the addition of phosphoserine. mRNA expression of type I collagen (COL-I), alkaline phosphatase (ALP), osteocalcin (OCN), Osterix, bone morphogenetic protein-2 (BMP-2) and RUNX2 increased markedly with phosphoserine treatment. The BMP-2 antagonist, noggin, and its receptor kinase inhibitors, dorsomorphin and LDN-193189, attenuated phosphoserine-promoted ALP activity. BMP-responsive and Runx2-responsive reporters were activated by phosphoserine treatment. Thus phosphoserine can promote osteogenic differentiation of hADSCs, probably by activating BMP and Runx2 pathways, which could be a promising approach for enhancing osteogenic capacity of cell-based construction in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaozhou Ying
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, China
| | | | | | | | | | | |
Collapse
|
29
|
Chen W, Liu J, Manuchehrabadi N, Weir MD, Zhu Z, Xu HHK. Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects. Biomaterials 2013; 34:9917-25. [PMID: 24054499 DOI: 10.1016/j.biomaterials.2013.09.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/02/2013] [Indexed: 02/08/2023]
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) are inexhaustible and can be harvested at a low cost without an invasive procedure. However, there has been no report on comparing hUCMSCs with human bone marrow MSCs (hBMSCs) for bone regeneration in vivo. The aim of this study was to investigate hUCMSC and hBMSC seeding on macroporous calcium phosphate cement (CPC), and to compare their bone regeneration in critical-sized cranial defects in rats. Cell attachment, osteogenic differentiation and mineral synthesis on RGD-modified macroporous CPC were investigated in vitro. Scaffolds with cells were implanted in 8-mm defects of athymic rats. Bone regeneration was investigated via micro-CT and histological analysis at 4, 12, and 24 weeks. Three groups were tested: CPC with hUCMSCs, CPC with hBMSCs, and CPC control without cells. Percentage of live cells and cell density on CPC in vitro were similarly good for hUCMSCs and hBMSCs. Both cells had high osteogenic expressions of alkaline phosphatase, osteocalcin, collagen I, and Runx2. Bone mineral density and trabecular thickness in hUCMSC and hBMSC groups in vivo were greater than those of CPC control group. New bone amount for hUCMSC-CPC and hBMSC-CPC constructs was increased by 57% and 88%, respectively, while blood vessel density was increased by 15% and 20%, than CPC control group at 24 weeks. hUCMSC-CPC and hBMSC-CPC groups generally had statistically similar bone mineral density, new bone amount and vessel density. In conclusion, hUCMSCs seeded on CPC were shown to match the bone regeneration efficacy of hBMSCs in vivo for the first time. Both hUCMSC-CPC and hBMSC-CPC constructs generated much more new bone and blood vessels than CPC without cells. Macroporous RGD-grafted CPC with stem cell seeding is promising for craniofacial and orthopedic repairs.
Collapse
Affiliation(s)
- Wenchuan Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
30
|
Reid DG, Duer MJ, Jackson GE, Murray RC, Rodgers AL, Shanahan CM. Citrate occurs widely in healthy and pathological apatitic biomineral: mineralized articular cartilage, and intimal atherosclerotic plaque and apatitic kidney stones. Calcif Tissue Int 2013; 93:253-60. [PMID: 23780351 DOI: 10.1007/s00223-013-9751-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022]
Abstract
There is continuing debate about whether abundant citrate plays an active role in biomineralization of bone. Using solid state NMR dipolar dephasing, we examined another normally mineralized hard tissue, mineralized articular cartilage, as well as biocalcifications arising in pathological conditions, mineralized intimal atherosclerotic vascular plaque, and apatitic uroliths (urinary stones). Residual nondephasing ¹³C NMR signal at 76 ppm in the spectra of mineralized cartilage and vascular plaque indicates that a quaternary carbon atom resonates at this frequency, consistent with the presence of citrate. The presence, and as yet unproven possible mechanistic involvement, of citrate in tissue mineralization extends the compositional, structural, biogenetic, and cytological similarities between these tissues and bone itself. Out of 10 apatitic kidney stones, five contained NMR-detectable citrate. Finding citrate in a high proportion of uroliths may be significant in view of the use of citrate in urolithiasis therapy and prophylaxis. Citrate may be essential for normal biomineralization (e.g., of cartilage), play a modulatory role in vascular calcification which could be a target for therapeutic intervention, and drive the formation of apatitic rather than other calcific uroliths, including more therapeutically intractable forms of calcium phosphate.
