1
|
Bobzin L, Nickle A, Ko S, Ince M, Huang A, Bhojwani A, Roberts R, Merrill AE. FGFR2 directs inhibition of WNT signaling to regulate anterior fontanelle closure during skull development. Development 2025; 152:dev204264. [PMID: 39775862 DOI: 10.1242/dev.204264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, and Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study, we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics. We find that AF cells, marked by the tendon/ligament factor SCX, are spatially organized into ecto- and endocranial domains that selectively differentiate into ligament, bone, and cartilage to form the posterior frontal suture. We show that AF cell differentiation is non-autonomously regulated by FGFR2 signaling in osteogenic front cells of the frontal bones, which regulate WNT signaling in neighboring AF cells by expressing the secreted WNT inhibitor Wif1. Upon loss of Fgfr2, Wif1 expression is downregulated, and AF cells fail to form the posterior frontal suture. This study identifies an FGF-WNT signaling circuit that that directs suture formation within the AF during postnatal development.
Collapse
Affiliation(s)
- Lauren Bobzin
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Audrey Nickle
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Sebastian Ko
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Michaela Ince
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Aaron Huang
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Arshia Bhojwani
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Ryan Roberts
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Yue YY, Lai CZ, Guo XS, Yang CS, Wang Y, Song GD, Jin XL. New CRISPR/Cas9-based Fgfr2 C361Y/+ mouse model of Crouzon syndrome exhibits skull and behavioral abnormalities. J Mol Med (Berl) 2024; 102:1255-1266. [PMID: 39158595 DOI: 10.1007/s00109-024-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Crouzon syndrome (CS), a syndromic craniosynostosis, is a craniofacial developmental deformity caused by mutations in fibroblast growth factor receptor 2 (FGFR2). Previous CS mouse models constructed using traditional gene editing techniques faced issues such as low targeting efficiency, extended lineage cycles, and inconsistent and unstable phenotypes. In this study, a CRISPR/Cas9-mediated strategy was employed to induce a functional augmentation of the Fgfr2 point mutation in mice. Various techniques, including bone staining, micro-CT, histological methods, and behavioral experiments, were employed to systematically examine and corroborate phenotypic disparities between mutant mice (Fgfr2C361Y/+) and their wild-type littermates. Confirmed via PCR-Sanger sequencing, we successfully induced the p.Cys361Tyr missense mutation in the Fgfr2 IIIc isoform of the extracellular domain (corresponding to the p.Cys342Tyr mutation in humans) based on Fgfr2-215 transcript (ENSMUST00000122054.8). Fgfr2C361Y/+ mice exhibited characteristics consistent with the phenotypic features associated with CS, including skull-vault craniosynostosis, skull deformity, shallow orbits accompanied by exophthalmos, midface hypoplasia with malocclusion, and shortened skull base, notably without any apparent limb defects. Furthermore, mutant mice displayed behavioral abnormalities encompassing deficits in learning and memory, social interaction, and motor dysfunction, without anxiety-related disorders. Histopathological examination of the hippocampal region revealed structural abnormalities, suggesting possible brain development impairment secondary to craniosynostosis. In conclusion, we constructed a novel gene-edited Fgfr2C361Y/+ mice strain based on CRISPR/Cas9, which displayed skull and behavioral abnormalities, serving as a new model for studying genetic molecular mechanisms and exploring treatments for CS. KEY MESSAGES: CRISPR/Cas9 crafted a Crouzon model by enhancing Fgfr2-C361Y in mice. Fgfr2C361Y/+ mice replicate CS phenotypes-craniosynostosis and midface anomalies. Mutant mice show diverse behavioral abnormalities, impacting learning and memory. Fgfr2C361Y/+ mice offer a novel model for cranial suture studies and therapeutic exploration.
Collapse
Affiliation(s)
- Ying Ying Yue
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen-Zhi Lai
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Shuang Guo
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chang-Sheng Yang
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Wang
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guo-Dong Song
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Lei Jin
- Craniomaxillofacial Surgery Department 1 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Bobzin L, Nickle A, Ko S, Ince M, Bhojwani A, Merrill AE. FGF Signaling Regulates Development of the Anterior Fontanelle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.14.603452. [PMID: 39071418 PMCID: PMC11275813 DOI: 10.1101/2024.07.14.603452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The calvarial bones of the infant skull are connected by transient fibrous joints known as sutures and fontanelles, which are essential for reshaping during birth and postnatal growth. Genetic disorders such as Apert, Pfeiffer, Crouzon, and Bent bone dysplasia linked to FGFR2 variants often exhibit multi-suture craniosynostosis and a persistently open anterior fontanelle (AF). This study leverages mouse genetics and single-cell transcriptomics to determine how Fgfr2 regulates closure of the AF closure and its transformation into the frontal suture during postnatal development. We find that cells of the AF, marked by the tendon/ligament factor SCX, are spatially restricted to ecto- or endocranial domains and undergo regionally selective differentiation into ligament, bone, and cartilage. Differentiation of SCX+ AF cells is dependent on FGFR2 signaling in cells of the osteogenic fronts which, when fueled by FGF18 from the ectocranial mesenchyme, express the secreted WNT inhibitor WIF1 to regulate WNT signaling in neighboring AF cells. Upon loss of Fgfr2 , Wif1 expression is lost, and cells of the AF retain a connective tissue-like fate failing to form the posterior frontal suture. This study provides new insights into regional differences in suture development by identifying an FGF-WNT signaling circuit within the AF that links frontal bone advancement with suture joint formation.
Collapse
|
4
|
Chen H, Xie Y, Zhang M, Huang J, Jiang W, Zhang R, Li C, Du X, Chen H, Nie Q, Liang S, Tan Q, Yang J, Jin M, Huang S, Kuang L, Su N, Qi H, Luo X, Xu X, Deng C, Chen L, Luo F. An Hsp70 promoter-based mouse for heat shock-induced gene modulation. J Mol Med (Berl) 2024; 102:693-707. [PMID: 38492027 DOI: 10.1007/s00109-024-02433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Physical therapy is extensively employed in clinical settings. Nevertheless, the absence of suitable animal models has resulted in an incomplete understanding of the in vivo mechanisms and cellular distribution that respond to physical stimuli. The objective of this research was to create a mouse model capable of indicating the cells affected by physical stimuli. In this study, we successfully established a mouse line based on the heat shock protein 70 (Hsp70) promoter, wherein the expression of CreERT2 can be induced by physical stimuli. Following stimulation of the mouse tail, ear, or cultured calvarias with heat shock (generated by heating, ultrasound, or laser), a distinct Cre-mediated excision was observed in cells stimulated by these physical factors with minimal occurrence of leaky reporter expression. The application of heat shock to Hsp70-CreERT2; FGFR2-P253R double transgenic mice or Hsp70-CreERT2 mice infected with AAV-BMP4 at calvarias induced the activation of Cre-dependent mutant FGFR2-P253R or BMP4 respectively, thereby facilitating the premature closure of cranial sutures or the repair of calvarial defects. This novel mouse line holds significant potential for investigating the underlying mechanisms of physical therapy, tissue repair and regeneration, lineage tracing, and targeted modulation of gene expression of cells in local tissue stimulated by physical factor at the interested time points. KEY MESSAGES: In the study, an Hsp70-CreERT2 transgenic mouse was generated for heat shock-induced gene modulation. Heat shock, ultrasound, and laser stimulation effectively activated Cre expression in Hsp70-CreERT2; reporter mice, which leads to deletion of floxed DNA sequence in the tail, ear, and cultured calvaria tissues of mice. Local laser stimuli on cultured calvarias effectively induce Fgfr2-P253R expression in Hsp70-mTmG-Fgfr2-P253R mice and result in accelerated premature closure of cranial suture. Heat shock activated AAV9-FLEX-BMP4 expression and subsequently promoted the repair of calvarial defect of Hsp70-CreERT2; Rosa26-mTmG mice.