Collapse
Affiliation(s)
- David G Reid
- Department of Chemistry, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
31
|
Tödtmann N, Lode A, Mann R, Mai R, Lauer G, Wieczorek K, Eckelt U. Influence of different modifications of a calcium phosphate cement on resorption and new bone formation: Anin vivostudy in the minipig. J Biomed Mater Res B Appl Biomater 2013; 101:1410-8. [DOI: 10.1002/jbm.b.32960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/28/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Ninette Tödtmann
- Department of Oral and Maxillofacial Surgery; Universitätsklinikum Carl Gustav Carus and Medical Faculty of Technische Universität Dresden; Fetscherstr. 74 D-01307 Dresden Germany
| | - Anja Lode
- Centre for Translational Bone; Joint and Soft Tissue Research; Universitätsklinikum Carl Gustav Carus and Medical Faculty of Technische Universität Dresden; Fetscherstr. 74 D-01307 Dresden Germany
| | - Romy Mann
- Department of Oral and Maxillofacial Surgery; Universitätsklinikum Carl Gustav Carus and Medical Faculty of Technische Universität Dresden; Fetscherstr. 74 D-01307 Dresden Germany
| | - Ronald Mai
- Department of Oral and Maxillofacial Surgery; Universitätsklinikum Carl Gustav Carus and Medical Faculty of Technische Universität Dresden; Fetscherstr. 74 D-01307 Dresden Germany
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery; Universitätsklinikum Carl Gustav Carus and Medical Faculty of Technische Universität Dresden; Fetscherstr. 74 D-01307 Dresden Germany
| | - Kathrin Wieczorek
- Institute of Pathology, Medical Faculty Carl Gustav Carus of Technische Universität Dresden; Fetscherstr. 74 D-01307 Dresden Germany
| | - Uwe Eckelt
- Department of Oral and Maxillofacial Surgery; Universitätsklinikum Carl Gustav Carus and Medical Faculty of Technische Universität Dresden; Fetscherstr. 74 D-01307 Dresden Germany
| |
Collapse
|
32
|
Delgado-López JM, Iafisco M, Rodríguez-Ruiz I, Gómez-Morales J. Bio-inspired citrate-functionalized apatite thin films crystallized on Ti-6Al-4V implants pre-coated with corrosion resistant layers. J Inorg Biochem 2013; 127:261-8. [PMID: 23648093 DOI: 10.1016/j.jinorgbio.2013.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 11/16/2022]
Abstract
In this paper the crystallization of a bioinspired citrate-functionalized apatite (cit-Ap) thin film (thickness about 2μm) on Ti-6Al-4V supports pre-coated with bioactive and corrosion resistant buffer layer of silicon nitride (Si3N4), silicon carbide (SiC) or titanium nitride (TiN) is reported. The apatitic coatings were produced by a new coating technique based on the induction heating of the implants immersed in a flowing calcium-citrate-phosphate solution at pH11. The influence of the buffer layers and the surface roughness of the substrate on the chemical-physical features and adhesion of the cit-Ap films were investigated. The best plasticity, compactness and adherence properties have been found in the Ap layer grown on Si3N4, followed by the Ap grown on SiC and TiN, respectively. The adhesion property was likely related to the roughness of the buffered substrates, whereas the compactness and plasticity were closely related to the operating conditions during the Ap crystallization (flow rate of the solution and increase of temperature) rather than to the nature of the buffer layer.
Collapse
Affiliation(s)
- José Manuel Delgado-López
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Av. Las Palmeras 4, E-18100 Armilla, Spain
| | | | | | | |
Collapse
|
33
|
Yang H, Hao L, Du C, Wang Y. A systematic examination of the morphology of hydroxyapatite in the presence of citrate. RSC Adv 2013. [DOI: 10.1039/c3ra44839h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
34
|
Penk A, Förster Y, Scheidt HA, Nimptsch A, Hacker MC, Schulz-Siegmund M, Ahnert P, Schiller J, Rammelt S, Huster D. The pore size of PLGA bone implants determines the de novo formation of bone tissue in tibial head defects in rats. Magn Reson Med 2012; 70:925-35. [PMID: 23165861 DOI: 10.1002/mrm.24541] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE The influence of the pore size of biodegradable poly(lactic-co-glycolic acid) scaffolds on bone regeneration was investigated. METHODS Cylindrical poly(lactic-co-glycolic acid) scaffolds were implanted into a defect in the tibial head of rats. Pore sizes of 100-300, 300-500, and 500-710 μm were tested and compared to untreated defects as control. Two and four weeks after implantation, the specimens were explanted and defect regeneration and de novo extracellular matrix generation were investigated by MRI, quantitative solid-state NMR, and mass spectrometry. RESULTS The pore size of the scaffolds had a pronounced influence on the quantity of the extracellular matrix synthesized in the graft; most collagen was synthesized within the first 2 weeks of implantation, while the amount of hydroxyapatite increased in the second 2 weeks. After 4 weeks, the scaffolds contained large quantities of newly formed lamellar bone while the control defects were filled by inhomogenous woven bone. Best results were obtained for scaffolds of a pore size of 300-500 μm. CONCLUSION Our analysis showed that the structure and dynamics of the regenerated extracellular matrix was very similar to that of the native bone, suggesting that biomineralization was significantly enhanced by the choice of the most appropriate implant material.
Collapse
Affiliation(s)
- Anja Penk
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent Mater 2012; 28:1059-70. [PMID: 22809583 DOI: 10.1016/j.dental.2012.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 05/14/2012] [Accepted: 06/25/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Calcium phosphate cement (CPC) can be injected to harden in situ and is promising for dental and craniofacial applications. However, human stem cell attachment to CPC is relatively poor. The objectives of this study were to incorporate biofunctional agents into CPC, and to investigate human umbilical cord mesenchymal stem cell (hUCMSC) seeding on biofunctionalized CPC for osteogenic differentiation for the first time. METHODS Five types of biofunctional agents were used: RGD (Arg-Gly-Asp) peptides, human fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and human platelet concentrate. Five biofunctionalized CPC scaffolds were fabricated: CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. The hUCMSC attachment, proliferation, osteogenic differentiation and mineral synthesis were measured. RESULTS The hUCMSCs on biofunctionalized CPCs had much better cell attachment, proliferation, actin fiber expression, osteogenic differentiation and mineral synthesis, compared to the traditional CPC control. Cell proliferation was increased by an order of magnitude via incorporation of biofunctional agents in CPC (p<0.05). Mineral synthesis on biofunctionalized CPCs was 3-5 folds of those of control (p<0.05). hUCMSCs differentiated with high alkaline phosphatase, Runx2, osteocalcin, and collagen I gene expressions. Mechanical properties of biofunctionalized CPC matched the reported strength and elastic modulus of cancellous bone. SIGNIFICANCE A new class of biofunctionalized CPCs was developed, including CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. hUCMSCs on biofunctionalized CPCs had cell density, cell proliferation, actin fiber density, and bone mineralization that were dramatically better than those on traditional CPC. Novel biofunctionalized CPC scaffolds with greatly enhanced human stem cell proliferation and differentiation are promising to facilitate bone regeneration in a wide range of dental, craniofacial and orthopedic applications.
Collapse
|
36
|
Chen W, Zhou H, Weir MD, Bao C, Xu HHK. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater 2012; 8:2297-306. [PMID: 22391411 DOI: 10.1016/j.actbio.2012.02.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/20/2012] [Accepted: 02/26/2012] [Indexed: 02/01/2023]
Abstract
The need for bone repair has increased as the population ages. The objectives of this study were to (1) develop a novel biofunctionalized and macroporous calcium phosphate cement (CPC) containing alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSC) and, for the first time, (2) investigate hUCMSC proliferation and osteogenic differentiation inside the CPC. A macroporous CPC was developed using calcium phosphate powder, chitosan, and a gas-foaming porogen. Five types of CPC were fabricated: a CPC control, CPC+0.05% fibronectin (Fn), CPC+0.1% Fn, CPC+0.1% arginine-glycine-aspartate (RGD), and CPC+0.1% Fn+0.1% RGD. Alginate-fibrin microbeads containing 10(6) hUCMSC per ml were encapsulated in the CPC paste. After the CPC had set, the degradable microbeads released hUCMSC within it. The hUCMSC proliferated inside the CPC, with the cell density after 21 days being 4-fold that on day1. CPC+0.1% RGD had the highest cell density, which was 4-fold that of the CPC control. The released cells differentiated along the osteogenic lineage and synthesized bone mineral. The hUCMSC inside the CPC+0.1% RGD construct expressed the genes alkaline phosphatase, osteocalcin and collagen I, at twice the level of the CPC control. Mineral synthesis by hUCMSC inside the CPC+0.1% RGD construct was 2-fold that in the CPC control. RGD and Fn incorporation in the CPC did not compromise its strength, which matched the reported strength of cancellous bone. In conclusion, degradable microbeads released hUCMSC which proliferated, differentiated and synthesized minerals inside the macroporous CPC. The CPC with RGD greatly enhanced cell function. The novel biofunctionalized and macroporous CPC-microbead-hUCMSC construct is promising for bone tissue engineering applications.