Collapse
Affiliation(s)
- Hangang Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yangli Xie
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Mei Zhang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Junlan Huang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wanling Jiang
- Department of Chinese Medicine Rehabilitation, Chongqing Emergency Medical Center, Chongqing University Central Hospital), Chongqing, 400042, China
| | - Ruobin Zhang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Can Li
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xiaolan Du
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Hua Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Qiang Nie
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Sen Liang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Qiaoyan Tan
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jing Yang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Min Jin
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shuo Huang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Liang Kuang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Nan Su
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Huabing Qi
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoqing Luo
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lin Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| | - Fengtao Luo
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
5
|
Richbourg HA, Vidal-García M, Brakora KA, Devine J, Takenaka R, Young NM, Gong SG, Neves A, Hallgrímsson B, Marcucio RS. Dosage-dependent effects of FGFR2 W290R mutation on craniofacial shape and cellular dynamics of the basicranial synchondroses. Anat Rec (Hoboken) 2024:10.1002/ar.25398. [PMID: 38409943 PMCID: PMC11345876 DOI: 10.1002/ar.25398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Craniosynostosis is a common yet complex birth defect, characterized by premature fusion of the cranial sutures that can be syndromic or nonsyndromic. With over 180 syndromic associations, reaching genetic diagnoses and understanding variations in underlying cellular mechanisms remains a challenge. Variants of FGFR2 are highly associated with craniosynostosis and warrant further investigation. Using the missense mutation FGFR2W290R , an effective mouse model of Crouzon syndrome, craniofacial features were analyzed using geometric morphometrics across developmental time (E10.5-adulthood, n = 665 total). Given the interrelationship between the cranial vault and basicranium in craniosynostosis patients, the basicranium and synchondroses were analyzed in perinates. Embryonic time points showed minimal significant shape differences. However, hetero- and homozygous mutant perinates and adults showed significant differences in shape and size of the cranial vault, face, and basicranium, which were associated with cranial doming and shortening of the basicranium and skull. Although there were also significant shape and size differences associated with the basicranial bones and clear reductions in basicranial ossification in cleared whole-mount samples, there were no significant alterations in chondrocyte cell shape, size, or orientation along the spheno-occipital synchondrosis. Finally, shape differences in the cranial vault and basicranium were interrelated at perinatal stages. These results point toward the possibility that facial shape phenotypes in craniosynostosis may result in part from pleiotropic effects of the causative mutations rather than only from the secondary consequences of the sutural defects, indicating a novel direction of research that may shed light on the etiology of the broad changes in craniofacial morphology observed in craniosynostosis syndromes.
Collapse
Affiliation(s)
- Heather A. Richbourg
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
| | - Marta Vidal-García
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Katherine A. Brakora
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| | - Jay Devine
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Risa Takenaka
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
- Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
| | - Nathan M. Young
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
| | - Siew-Ging Gong
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G 1G6, Canada
| | - Amanda Neves
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
- DeepSurfaceAI, 1039 17 Avenue Southwest Calgary AB T2T 0B1, Canada
| | - Benedikt Hallgrímsson
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Ralph S. Marcucio
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
| |
Collapse
|
6
|
Kumari K, Saleh I, Taslim S, Ahmad S, Hussain I, Munir Z, Javed T, Virk MFI, Javed S, Bisharat P, Ur Rehman U. Unraveling the Complexity of Apert Syndrome: Genetics, Clinical Insights, and Future Frontiers. Cureus 2023; 15:e47281. [PMID: 38021759 PMCID: PMC10656109 DOI: 10.7759/cureus.47281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Apert syndrome (AS), also known as type I acrocephalosyndactyly, is a rare congenital condition characterized by craniosynostosis resulting from missense mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. This comprehensive review delves into AS, covering its clinical manifestations, genetics, diagnosis, medical management, psychosocial considerations, and future research directions. AS presents with distinct features, including a brachycephalic skull, midface hypoplasia, and limb anomalies such as syndactyly. It follows an autosomal dominant inheritance pattern with mutations in the FGFR2 gene. Prenatal diagnosis is possible through advanced imaging techniques and molecular testing. The multidisciplinary approach to AS management involves surgical interventions, orthodontics, and psychological support. Although no curative treatment exists, early interventions can significantly improve function and aesthetics. The quality of life for AS patients is influenced by psychosocial factors, necessitating comprehensive support for both patients and their families. Future research directions include gene therapy, understanding cellular responses to FGFR2 mutations, and addressing genetic heterogeneity. Collaborative efforts are vital to advancing knowledge about AS and its genetic underpinnings. Overall, this review serves as a valuable resource for healthcare professionals, educators, and researchers, contributing to a deeper understanding of AS and facilitating advancements in diagnosis and treatment.
Collapse
Affiliation(s)
- Kajol Kumari
- Dentistry, Jinnah Sindh Medical University, Karachi, PAK
| | - Inam Saleh
- Paediatrics, University of Kentucky College of Medicine, Lexington, USA
| | - Sanzida Taslim
- Psychiatry, Ross University School of Medicine, Bridgetown, BRB
| | - Sana Ahmad
- Psychiatry, TIME Organization, Inc., Baltimore, USA
| | - Iqbal Hussain
- Internal Medicine, Khyber Medical University, Peshawar, PAK
- Internal Medicine, Lady Reading Hospital, Peshawar, PAK
| | - Zainab Munir
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | - Tamleel Javed
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | | | - Saleha Javed
- Emergency Department, Sheikh Zayed Hospital, Rahim Yar Khan, PAK
| | | | | |
Collapse
|
7
|
Zhou Y, Zhu P, Shen S, Wang Y, Li B, Guo B, Li H. Overexpression of fibroblast growth factor receptor 2 in bone marrow mesenchymal stem cells enhances osteogenesis and promotes critical cranial bone defect regeneration. Front Cell Dev Biol 2023; 11:1208239. [PMID: 37266455 PMCID: PMC10229770 DOI: 10.3389/fcell.2023.1208239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Background: Reconstruction of cranial bone defects is one of the most challenging problems in reconstructive surgery, and several biological tissue engineering methods have been used to promote bone repair, such as genetic engineering of bone marrow mesenchymal stem cells (BMSCs). Fibroblast growth factor receptor 2 (Fgfr2) is an important regulator of bone construction and can be used as a potential gene editing site. However, its role in the osteogenesis process of BMSCs remains unclear. This article clarifies the function of Fgfr2 in BMSCs and explores the role of Fgfr2-overexpressed BMSCs carried by light-induced porous hydrogel (GelMA) in the repair of cranial bone defects. Methods: Lenti-virus was used to overexpress Fgfr2 in BMSCs, and cell counting kit-8, transwell, and flow cytometry assays were conducted to investigate the proliferation, migration, and characteristics. After 0, 3, 7, and 10 days of osteogenic or chondrogenic induction, the changes in osteogenic and chondrogenic ability were detected by real-time PCR, western blot, alkaline phosphatase staining, alizarin Red staining, and alcian blue staining. To investigate the viability of BMSCs carried by GelMA, calcein and propyl iodide staining were carried out as well. Finally, a critical cranial bone defect model was established in 6-week-old male mice and micro-computerized tomography, masson staining, and immunohistochemistry of OCN were conducted to test the bone regeneration properties of implanting Fgfr2-overexpressed BMSCs with GelMA in cranial bone defects over 6 weeks. Results: Overexpression of Fgfr2 in BMSCs significantly promoted cell proliferation and migration and increased the percentage of CD200+CD105+ cells. After osteogenic and chondrogenic induction, Fgfr2 overexpression enhanced both osteogenic and chondrogenic ability. Furthermore, in cranial bone defect regeneration, BMSCs carried by light-induced GelMA showed favorable biocompatibility, and Fgfr2-overexpressed BMSCs induced superior cranial bone regeneration compared to a normal BMSCs group and an untreated blank group. Conclusion: In vitro, Fgfr2 enhanced the proliferation, migration, and stemness of BMSCs and promoted osteogenesis and chondrogenesis after parallel induction. In vivo, BMSCs with Fgfr2 overexpression carried by GelMA showed favorable performance in treating critical cranial bone defects. This study clarifies the multiple functions of Fgfr2 in BMSCs and provides a new method for future tissue engineering.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Peixiang Zhu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Siyu Shen
- Medical School of Nanjing University, Nanjing, China
| | - Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Baochao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Baosheng Guo
- Medical School of Nanjing University, Nanjing, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Vogiatzi A, Keklikoglou K, Makris K, Argyrou DS, Zacharopoulos A, Sotiropoulou V, Parthenios N, Gkikas A, Kokkori M, Richardson MSW, Fenwick AL, Archontidi S, Arvanitidis C, Robertson J, Parthenios J, Zacharakis G, Twigg SRF, Wilkie AOM, Mavrothalassitis G. Development of Erf-Mediated Craniosynostosis and Pharmacological Amelioration. Int J Mol Sci 2023; 24:7961. [PMID: 37175668 PMCID: PMC10178537 DOI: 10.3390/ijms24097961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
ETS2 repressor factor (ERF) insufficiency causes craniosynostosis (CRS4) in humans and mice. ERF is an ETS domain transcriptional repressor regulated by Erk1/2 phosphorylation via nucleo-cytoplasmic shuttling. Here, we analyze the onset and development of the craniosynostosis phenotype in an Erf-insufficient mouse model and evaluate the potential of the residual Erf activity augmented by pharmacological compounds to ameliorate the disease. Erf insufficiency appears to cause an initially compromised frontal bone formation and subsequent multisuture synostosis, reflecting distinct roles of Erf on the cells that give rise to skull and facial bones. We treated animals with Mek1/2 and nuclear export inhibitors, U0126 and KPT-330, respectively, to increase Erf activity by two independent pathways. We implemented both a low dosage locally over the calvaria and a systemic drug administration scheme to evaluate the possible indirect effects from other systems and minimize toxicity. The treatment of mice with either the inhibitors or the administration scheme alleviated the synostosis phenotype with minimal adverse effects. Our data suggest that the ERF level is an important regulator of cranial bone development and that pharmacological modulation of its activity may represent a valid intervention approach both in CRS4 and in other syndromic forms of craniosynostosis mediated by the FGFR-RAS-ERK-ERF pathway.
Collapse
Affiliation(s)
- Angeliki Vogiatzi
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
- IMBB, FORTH, 71003 Heraklion, Crete, Greece
| | - Kleoniki Keklikoglou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003 Heraklion, Crete, Greece
- Biology Department, University of Crete, 71003 Heraklion, Crete, Greece
| | | | | | | | | | | | - Angelos Gkikas
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Maria Kokkori
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Melodie S. W. Richardson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Aimée L. Fenwick
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sofia Archontidi
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Christos Arvanitidis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003 Heraklion, Crete, Greece
- LifeWatch ERIC, Sector II-II, Plaza de España, 41071 Seville, Spain
| | - Jeremy Robertson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | - Stephen R. F. Twigg
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Andrew O. M. Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - George Mavrothalassitis
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
- IMBB, FORTH, 71003 Heraklion, Crete, Greece
| |
Collapse
|
9
|
Hoshino Y, Takechi M, Moazen M, Steacy M, Koyabu D, Furutera T, Ninomiya Y, Nuri T, Pauws E, Iseki S. Synchondrosis fusion contributes to the progression of postnatal craniofacial dysmorphology in syndromic craniosynostosis. J Anat 2023; 242:387-401. [PMID: 36394990 PMCID: PMC9919486 DOI: 10.1111/joa.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Syndromic craniosynostosis (CS) patients exhibit early, bony fusion of calvarial sutures and cranial synchondroses, resulting in craniofacial dysmorphology. In this study, we chronologically evaluated skull morphology change after abnormal fusion of the sutures and synchondroses in mouse models of syndromic CS for further understanding of the disease. We found fusion of the inter-sphenoid synchondrosis (ISS) in Apert syndrome model mice (Fgfr2S252W/+ ) around 3 weeks old as seen in Crouzon syndrome model mice (Fgfr2cC342Y/+ ). We then examined ontogenic trajectories of CS mouse models after 3 weeks of age using geometric morphometrics analyses. Antero-ventral growth of the face was affected in Fgfr2S252W/+ and Fgfr2cC342Y/+ mice, while Saethre-Chotzen syndrome model mice (Twist1+/- ) did not show the ISS fusion and exhibited a similar growth pattern to that of control littermates. Further analysis revealed that the coronal suture synostosis in the CS mouse models induces only the brachycephalic phenotype as a shared morphological feature. Although previous studies suggest that the fusion of the facial sutures during neonatal period is associated with midface hypoplasia, the present study suggests that the progressive postnatal fusion of the cranial synchondrosis also contributes to craniofacial dysmorphology in mouse models of syndromic CS. These morphological trajectories increase our understanding of the progression of syndromic CS skull growth.
Collapse
Affiliation(s)
- Yukiko Hoshino
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Office of New Drug V, Pharmaceuticals and Medical Devices Agency (PMDA)TokyoJapan
| | - Masaki Takechi
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| | - Mehran Moazen
- Department of UCL Mechanical EngineeringUniversity College LondonLondonUK
| | - Miranda Steacy
- Institute of Child Health, Great Ormond StreetUniversity College LondonLondonUK
| | - Daisuke Koyabu
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Research and Development Center for Precision MedicineTsukuba UniversityTsukubaJapan
| | - Toshiko Furutera
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| | - Youichirou Ninomiya
- Research Organization of Information and SystemsNational Institute of InformaticsTokyoJapan
| | - Takashi Nuri
- Department of Plastic and Reconstructive SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Erwin Pauws
- Institute of Child Health, Great Ormond StreetUniversity College LondonLondonUK
| | - Sachiko Iseki
- Department of Molecular Craniofacial EmbryologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
10
|
Gebuijs L, Wagener FA, Zethof J, Carels CE, Von den Hoff JW, Metz JR. Targeting fibroblast growth factor receptors causes severe craniofacial malformations in zebrafish larvae. PeerJ 2022; 10:e14338. [PMID: 36444384 PMCID: PMC9700454 DOI: 10.7717/peerj.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Objective A key pathway controlling skeletal development is fibroblast growth factor (FGF) and FGF receptor (FGFR) signaling. Major regulatory functions of FGF signaling are chondrogenesis, endochondral and intramembranous bone development. In this study we focus on fgfr2, as mutations in this gene are found in patients with craniofacial malformations. The high degree of conservation between FGF signaling of human and zebrafish (Danio rerio) tempted us to investigate effects of the mutated fgfr2 sa10729 allele in zebrafish on cartilage and bone formation. Methods We stained cartilage and bone in 5 days post fertilization (dpf) zebrafish larvae and compared mutants with wildtypes. We also determined the expression of genes related to these processes. We further investigated whether pharmacological blocking of all FGFRs with the inhibitor BGJ398, during 0-12 and 24-36 h post fertilization (hpf), affected craniofacial structure development at 5 dpf. Results We found only subtle differences in craniofacial morphology between wildtypes and mutants, likely because of receptor redundancy. After exposure to BGJ398, we found dose-dependent cartilage and bone malformations, with more severe defects in fish exposed during 0-12 hpf. These results suggest impairment of cranial neural crest cell survival and/or differentiation by FGFR inhibition. Compensatory reactions by upregulation of fgfr1a, fgfr1b, fgfr4, sp7 and dlx2a were found in the 0-12 hpf group, while in the 24-36 hpf group only upregulation of fgf3 was found together with downregulation of fgfr1a and fgfr2. Conclusions Pharmacological targeting of FGFR1-4 kinase signaling causes severe craniofacial malformations, whereas abrogation of FGFR2 kinase signaling alone does not induce craniofacial skeletal abnormalities. These findings enhance our understanding of the role of FGFRs in the etiology of craniofacial malformations.
Collapse
Affiliation(s)
- Liesbeth Gebuijs
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands,Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Frank A. Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Carine E. Carels
- Department of Human Genetics and Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Johannes W. Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
11
|
Ang PS, Matrongolo MJ, Zietowski ML, Nathan SL, Reid RR, Tischfield MA. Cranium growth, patterning and homeostasis. Development 2022; 149:dev201017. [PMID: 36408946 PMCID: PMC9793421 DOI: 10.1242/dev.201017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Craniofacial development requires precise spatiotemporal regulation of multiple signaling pathways that crosstalk to coordinate the growth and patterning of the skull with surrounding tissues. Recent insights into these signaling pathways and previously uncharacterized progenitor cell populations have refined our understanding of skull patterning, bone mineralization and tissue homeostasis. Here, we touch upon classical studies and recent advances with an emphasis on developmental and signaling mechanisms that regulate the osteoblast lineage for the calvaria, which forms the roof of the skull. We highlight studies that illustrate the roles of osteoprogenitor cells and cranial suture-derived stem cells for proper calvarial growth and homeostasis. We also discuss genes and signaling pathways that control suture patency and highlight how perturbing the molecular regulation of these pathways leads to craniosynostosis. Finally, we discuss the recently discovered tissue and signaling interactions that integrate skull and cerebrovascular development, and the potential implications for both cerebrospinal fluid hydrodynamics and brain waste clearance in craniosynostosis.