Collapse
Affiliation(s)
- Wenchuan Chen
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
37
|
Panzavolta S, Bracci B, Focarete ML, Gualandi C, Bigi A. Fiber reinforcement of a biomimetic bone cement. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1363-1370. [PMID: 22528068 DOI: 10.1007/s10856-012-4618-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/08/2012] [Indexed: 05/31/2023]
Abstract
In this study we investigated the influence of electrospun polymer fibers on the properties of a α-tricalcium phosphate/gelatin biomimetic cement. To this aim, we added different amounts of poly(L-lactic acid) and poly(lactide-co-glycolide) fibers to the cement composition. Fibers enrichment provoked a significant reduction of both initial and final setting times. Moreover electrospun polymer fibers slowed down the conversion of α-tricalcium phosphate into calcium deficient hydroxyapatite. As a result, the final cements were more compact than the control cement, because of the smaller crystal dimensions and reduced crystallinity of the apatitic phase. The compressive strength, σ(b), and Young's modulus, E, of the control cement decreased significantly after 40 days soaking in physiological solution, whereas the more compact microstructure enabled fiber reinforced cements to maintain their mechanical properties in the long term.
Collapse
Affiliation(s)
- S Panzavolta
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
38
|
Synthesis of citrate-stabilized hydrocolloids of hydroxyapatite through a novel two-stage method: A possible aggregates–breakdown mechanism of colloid formation. J Colloid Interface Sci 2011; 360:341-9. [DOI: 10.1016/j.jcis.2011.04.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 04/17/2011] [Accepted: 04/20/2011] [Indexed: 11/17/2022]
|
39
|
Panzavolta S, Bracci B, Rubini K, Bigi A. Optimization of a biomimetic bone cement: Role of DCPD. J Inorg Biochem 2011; 105:1060-5. [DOI: 10.1016/j.jinorgbio.2011.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
|
40
|
Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011; 32:6692-709. [PMID: 21715002 DOI: 10.1016/j.biomaterials.2011.05.078] [Citation(s) in RCA: 928] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/26/2011] [Indexed: 12/11/2022]
Abstract
A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses.
Collapse
Affiliation(s)
- Sandra Franz
- Department of Dermatology, Venerology and Allergology, University Leipzig, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
41
|
Ballarre J, Seltzer R, Mendoza E, Orellano JC, Mai YW, García C, Ceré SM. Morphologic and nanomechanical characterization of bone tissue growth around bioactive sol–gel coatings containing wollastonite particles applied on stainless steel implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.11.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
Park JW, Kim YJ, Jang JH, An CH. MC3T3-E1 cell differentiation and in vivo bone formation induced by phosphoserine. Biotechnol Lett 2011; 33:1473-80. [PMID: 21344205 DOI: 10.1007/s10529-011-0565-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 02/09/2011] [Indexed: 12/22/2022]
Abstract
Bone formation induced by phosphoserine was investigated in vitro and in vivo using MC3T3-E1 cells and a rabbit calvarial osseous defect model. MC3T3-E1 cells supplemented by phosphoserine displayed two-fold higher alkaline phosphatase activity and mineralization nodule formation, and calvarial defects treated with phosphoserine showed statistically significant new bone formation compared with the control (P < 0.05).