Collapse
Affiliation(s)
- Phillip S. Ang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Matt J. Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - Shelby L. Nathan
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
12
|
Willie D, Holmes G, Jabs EW, Wu M. Cleft Palate in Apert Syndrome. J Dev Biol 2022; 10:jdb10030033. [PMID: 35997397 PMCID: PMC9397066 DOI: 10.3390/jdb10030033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Apert syndrome is a rare genetic disorder characterized by craniosynostosis, midface retrusion, and limb anomalies. Cleft palate occurs in a subset of Apert syndrome patients. Although the genetic causes underlying Apert syndrome have been identified, the downstream signaling pathways and cellular mechanisms responsible for cleft palate are still elusive. To find clues for the pathogenic mechanisms of palatal defects in Apert syndrome, we review the clinical characteristics of the palate in cases of Apert syndrome, the palatal phenotypes in mouse models, and the potential signaling mechanisms involved in palatal defects. In Apert syndrome patients, cleft of the soft palate is more frequent than of the hard palate. The length of the hard palate is decreased. Cleft palate is associated most commonly with the S252W variant of FGFR2. In addition to cleft palate, high-arched palate, lateral palatal swelling, or bifid uvula are common in Apert syndrome patients. Mouse models of Apert syndrome display palatal defects, providing valuable tools to understand the underlying mechanisms. The mutations in FGFR2 causing Apert syndrome may change a signaling network in epithelial–mesenchymal interactions during palatogenesis. Understanding the pathogenic mechanisms of palatal defects in Apert syndrome may shed light on potential novel therapeutic solutions.
Collapse
|
13
|
Hallett SA, Ono W, Franceschi RT, Ono N. Cranial Base Synchondrosis: Chondrocytes at the Hub. Int J Mol Sci 2022; 23:7817. [PMID: 35887171 PMCID: PMC9317907 DOI: 10.3390/ijms23147817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 01/04/2023] Open
Abstract
The cranial base is formed by endochondral ossification and functions as a driver of anteroposterior cranial elongation and overall craniofacial growth. The cranial base contains the synchondroses that are composed of opposite-facing layers of resting, proliferating and hypertrophic chondrocytes with unique developmental origins, both in the neural crest and mesoderm. In humans, premature ossification of the synchondroses causes midfacial hypoplasia, which commonly presents in patients with syndromic craniosynostoses and skeletal Class III malocclusion. Major signaling pathways and transcription factors that regulate the long bone growth plate-PTHrP-Ihh, FGF, Wnt, BMP signaling and Runx2-are also involved in the cranial base synchondrosis. Here, we provide an updated overview of the cranial base synchondrosis and the cell population within, as well as its molecular regulation, and further discuss future research opportunities to understand the unique function of this craniofacial skeletal structure.
Collapse
Affiliation(s)
- Shawn A. Hallett
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (R.T.F.)
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA;
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (R.T.F.)
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA
| |
Collapse
|
14
|
Stanton E, Urata M, Chen JF, Chai Y. The clinical manifestations, molecular mechanisms and treatment of craniosynostosis. Dis Model Mech 2022; 15:dmm049390. [PMID: 35451466 PMCID: PMC9044212 DOI: 10.1242/dmm.049390] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis is a major congenital craniofacial disorder characterized by the premature fusion of cranial suture(s). Patients with severe craniosynostosis often have impairments in hearing, vision, intracranial pressure and/or neurocognitive functions. Craniosynostosis can result from mutations, chromosomal abnormalities or adverse environmental effects, and can occur in isolation or in association with numerous syndromes. To date, surgical correction remains the primary treatment for craniosynostosis, but it is associated with complications and with the potential for re-synostosis. There is, therefore, a strong unmet need for new therapies. Here, we provide a comprehensive review of our current understanding of craniosynostosis, including typical craniosynostosis types, their clinical manifestations, cranial suture development, and genetic and environmental causes. Based on studies from animal models, we present a framework for understanding the pathogenesis of craniosynostosis, with an emphasis on the loss of postnatal suture mesenchymal stem cells as an emerging disease-driving mechanism. We evaluate emerging treatment options and highlight the potential of mesenchymal stem cell-based suture regeneration as a therapeutic approach for craniosynostosis.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Urata
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Greenblatt MB, Shim JH, Bok S, Kim JM. The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts. J Bone Metab 2022; 29:1-15. [PMID: 35325978 PMCID: PMC8948490 DOI: 10.11005/jbm.2022.29.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/01/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transducers of the mitogen-activated protein kinase (MAPK) family that have long been linked to the regulation of osteoblast differentiation and bone formation. Here, we review the physiological functions, biochemistry, upstream activators, and downstream substrates of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast differentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-related transcription factor 2, a critical transcription factor for osteoblast differentiation. However, new evidence highlights context-dependent changes in ERK MAPK pathway wiring and function, indicating a broader set of physiological roles associated with changes in ERK pathway components or substrates. Consistent with this importance, several human skeletal dysplasias are associated with dysregulation of the ERK MAPK pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually broadening array of drugs targeting the ERK pathway for the treatment of cancer and other disorders makes it increasingly important to understand how interference with this pathway impacts bone metabolism, highlighting the importance of mouse studies to model the role of the ERK MAPK pathway in bone formation.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
- Research Division, Hospital for Special Surgery, New York, NY,
USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
- Horae Gene Therapy Center, and Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA,
USA
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
| | - Jung-Min Kim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
| |
Collapse
|
16
|
Al-Namnam NM, Jayash SN, Hariri F, Rahman ZAA, Alshawsh MA. Insights and future directions of potential genetic therapy for Apert syndrome: A systematic review. Gene Ther 2021; 28:620-633. [PMID: 33619359 DOI: 10.1038/s41434-021-00238-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Apert syndrome is a genetic disorder characterised by craniosynostosis and structural discrepancy of the craniofacial region as well as the hands and feet. This condition is closely linked with fibroblast growth factor receptor-2 (FGFR2) gene mutations. Gene therapies are progressively being tested in advanced clinical trials, leading to a rise of its potential clinical indications. In recent years, research has made great progress in the gene therapy of craniosynostosis syndromes and several studies have investigated its influences in preventing/diminishing the complications of Apert syndrome. This article reviewed and exhibited different techniques of gene therapy and their influences in Apert syndrome progression. A systematic search was executed using electronic bibliographic databases including PubMed, EMBASE, ScienceDirect, SciFinder and Web of Science for all studies of gene therapy for Apert syndrome. The primary outcomes measurements vary from protein to gene expressions. According to the findings of included studies, we conclude that the gene therapy using FGF in Apert syndrome was critical in the regulation of suture fusion and patency, occurred via alterations in cellular proliferation. The superior outcome could be brought by biological therapies targeting the FGF/FGFR signalling. More studies in molecular genetics in Apert syndrome are recommended. This study reviews the current literature and provides insights to future possibilities of genetic therapy as intervention in Apert syndrome.
Collapse
Affiliation(s)
| | - Soher Nagi Jayash
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, UK
| | - Firdaus Hariri
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | |
Collapse
|
17
|
Vogiatzi A, Baltsavia I, Dialynas E, Theodorou V, Zhou Y, Deligianni E, Iliopoulos I, Wilkie AOM, Twigg SRF, Mavrothalassitis G. Erf Affects Commitment and Differentiation of Osteoprogenitor Cells in Cranial Sutures via the Retinoic Acid Pathway. Mol Cell Biol 2021; 41:e0014921. [PMID: 33972395 PMCID: PMC8300784 DOI: 10.1128/mcb.00149-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
ETS2 repressor factor (ERF) haploinsufficiency causes late-onset craniosynostosis (CRS) (OMIM entry 600775; CRS4) in humans, while in mice Erf insufficiency also leads to a similar multisuture synostosis phenotype preceded by mildly reduced calvarium ossification. However, neither the cell types affected nor the effects per se have been identified so far. Here, we establish an ex vivo system for the expansion of suture-derived mesenchymal stem and progenitor cells (sdMSCs) and analyze the role of Erf levels in their differentiation. Cellular data suggest that Erf insufficiency specifically decreases osteogenic differentiation of sdMSCs, resulting in the initially delayed mineralization of the calvarium. Transcriptome analysis indicates that Erf is required for efficient osteogenic lineage commitment of sdMSCs. Elevated retinoic acid catabolism due to increased levels of the cytochrome P450 superfamily member Cyp26b1 as a result of decreased Erf levels appears to be the underlying mechanism leading to defective differentiation. Exogenous addition of retinoic acid can rescue the osteogenic differentiation defect, suggesting that Erf affects cranial bone mineralization during skull development through retinoic acid gradient regulation.
Collapse
Affiliation(s)
| | | | | | | | - Yan Zhou
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Andrew O. M. Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen R. F. Twigg
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - George Mavrothalassitis
- Medical School, University of Crete, Heraklion, Crete, Greece
- IMBB, FORTH, Heraklion, Crete, Greece
| |
Collapse
|
18
|
Unger CM, Devine J, Hallgrímsson B, Rolian C. Selection for increased tibia length in mice alters skull shape through parallel changes in developmental mechanisms. eLife 2021; 10:e67612. [PMID: 33899741 PMCID: PMC8118654 DOI: 10.7554/elife.67612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Bones in the vertebrate cranial base and limb skeleton grow by endochondral ossification, under the control of growth plates. Mechanisms of endochondral ossification are conserved across growth plates, which increases covariation in size and shape among bones, and in turn may lead to correlated changes in skeletal traits not under direct selection. We used micro-CT and geometric morphometrics to characterize shape changes in the cranium of the Longshanks mouse, which was selectively bred for longer tibiae. We show that Longshanks skulls became longer, flatter, and narrower in a stepwise process. Moreover, we show that these morphological changes likely resulted from developmental changes in the growth plates of the Longshanks cranial base, mirroring changes observed in its tibia. Thus, indirect and non-adaptive morphological changes can occur due to developmental overlap among distant skeletal elements, with important implications for interpreting the evolutionary history of vertebrate skeletal form.
Collapse
Affiliation(s)
- Colton M Unger
- Department of Biological Sciences, University of CalgaryCalgaryCanada
- McCaig Institute for Bone and Joint HealthCalgaryCanada
| | - Jay Devine
- Department of Cell Biology and Anatomy, University of CalgaryCalgaryCanada
| | - Benedikt Hallgrímsson
- McCaig Institute for Bone and Joint HealthCalgaryCanada
- Department of Cell Biology and Anatomy, University of CalgaryCalgaryCanada
- Alberta Children's Hospital Research Institute for Child and Maternal Health, University of CalgaryCalgaryCanada
| | - Campbell Rolian
- McCaig Institute for Bone and Joint HealthCalgaryCanada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of CalgaryCalgaryCanada
| |
Collapse
|
19
|
Tang L, Wu M, Lu S, Zhang H, Shen Y, Shen C, Liang H, Ge H, Ding X, Wang Z. Fgf9 Negatively Regulates Bone Mass by Inhibiting Osteogenesis and Promoting Osteoclastogenesis Via MAPK and PI3K/AKT Signaling. J Bone Miner Res 2021; 36:779-791. [PMID: 33316109 DOI: 10.1002/jbmr.4230] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 01/16/2023]
Abstract
Fibroblast growth factor 9 (Fgf9) is a well-known factor that regulates bone development; however, its function in bone homeostasis is still unknown. Previously, we identified a point mutation in the FGF9 gene (p.Ser99Asn, S99N) and generated an isogeneic knock-in mouse model, which revealed that this loss-of-function mutation impaired early joint formation and was responsible for human multiple synostosis syndrome 3 (SYNS3). Moreover, newborn and adult S99N mutant mice exhibited significantly increased bone mass, suggesting that Fgf9 also participated in bone homeostasis. Histomorphology, tomography, and serological analysis of homozygous newborns and heterozygous adults showed that the Fgf9S99N mutation immensely increased bone mass and bone formation in perinatal and adult bones and decreased osteoclastogenesis in adult bone. An in vitro differentiation assay further revealed that the S99N mutation enhanced bone formation by promoting osteogenesis and mineralization of bone marrow mesenchymal stem cells (BMSCs) and attenuating osteoclastogenesis of bone marrow monocytes (BMMs). Considering the loss-of-function effect of the S99N mutation, we hypothesized that Fgf9 itself inhibits osteogenesis and promotes osteoclastogenesis. An in vitro differentiation assay revealed that Fgf9 prominently inhibited BMSC osteogenic differentiation and mineralization and showed for the first time that Fgf9 promoted osteoclastogenesis by enhancing preosteoclast aggregation and cell-cell fusion. Furthermore, specific inhibitors and in vitro differentiation assays were used and showed that Fgf9 inhibited BMSC osteogenesis mainly via the MEK/ERK pathway and partially via the PI3K/AKT pathway. Fgf9 also promoted osteoclastogenesis as a potential costimulatory factor with macrophage colony-stimating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) by coactivating the MAPK and PI3K/AKT signaling pathways. Taken together, our study demonstrated that Fgf9 is a negative regulator of bone homeostasis by regulating osteogenesis and osteoclastogenesis and provides a potential therapeutic target for bone degenerative diseases. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Min Wu
- Shanghai Institute of Hematology, Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to SJTUSM, Shanghai, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hui Liang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaoyi Ding
- Department of Radiology, Rui-Jin Hospital Affiliated to SJTUSM, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
20
|
Swanson WB, Omi M, Zhang Z, Nam HK, Jung Y, Wang G, Ma PX, Hatch NE, Mishina Y. Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials 2021; 272:120769. [PMID: 33798961 DOI: 10.1016/j.biomaterials.2021.120769] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Craniosynostosis is a debilitating birth defect characterized by the premature fusion of cranial bones resulting from premature loss of stem cells located in suture tissue between growing bones. Mesenchymal stromal cells in long bone and the cranial suture are known to be multipotent cell sources in the appendicular skeleton and cranium, respectively. We are developing biomaterial constructs to maintain stemness of the cranial suture cell population towards an ultimate goal of diminishing craniosynostosis patient morbidity. Recent evidence suggests that physical features of synthetic tissue engineering scaffolds modulate cell and tissue fate. In this study, macroporous tissue engineering scaffolds with well-controlled spherical pores were fabricated by a sugar porogen template method. Cell-scaffold constructs were implanted subcutaneously in mice for up to eight weeks then assayed for mineralization, vascularization, extracellular matrix composition, and gene expression. Pore size differentially regulates cell fate, where sufficiently large pores provide an osteogenic niche adequate for bone formation, while sufficiently small pores (<125 μm in diameter) maintain stemness and prevent differentiation. Cell-scaffold constructs cultured in vitro followed the same pore size-controlled differentiation fate. We therefore attribute the differential cell and tissue fate to scaffold pore geometry. Scaffold pore size regulates mesenchymal cell fate, providing a novel design motif to control tissue regenerative processes and develop mesenchymal stem cell niches in vivo and in vitro through biophysical features.
Collapse
Affiliation(s)
- W Benton Swanson
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Maiko Omi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Younghun Jung
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Gefei Wang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Materials Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA; Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Katsianou M, Papavassiliou KA, Zoi I, Gargalionis AN, Panagopoulos D, Themistocleous MS, Piperi C, Papavassiliou AG, Basdra EK. Polycystin-1 modulates RUNX2 activation and osteocalcin gene expression via ERK signalling in a human craniosynostosis cell model. J Cell Mol Med 2021; 25:3216-3225. [PMID: 33656806 PMCID: PMC8034462 DOI: 10.1111/jcmm.16391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Craniosynostosis refers to the premature fusion of one or more cranial sutures leading to skull shape deformities and brain growth restriction. Among the many factors that contribute to abnormal suture fusion, mechanical forces seem to play a major role. Nevertheless, the underlying mechanobiology-related mechanisms of craniosynostosis still remain unknown. Understanding how aberrant mechanosensation and mechanotransduction drive premature suture fusion will offer important insights into the pathophysiology of craniosynostosis and result in the development of new therapies, which can be used to intervene at an early stage and prevent premature suture fusion. Herein, we provide evidence for the first time on the role of polycystin-1 (PC1), a key protein in cellular mechanosensitivity, in craniosynostosis, using primary cranial suture cells isolated from patients with trigonocephaly and dolichocephaly, two common types of craniosynostosis. Initially, we showed that PC1 is expressed at the mRNA and protein level in both trigonocephaly and dolichocephaly cranial suture cells. Followingly, by utilizing an antibody against the mechanosensing extracellular N-terminal domain of PC1, we demonstrated that PC1 regulates runt-related transcription factor 2 (RUNX2) activation and osteocalcin gene expression via extracellular signal-regulated kinase (ERK) signalling in our human craniosynostosis cell model. Altogether, our study reveals a novel mechanotransduction signalling axis, PC1-ERK-RUNX2, which affects osteoblastic differentiation in cranial suture cells from trigonocephaly and dolichocephaly patients.
Collapse
Affiliation(s)
- Maira Katsianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Guo Q, Guo Q, Xiao Y, Li C, Huang Y, Luo X. Regulation of bone marrow mesenchymal stem cell fate by long non-coding RNA. Bone 2020; 141:115617. [PMID: 32853852 DOI: 10.1016/j.bone.2020.115617] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Bone mesenchymal stem cells (BMSCs) are progenitor cells isolated from bone marrow, which keep potential to differentiate into several kinds of cells including osteoblasts and adipocytes. A dynamic mutual regulation exists between osteogenesis and adipogenesis processes. Long non-coding RNA (lncRNA) performs diverse functions in biological activities including regulation of BMSCs commitment. Evidence has shown that lncRNA regulates key signaling pathways including TGFβ/BMP, Wnt and Notch pathways, and several transcription factors in BMSCs differention. Dysregulation of lncRNA in BMSCs leads to disruption of osteo-adipogenesis difffrentiation and results in impairment of bone homeostasis. In this review, we focus on the role of lncRNA in several critical signaling pathways that involved in regulation of osteo-adipogenesis of BMSC and prospects the potential clinical application of lncRNA.