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea.
| | | | | | | |
Collapse
|
43
|
de Girolamo L, Arrigoni E, Stanco D, Lopa S, Di Giancamillo A, Addis A, Borgonovo S, Dellavia C, Domeneghini C, Brini AT. Role of autologous rabbit adipose-derived stem cells in the early phases of the repairing process of critical bone defects. J Orthop Res 2011; 29:100-8. [PMID: 20607837 DOI: 10.1002/jor.21184] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adipose-derived stem cells (ASCs) may represent a novel and efficient tool to promote bone regeneration. In this study, rabbit ASCs were expanded in culture and used for the regeneration of full-thickness bone defects in the proximal epiphysis of tibia of 12 New Zealand rabbits. Defects were implanted with graft material as follows: untreated (control), empty hydroxyapatite (HA) disk, ASCs alone, and HA disk seeded with ASCs. Each isolated ASCs population was tested in vitro: they all showed a high proliferation rate, a marked clonogenic ability, and osteogenic differentiation potential. Eight weeks after implantation, macroscopic analyses of all the samples showed satisfactory filling of the lesions without any significant differences in term of stiffness between groups treated with or without cells (p > 0.05). In both the scaffold-treated groups, a good osteointegration was radiographically observed. Even if HA was not completely reabsorbed, ASCs-loaded HA displayed a higher scaffold resorption than the unloaded ones. Histological analyses showed that the osteogenic abilities of the scaffold-treated defects was greater than those of scaffold-free samples, and in particular new formed bone was more mature and more similar to native bone in presence of ASCs. These results demonstrated that autologous ASCs-HA constructs is a potential treatment for the regeneration of bone defects.
Collapse
|
44
|
Hu YY, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci U S A 2010; 107:22425-9. [PMID: 21127269 PMCID: PMC3012505 DOI: 10.1073/pnas.1009219107] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanocrystals of apatitic calcium phosphate impart the organic-inorganic nanocomposite in bone with favorable mechanical properties. So far, the factors preventing crystal growth beyond the favorable thickness of ca. 3 nm have not been identified. Here we show that the apatite surfaces are studded with strongly bound citrate molecules, whose signals have been identified unambiguously by multinuclear magnetic resonance (NMR) analysis. NMR reveals that bound citrate accounts for 5.5 wt% of the organic matter in bone and covers apatite at a density of about 1 molecule per (2 nm)(2), with its three carboxylate groups at distances of 0.3 to 0.45 nm from the apatite surface. Bound citrate is highly conserved, being found in fish, avian, and mammalian bone, which indicates its critical role in interfering with crystal thickening and stabilizing the apatite nanocrystals in bone.
Collapse
Affiliation(s)
- Y.-Y. Hu
- Ames Laboratory and Department of Chemistry, Iowa State University, Ames, IA 50011
| | - A. Rawal
- Ames Laboratory and Department of Chemistry, Iowa State University, Ames, IA 50011
| | - K. Schmidt-Rohr
- Ames Laboratory and Department of Chemistry, Iowa State University, Ames, IA 50011
| |
Collapse
|
45
|
Offer L, Veigel B, Pavlidis T, Heiss C, Gelinsky M, Reinstorf A, Wenisch S, Lips KS, Schnettler R. Phosphoserine-modified calcium phosphate cements: bioresorption and substitution. J Tissue Eng Regen Med 2010; 5:11-9. [DOI: 10.1002/term.283] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Association of collagen with calcium phosphate promoted osteogenic responses of osteoblast-like MG63 cells. Colloids Surf B Biointerfaces 2010; 83:245-53. [PMID: 21177080 DOI: 10.1016/j.colsurfb.2010.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 10/12/2010] [Accepted: 11/18/2010] [Indexed: 11/22/2022]
Abstract
In this investigation, the effects of the association of the collagen (COLL) molecules with the calcium phosphate (CaP) film were examined with respect to both the physicochemical properties of the CaP films and the osteoblast responses, such as the adhesion, proliferation, differentiation, and mineralization. The COLL pre-adsorbed CaP film (CaPA) exhibited significant changes in the surface morphology compared to the COLL incorporated CaP film (CaPC). The adhesions of the osteoblast-like MG63 cells were similar on the CaPC or CaPA films. However, the proliferation of the MG63 cells on CaPC was comparable to CaP but considerably different than CaPA. The differentiation of the MG63 cells was greatly improved on CaPC and CaPA compared to CaP and more pronounced on CaPA. The presence of COLL within or on the CaP films significantly modulated the expression of the phenotypic genes, including osteopontin (OPN), alkaline phosphatase (ALP), and the transforming growth factor-β (TGF-β). The expression patterns of these genes elucidated that COLL that was present within or on the CaP film supported the osteoblast proliferation and differentiation. These positive effects were stronger for CaPA than CaPC. The bone-like nodules formed on all of the specimens. However, the mineralization of CaPC and CaPA was significantly higher than CaP, indicating that the association of CaP with COLL promoted the mineral deposition. Therefore, the association of the COLL molecules with the CaP film induced positive effects on the biomineralization. Overall, the incorporation of COLL efficiently enhanced the osteoblast responses of CaP. This system can be utilized in a drug delivery system using calcium phosphate. Although the incorporation effects were slightly higher for the osteoblast responses of CaPA than CaPC, CaPC can be used when the longer drug release times are desirable.
Collapse
|
47
|
Kretlow JD, Hacker MC, Klouda L, Ma BB, Mikos AG. Synthesis and characterization of dual stimuli responsive macromers based on poly(N-isopropylacrylamide) and poly(vinylphosphonic acid). Biomacromolecules 2010; 11:797-805. [PMID: 20121076 DOI: 10.1021/bm9014182] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stimulus responsive materials hold great promise in biological applications as they can react to changes in physiological stimuli to produce a desired effect. Stimulus responsive macromers designed to respond to temperature changes at or around 37 degrees C and the presence of divalent cations were synthesized from N-isopropylacrylamide, pentaerythritol diacrylate monostearate, 2-hydroxyethyl acrylate, and vinylphosphonic acid by free radical polymerization. Monomers were incorporated into the macromers in ratios approximating the molar feed ratios, and macromers underwent thermogelation around normal body temperature (36.2-40.5 degrees C) as determined by rheology and differential scanning calorimetry. Macromers containing vinylphosphonic acid interacted with calcium ions in solution, displaying decreased sol-gel transition temperatures (27.6-34.4 degrees C in 100 mM CaCl(2)), with decreases of greater magnitude observed for macromers with higher relative vinylphosphonic acid content. Critical micellar concentrations also decreased in a dose-dependent manner with increased vinylphosphonic acid incorporation in solutions with CaCl(2) but not in solutions with NaCl. These dually responsive macromers allow examination of the effect of increasing vinylphosphonic acid content in a macromer, which holds promise in biological applications such as drug and cell delivery or tissue engineering due to the macromer responsiveness at physiological temperatures and concentrations of calcium.
Collapse
Affiliation(s)
- James D Kretlow
- Department of Bioengineering, Rice University, PO Box 1892, MS 142, Houston, Texas 77251-1892, USA
| | | | | | | | | |
Collapse
|
48
|
Garty S, Kimelman-Bleich N, Hayouka Z, Cohn D, Friedler A, Pelled G, Gazit D. Peptide-Modified “Smart” Hydrogels and Genetically Engineered Stem Cells for Skeletal Tissue Engineering. Biomacromolecules 2010; 11:1516-26. [DOI: 10.1021/bm100157s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shai Garty
- Casali Institute of Applied Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, Skeletal Biotech Lab, Faculty of Dental Medicine, Hadassah Medical Campus, Ein Kerem, The Hebrew University of Jerusalem, Jerusalem, Israel, 91120, Department of Organic Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, and Department of Surgery and Cedars-Sinai
| | - Nadav Kimelman-Bleich
- Casali Institute of Applied Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, Skeletal Biotech Lab, Faculty of Dental Medicine, Hadassah Medical Campus, Ein Kerem, The Hebrew University of Jerusalem, Jerusalem, Israel, 91120, Department of Organic Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, and Department of Surgery and Cedars-Sinai
| | - Zvi Hayouka
- Casali Institute of Applied Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, Skeletal Biotech Lab, Faculty of Dental Medicine, Hadassah Medical Campus, Ein Kerem, The Hebrew University of Jerusalem, Jerusalem, Israel, 91120, Department of Organic Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, and Department of Surgery and Cedars-Sinai
| | - Daniel Cohn
- Casali Institute of Applied Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, Skeletal Biotech Lab, Faculty of Dental Medicine, Hadassah Medical Campus, Ein Kerem, The Hebrew University of Jerusalem, Jerusalem, Israel, 91120, Department of Organic Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, and Department of Surgery and Cedars-Sinai
| | - Assaf Friedler
- Casali Institute of Applied Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, Skeletal Biotech Lab, Faculty of Dental Medicine, Hadassah Medical Campus, Ein Kerem, The Hebrew University of Jerusalem, Jerusalem, Israel, 91120, Department of Organic Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, and Department of Surgery and Cedars-Sinai
| | - Gadi Pelled
- Casali Institute of Applied Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, Skeletal Biotech Lab, Faculty of Dental Medicine, Hadassah Medical Campus, Ein Kerem, The Hebrew University of Jerusalem, Jerusalem, Israel, 91120, Department of Organic Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, and Department of Surgery and Cedars-Sinai
| | - Dan Gazit