Collapse
Affiliation(s)
- Qiaoyue Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China.
| |
Collapse
|
23
|
Morice A, Cornette R, Giudice A, Collet C, Paternoster G, Arnaud É, Galliani E, Picard A, Legeai-Mallet L, Khonsari RH. Early mandibular morphological differences in patients with FGFR2 and FGFR3-related syndromic craniosynostoses: A 3D comparative study. Bone 2020; 141:115600. [PMID: 32822871 DOI: 10.1016/j.bone.2020.115600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Syndromic craniosynostoses are defined by the premature fusion of one or more cranial and facial sutures, leading to skull vault deformation, and midfacial retrusion. More recently, mandibular shape modifications have been described in FGFR-related craniosynostoses, which represent almost 75% of the syndromic craniosynostoses. Here, further characterisation of the mandibular phenotype in FGFR-related craniosynostoses is provided in order to confirm mandibular shape modifications, as this could contribute to a better understanding of the involvement of the FGFR pathway in craniofacial development. The aim of our study was to analyse early mandibular morphology in a cohort of patients with FGFR2- (Crouzon and Apert) and FGFR3- (Muenke and Crouzonodermoskeletal) related syndromic craniosynostoses. We used a comparative geometric morphometric approach based on 3D imaging. Thirty-one anatomical landmarks and eleven curves with sliding semi-landmarks were defined to model the shape of the mandible. In total, 40 patients (12 with Crouzon, 12 with Apert, 12 with Muenke and 4 with Crouzonodermoskeletal syndromes) and 40 age and sex-matched controls were included (mean age: 13.7 months ±11.9). Mandibular shape differed significantly between controls and each patient group based on geometric morphometrics. Mandibular shape in FGFR2-craniosynostoses was characterized by open gonial angle, short ramus height, and high and prominent symphysis. Short ramus height appeared more pronounced in Apert than in Crouzon syndrome. Additionally, narrow inter-condylar and inter-gonial distances were observed in Crouzon syndrome. Mandibular shape in FGFR3-craniosynostoses was characterized by high and prominent symphysis and narrow inter-gonial distance. In addition, narrow condylar processes affected patients with Crouzonodermoskeletal syndrome. Statistical analysis of variance showed significant clustering of Apert and Crouzon, Crouzon and Muenke, and Apert and Muenke patients (p < 0.05). Our results confirm distinct mandibular shapes at early ages in FGFR2- (Crouzon and Apert syndromes) and FGFR3-related syndromic craniosynostoses (Muenke and Crouzonodermoskeletal syndromes) and reinforce the hypothesis of genotype-phenotype correspondence concerning mandibular morphology.
Collapse
Affiliation(s)
- A Morice
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France; Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France.
| | - R Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - A Giudice
- Università Degli Studi di Catanzaro 'Magna Graecia', Catanzaro, Italy
| | - C Collet
- BIOSCAR, INSERM U1132, Université de Paris, Hôpital Lariboisière, 75010 Paris, France; Service de Biochimie et Biologie Moléculaire, CHU-Paris-GH Saint Louis Lariboisière Widal, Paris, France
| | - G Paternoster
- Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| | - É Arnaud
- Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| | - E Galliani
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France
| | - A Picard
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France
| | - L Legeai-Mallet
- Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France
| | - R H Khonsari
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France; Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France; Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| |
Collapse
|
24
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 410] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
25
|
Dias MS, Samson T, Rizk EB, Governale LS, Richtsmeier JT. Identifying the Misshapen Head: Craniosynostosis and Related Disorders. Pediatrics 2020; 146:peds.2020-015511. [PMID: 32868470 DOI: 10.1542/peds.2020-015511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pediatric care providers, pediatricians, pediatric subspecialty physicians, and other health care providers should be able to recognize children with abnormal head shapes that occur as a result of both synostotic and deformational processes. The purpose of this clinical report is to review the characteristic head shape changes, as well as secondary craniofacial characteristics, that occur in the setting of the various primary craniosynostoses and deformations. As an introduction, the physiology and genetics of skull growth as well as the pathophysiology underlying craniosynostosis are reviewed. This is followed by a description of each type of primary craniosynostosis (metopic, unicoronal, bicoronal, sagittal, lambdoid, and frontosphenoidal) and their resultant head shape changes, with an emphasis on differentiating conditions that require surgical correction from those (bathrocephaly, deformational plagiocephaly/brachycephaly, and neonatal intensive care unit-associated skill deformation, known as NICUcephaly) that do not. The report ends with a brief discussion of microcephaly as it relates to craniosynostosis as well as fontanelle closure. The intent is to improve pediatric care providers' recognition and timely referral for craniosynostosis and their differentiation of synostotic from deformational and other nonoperative head shape changes.
Collapse
Affiliation(s)
- Mark S Dias
- Section of Pediatric Neurosurgery, Department of Neurosurgery and
| | - Thomas Samson
- Division of Plastic Surgery, Department of Surgery, College of Medicine and
| | - Elias B Rizk
- Section of Pediatric Neurosurgery, Department of Neurosurgery and
| | - Lance S Governale
- Lillian S. Wells Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida
| | - Joan T Richtsmeier
- Department of Anthropology, College of the Liberal Arts and Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania; and
| | | |
Collapse
|
26
|
Kim WJ, Shin HL, Kim BS, Kim HJ, Ryoo HM. RUNX2-modifying enzymes: therapeutic targets for bone diseases. Exp Mol Med 2020; 52:1178-1184. [PMID: 32788656 PMCID: PMC8080656 DOI: 10.1038/s12276-020-0471-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
RUNX2 is a master transcription factor of osteoblast differentiation. RUNX2 expression in the bone and osteogenic front of a suture is crucial for cranial suture closure and membranous bone morphogenesis. In this manner, the regulation of RUNX2 is precisely controlled by multiple posttranslational modifications (PTMs) mediated by the stepwise recruitment of multiple enzymes. Genetic defects in RUNX2 itself or in its PTM regulatory pathways result in craniofacial malformations. Haploinsufficiency in RUNX2 causes cleidocranial dysplasia (CCD), which is characterized by open fontanelle and hypoplastic clavicles. In contrast, gain-of-function mutations in FGFRs, which are known upstream stimulating signals of RUNX2 activity, cause craniosynostosis (CS) characterized by premature suture obliteration. The identification of these PTM cascades could suggest suitable drug targets for RUNX2 regulation. In this review, we will focus on the mechanism of RUNX2 regulation mediated by PTMs, such as phosphorylation, prolyl isomerization, acetylation, and ubiquitination, and we will summarize the therapeutics associated with each PTM enzyme for the treatment of congenital cranial suture anomalies.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Lim Shin
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Bong-Soo Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Jung Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Mo Ryoo
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
27
|
Kim B, Shin H, Kim W, Kim H, Cho Y, Yoon H, Baek J, Woo K, Lee Y, Ryoo H. PIN1 Attenuation Improves Midface Hypoplasia in a Mouse Model of Apert Syndrome. J Dent Res 2019; 99:223-232. [PMID: 31869252 DOI: 10.1177/0022034519893656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Premature fusion of the cranial suture and midface hypoplasia are common features of syndromic craniosynostosis caused by mutations in the FGFR2 gene. The only treatment for this condition involves a series of risky surgical procedures designed to correct defects in the craniofacial bones, which must be performed until brain growth has been completed. Several pharmacologic interventions directed at FGFR2 downstream signaling have been tested as potential treatments for premature coronal suture fusion in a mouse model of Apert syndrome. However, there are no published studies that have targeted for the pharmacologic treatment of midface hypoplasia. We used Fgfr2S252W/+ knock-in mice as a model of Apert syndrome and morphometric analyses to identify causal hypoplastic sites in the midface region. Three-dimensional geometric and linear analyses of Fgfr2S252W/+ mice at postnatal day 0 demonstrated distinct morphologic variance. The premature fusion of anterior facial bones, such as the maxilla, nasal, and frontal bones, rather than the cranium or cranial base, is the main contributing factor toward the anterior-posterior skull length shortening. The cranial base of the mouse model had a noticeable downward slant around the intersphenoid synchondrosis, which is related to distortion of the airway. Within a skull, the facial shape variance was highly correlated with the cranial base angle change along Fgfr2 S252W mutation-induced craniofacial anomalies. The inhibition of an FGFR2 downstream signaling enzyme, PIN1, via genetic knockdown or use of a PIN1 inhibitor, juglone, attenuated the aforementioned deformities in a mouse model of Apert syndrome. Overall, these results indicate that FGFR2 signaling is a key contributor toward abnormal anterior-posterior dimensional growth in the midface region. Our study suggests a novel therapeutic option for the prevention of craniofacial malformations induced by mutations in the FGFR2 gene.
Collapse
Affiliation(s)
- B Kim
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - H Shin
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - W Kim
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - H Kim
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Y Cho
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea.,Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - H Yoon
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - J Baek
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - K Woo
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Y Lee
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - H Ryoo
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Cornille M, Dambroise E, Komla-Ebri D, Kaci N, Biosse-Duplan M, Di Rocco F, Legeai-Mallet L. Animal models of craniosynostosis. Neurochirurgie 2019; 65:202-209. [PMID: 31563616 DOI: 10.1016/j.neuchi.2019.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Various animal models mimicking craniosynostosis have been developed, using mutant zebrafish and mouse. The aim of this paper is to review the different animal models for syndromic craniosynostosis and analyze what insights they have provided in our understanding of the pathophysiology of these conditions. MATERIAL AND METHODS The relevant literature for animal models of craniosynostosis was reviewed. RESULTS Although few studies on craniosynostosis using zebrafish were published, this model appears useful in studying the suture formation mechanisms conserved across vertebrates. Conversely, several mouse models have been generated for the most common syndromic craniosynostoses, associated with mutations in FGFR1, FGFR2, FGFR3 and TWIST genes and also in MSX2, EFFNA, GLI3, FREM1, FGF3/4 genes. The mouse models have also been used to test pharmacological treatments to restore craniofacial growth. CONCLUSIONS Several zebrafish and mouse models have been developed in recent decades. These animal models have been helpful for our understanding of normal and pathological craniofacial growth. Mouse models mimicking craniosynostoses can be easily used for the screening of drugs as therapeutic candidates.
Collapse
Affiliation(s)
- M Cornille
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France
| | - E Dambroise
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France
| | - D Komla-Ebri
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France; Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, W12 ONNLondon, United Kingdom
| | - N Kaci
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France; Inovarion, 75013 Paris, France
| | - M Biosse-Duplan
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France
| | - F Di Rocco
- Centre de référence craniosténoses, université de Lyon, 69677 Bron France; Service de neurochirurgie pédiatrique, université Lyon, hôpital Femme-Mère-Enfant, 69677, Bron, France.
| | - L Legeai-Mallet
- Inserm U1163, Paris university, institut Imagine, 75015 Paris, France.
| |
Collapse
|
29
|
Zhao R, Du P, Sun H, Yang L, Lin P. Fetal microtia and FGFR2 polymorphism. Exp Ther Med 2019; 18:384-388. [PMID: 31258676 PMCID: PMC6566112 DOI: 10.3892/etm.2019.7568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/12/2019] [Indexed: 11/06/2022] Open
Abstract
Association of the single-nucleotide polymorphism (SNP) of rs3135718 site in fibroblast growth factor receptor 2 (FGFR2) gene with congenital microtia was investigated. A total of 193 patients with congenital microtia (observation group) and 150 normal and healthy fetuses (control group) treated in Maternity and Child Health Care of Zaozhuang from January 2010 to October 2017 were randomly selected. The gene and genotype of the rs3135718 site of FGFR2 gene SNP were detected via quantitative polymerase chain reaction (qPCR). The association between rs3135718 site SNP and congenital microtia was analyzed. No statistically significant difference in the prevalence of congenital microtia was observed in the rs3135718 genotype (AG) between the observation and control group (P>0.05). The GG and G genotypes in rs3135718 were closely related to fetal microtia (P<0.05). Results revealed that the rs3135718-GG mutation was more correlated with the risk of microtia in male (P<0.05), but not correlated with the risk of microtia in female (P>0.05). Moreover, there was a statistically significant difference in the distribution of rs3135718-G allele frequency in male between the two groups (P<0.05). The rs3135718-G gene in FGFR2 has a certain association with the incidence of congenital microtia with high prevalence and risk.
Collapse
Affiliation(s)
- Ruilian Zhao
- Department of Obstetrics and Gynecology, Maternity and Child Health Care of Zaozhuang, Zaozhuang, Shandong 277100, P.R. China
| | - Peixia Du
- Department of Obstetrics and Gynecology, Shanting People's Hospital of Zaozhuang, Zaozhuang, Shandong 277200, P.R. China
| | - Hongmei Sun
- Department of Obstetrics and Gynecology, Shanting People's Hospital of Zaozhuang, Zaozhuang, Shandong 277200, P.R. China
| | - Li Yang
- Department of Obstetrics and Gynecology, Maternity and Child Health Care of Zaozhuang, Zaozhuang, Shandong 277100, P.R. China
| | - Pingzhen Lin
- Department of Obstetrics and Gynecology, Maternity and Child Health Care of Zaozhuang, Zaozhuang, Shandong 277100, P.R. China
| |
Collapse
|
30
|
Shin HR, Bae HS, Kim BS, Yoon HI, Cho YD, Kim WJ, Choi KY, Lee YS, Woo KM, Baek JH, Ryoo HM. PIN1 is a new therapeutic target of craniosynostosis. Hum Mol Genet 2019; 27:3827-3839. [PMID: 30007339 PMCID: PMC6216213 DOI: 10.1093/hmg/ddy252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023] Open
Abstract
Gain-of-function mutations in fibroblast growth factor receptors (FGFRs) cause congenital skeletal anomalies, including craniosynostosis (CS), which is characterized by the premature closure of craniofacial sutures. Apert syndrome (AS) is one of the severest forms of CS, and the only treatment is surgical expansion of prematurely fused sutures in infants. Previously, we demonstrated that the prolyl isomerase peptidyl-prolyl cis-trans isomerase interacting 1 (PIN1) plays a critical role in mediating FGFR signaling and that Pin1+/- mice exhibit delayed closure of cranial sutures. In this study, using both genetic and pharmacological approaches, we tested whether PIN1 modulation could be used as a therapeutic regimen against AS. In the genetic approach, we crossbred Fgfr2S252W/+, a mouse model of AS, and Pin1+/- mice. Downregulation of Pin1 gene dosage attenuated premature cranial suture closure and other phenotypes of AS in Fgfr2S252W/+ mutant mice. In the pharmacological approach, we intraperitoneally administered juglone, a PIN1 enzyme inhibitor, to pregnant Fgfr2S252W/+ mutant mice and found that this treatment successfully interrupted fetal development of AS phenotypes. Primary cultured osteoblasts from Fgfr2S252W/+ mutant mice expressed high levels of FGFR2 downstream target genes, but this phenotype was attenuated by PIN1 inhibition. Post-translational stabilization and activation of Runt-related transcription factor 2 (RUNX2) in Fgfr2S252W/+ osteoblasts were also attenuated by PIN1 inhibition. Based on these observations, we conclude that PIN1 enzyme activity is important for FGFR2-induced RUNX2 activation and craniofacial suture morphogenesis. Moreover, these findings highlight that juglone or other PIN1 inhibitors represent viable alternatives to surgical intervention for treatment of CS and other hyperostotic diseases.
Collapse
Affiliation(s)
- H R Shin
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H S Bae
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - B S Kim
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H I Yoon
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Y D Cho
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Periodontology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - W J Kim
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - K Y Choi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Y S Lee
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - K M Woo
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - J H Baek
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H M Ryoo
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Rachwalski M, Khonsari RH, Paternoster G. Current Approaches in the Development of Molecular and Pharmacological Therapies in Craniosynostosis Utilizing Animal Models. Mol Syndromol 2019; 10:115-123. [PMID: 30976284 DOI: 10.1159/000493535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of the craniofacial skeleton is a spatial and temporal process where cranial sutures play a role in the regulation of morphogenesis and growth. Disruption of these cellular and molecular interactions may lead to craniosynostosis, the premature obliteration of one or more cranial sutures, yielding skull growth restriction and malformation perpendicular to the affected suture. Facial deformity and various functional CNS anomalies are other frequent complications. Cranial vault expansion and reconstructive surgery remain the mainstay of treatment but pose an elevated risk of morbidity for the infant. While the etiology of nonsyndromic craniosynostosis remains to be deciphered, gain-of-function mutations in FGFR1-3 and TWIST1 were found to be responsible for more than 3/4 of the most commonly encountered craniofacial syndromes. Animal models have been invaluable to further dissect the role of genes within the cranial sutures and for the development of alternative nonsurgical treatment strategies. In this review, we will present various molecular and pharmacological approaches for the treatment of craniosynostosis that have been tested using in vitro and in vivo assays as well as discuss their potential application in humans focusing on the case of tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Martin Rachwalski
- Imagine Institute of Genetic Diseases, INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Departments of Malades, Paris, France.,Pediatric Neurosurgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Maxillofacial and Plastic Surgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,National Reference Center for Craniofacial Anomalies, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Roman H Khonsari
- Imagine Institute of Genetic Diseases, INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Departments of Malades, Paris, France.,Maxillofacial and Plastic Surgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,National Reference Center for Craniofacial Anomalies, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Giovanna Paternoster
- Pediatric Neurosurgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,National Reference Center for Craniofacial Anomalies, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
32
|
Abstract
Deviations from the precisely coordinated programme of human head development can lead to craniofacial and orofacial malformations often including a variety of dental abnormalities too. Although the aetiology is still unknown in many cases, during the last decades different intracellular signalling pathways have been genetically linked to specific disorders. Among these pathways, the RAS/extracellular signal-regulated kinase (ERK) signalling cascade is the focus of this review since it encompasses a large group of genes that when mutated cause some of the most common and severe developmental anomalies in humans. We present the components of the RAS/ERK pathway implicated in craniofacial and orodental disorders through a series of human and animal studies. We attempt to unravel the specific molecular targets downstream of ERK that act on particular cell types and regulate key steps in the associated developmental processes. Finally we point to ambiguities in our current knowledge that need to be clarified before RAS/ERK-targeting therapeutic approaches can be implemented.