- Casali Institute of Applied Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, Skeletal Biotech Lab, Faculty of Dental Medicine, Hadassah Medical Campus, Ein Kerem, The Hebrew University of Jerusalem, Jerusalem, Israel, 91120, Department of Organic Chemistry, Institute of Chemistry, Edmond J. Safra, The Hebrew University of Jerusalem, Givaat Ram Campus, Jerusalem, Israel, 91904, and Department of Surgery and Cedars-Sinai
| |
Collapse
|
49
|
Figueiredo M, Henriques J, Martins G, Guerra F, Judas F, Figueiredo H. Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes--comparison with human bone. J Biomed Mater Res B Appl Biomater 2010; 92:409-419. [PMID: 19904820 DOI: 10.1002/jbm.b.31529] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present work focuses on the physicochemical characterization of selected mineral-based biomaterials that are frequently used in dental applications. The selected materials are commercially available as granules from different biological origins: bovine, porcine, and coralline. Natural and calcined human bone were used for comparison purposes. Besides a classical rationalization of chemical composition and crystallinity, a major emphasis was placed on the measurement of various morphostructural properties such as particle size, porosity, density, and specific surface area. Such properties are crucial to acquiring a full interpretation of the in vivo performance. The studied samples exhibited distinct particle sizes (between 200 and 1000 microm) and shapes. Mercury intrusion revealed not only that the total sample porosity varied considerably (33% for OsteoBiol, 50% for PepGen P-15, and 60% for BioOss) but also that a significant percentage of that porosity corresponded to submicron pores. Biocoral was not analyzed by this technique as it possesses larger pores than those of the porosimeter upper limit. The density values determined for the calcined samples were close to the theoretical values of hydroxyapatite. However, the values for the collagenated samples were lower, in accordance with their lower mineral content. The specific surface areas ranged from less than 1 m(2)/g (Biocoral) up to 60 m(2)/g (BioOss). The chemical and phase composition of most of the samples, the exception being Biocoral (aragonite), were hydroxyapatite based. Nonetheless, the samples exhibited different organic material content as a consequence of the distinct heat treatments that each had received.
Collapse
Affiliation(s)
- Margarida Figueiredo
- Chemical Engineering Department, University of Coimbra, 3030-290 Coimbra, Portugal.
| | | | | | | | | | | |
Collapse
|
50
|
Vater C, Lode A, Bernhardt A, Reinstorf A, Heinemann C, Gelinsky M. Influence of different modifications of a calcium phosphate bone cement on adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A 2010; 92:1452-60. [PMID: 19373921 DOI: 10.1002/jbm.a.32469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Collagen and noncollagenous proteins of the extracellular bone matrix are able to stimulate bone cell activities and bone healing. The modification of calcium phosphate bone cements used as temporary bone replacement materials with these proteins seems to be a promising approach to accelerate new bone formation. In this study, we investigated adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells (hBMSC) on Biocement D/collagen composites which have been modified with osteocalcin and O-phospho-L-serine. Modification with osteocalcin was carried out by its addition to the cement precursor before setting as well as by functionalization of the cement samples after setting and sterilization. hBMSC were cultured on these samples for 28 days with and without osteogenic supplements. We found a positive impact especially of the phosphoserine-modifications but also of both osteocalcin-modifications on differentiation of hBMSC indicated by higher expression of the osteoblastic markers matrix metalloproteinase-13 and bone sialo protein II. For hBMSC cultured on phosphoserine-containing composites, an increased proliferation has been observed. However, in case of the osteocalcin-modified samples, only osteocalcin adsorbed after setting and sterilization of the cement samples was able to promote initial adhesion and proliferation of hBMSC. The addition of osteocalcin before setting results in a finer microstructure but the biological activity of osteocalcin might be impaired due to the sterilization process. Thus, our data indicate that the initial adhesion and proliferation of hBMSC is enhanced rather by the biological activity of osteocalcin than by the finer microstructure.
Collapse
Affiliation(s)
- Corina Vater
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Institute of Materials Science, Dresden, Germany
| | | | | | | | | | | |
Collapse
|