Collapse
|
33
|
Sewda A, White SR, Erazo M, Hao K, García-Fructuoso G, Fernández-Rodriguez I, Heuzé Y, Richtsmeier JT, Romitti PA, Reva B, Jabs EW, Peter I. Nonsyndromic craniosynostosis: novel coding variants. Pediatr Res 2019; 85:463-468. [PMID: 30651579 PMCID: PMC6398438 DOI: 10.1038/s41390-019-0274-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/09/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Craniosynostosis (CS), the premature fusion of one or more neurocranial sutures, is associated with approximately 200 syndromes; however, about 65-85% of patients present with no additional major birth defects. METHODS We conducted targeted next-generation sequencing of 60 known syndromic and other candidate genes in patients with sagittal nonsyndromic CS (sNCS, n = 40) and coronal nonsyndromic CS (cNCS, n = 19). RESULTS We identified 18 previously published and 5 novel pathogenic variants, including three de novo variants. Novel variants included a paternally inherited c.2209C>G:p.(Leu737Val) variant in BBS9 of a patient with cNCS. Common variants in BBS9, a gene required for ciliogenesis during cranial suture development, have been associated with sNCS risk in a previous genome-wide association study. We also identified c.313G>T:p.(Glu105*) variant in EFNB1 and c.435G>C:p.(Lys145Asn) variant in TWIST1, both in patients with cNCS. Mutations in EFNB1 and TWIST1 have been linked to craniofrontonasal and Saethre-Chotzen syndrome, respectively; both present with coronal CS. CONCLUSIONS We provide additional evidence that variants in genes implicated in syndromic CS play a role in isolated CS, supporting their inclusion in genetic panels for screening patients with NCS. We also identified a novel BBS9 variant that further shows the potential involvement of BBS9 in the pathogenesis of CS.
Collapse
Affiliation(s)
- Anshuman Sewda
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sierra R. White
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Monica Erazo
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ke Hao
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Yann Heuzé
- University Bordeaux, CNRS, MCC, PACEA, UMR5199, Bordeaux Archaeological Sciences Cluster of Excellence, Pessac, France
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Boris Reva
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ethylin Wang Jabs
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Inga Peter
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
34
|
Salva JE, Roberts RR, Stucky TS, Merrill AE. Nuclear FGFR2 regulates musculoskeletal integration within the developing limb. Dev Dyn 2019; 248:233-246. [PMID: 30620790 DOI: 10.1002/dvdy.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bent bone dysplasia syndrome (BBDS), a congenital skeletal disorder caused by dominant mutations in fibroblast growth factor receptor 2 (FGFR2), is characterized by bowed long bones within the limbs. We previously showed that the FGFR2 mutations in BBDS enhance nuclear and nucleolar localization of the receptor; however, exactly how shifts in subcellular distribution of FGFR2 affect limb development remained unknown. RESULTS Targeted expression of the BBDS mutations in the lateral plate mesoderm of the developing chick induced angulated hindlimbs, a hallmark feature of the disease. Whole-mount analysis of the underlying skeleton revealed bent long bones with shortened bone collars and, in severe cases, dysmorphic epiphyses. Epiphyseal changes were also correlated with joint dislocations and contractures. Histological analysis revealed that bent long bones and joint defects were closely associated with irregularities in skeletal muscle patterning and tendon-to-bone attachment. The spectrum of limb phenotypes induced by the BBDS mutations were recapitulated by targeted expression of wild-type FGFR2 appended with nuclear and nucleolar localization signals. CONCLUSIONS Our results indicate that the bent long bones in BBDS arise from disruptions in musculoskeletal integration and that increased nuclear and nucleolar localization of FGFR2 plays a mechanistic role in the disease phenotype. 248:233-246, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna E Salva
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ryan R Roberts
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Taylor S Stucky
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
35
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are expressed throughout all stages of skeletal development. In the limb bud and in cranial mesenchyme, FGF signaling is important for formation of mesenchymal condensations that give rise to bone. Once skeletal elements are initiated and patterned, FGFs regulate both endochondral and intramembranous ossification programs. In this chapter, we review functions of the FGF signaling pathway during these critical stages of skeletogenesis, and explore skeletal malformations in humans that are caused by mutations in FGF signaling molecules.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Pierre J Marie
- UMR-1132 Inserm (Institut national de la Santé et de la Recherche Médicale) and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| |
Collapse
|
36
|
Wu X, Gu Y. Signaling Mechanisms Underlying Genetic Pathophysiology of Craniosynostosis. Int J Biol Sci 2019; 15:298-311. [PMID: 30745822 PMCID: PMC6367540 DOI: 10.7150/ijbs.29183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis, is the premature fusion of one or more cranial sutures which is the second most common cranial facial anomalies. The premature cranial sutures leads to deformity of skull shape and restricts the growth of brain, which might elicit severe neurologic damage. Craniosynostosis exhibit close correlations with a varieties of syndromes. During the past two decades, as the appliance of high throughput DNA sequencing techniques, steady progresses has been made in identifying gene mutations in both syndromic and nonsyndromic cases, which allow researchers to better understanding the genetic roles in the development of cranial vault. As the enrichment of known mutations involved in the pathogenic of premature sutures fusion, multiple signaling pathways have been investigated to dissect the underlying mechanisms beneath the disease. In addition to genetic etiology, environment factors, especially mechanics, have also been proposed to have vital roles during the pathophysiological of craniosynostosis. However, the influence of mechanics factors in the cranial development remains largely unknown. In this review, we present a brief overview of the updated genetic mutations and environmental factors identified in both syndromic and nonsyndromic craniosynostosis. Furthermore, potential molecular signaling pathways and its relations have been described.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
| |
Collapse
|
37
|
Yamaji K, Morita J, Watanabe T, Gunjigake K, Nakatomi M, Shiga M, Ono K, Moriyama K, Kawamoto T. Maldevelopment of the submandibular gland in a mouse model of apert syndrome. Dev Dyn 2018; 247:1175-1185. [DOI: 10.1002/dvdy.24673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kojiro Yamaji
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Jumpei Morita
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Tsukasa Watanabe
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Kaori Gunjigake
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Momotoshi Shiga
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Kentaro Ono
- Division of Physiology, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Keiji Moriyama
- Division of Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| |
Collapse
|
38
|
Holmes G, O'Rourke C, Motch Perrine SM, Lu N, van Bakel H, Richtsmeier JT, Jabs EW. Midface and upper airway dysgenesis in FGFR2-related craniosynostosis involves multiple tissue-specific and cell cycle effects. Development 2018; 145:dev.166488. [PMID: 30228104 DOI: 10.1242/dev.166488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
Abstract
Midface dysgenesis is a feature of more than 200 genetic conditions in which upper airway anomalies frequently cause respiratory distress, but its etiology is poorly understood. Mouse models of Apert and Crouzon craniosynostosis syndromes exhibit midface dysgenesis similar to the human conditions. They carry activating mutations of Fgfr2, which is expressed in multiple craniofacial tissues during development. Magnetic resonance microscopy of three mouse models of Apert and Crouzon syndromes revealed decreased nasal passage volume in all models at birth. Histological analysis suggested overgrowth of the nasal cartilage in the two Apert syndrome mouse models. We used tissue-specific gene expression and transcriptome analysis to further dissect the structural, cellular and molecular alterations underlying midface and upper airway dysgenesis in Apert Fgfr2+/S252W mutants. Cartilage thickened progressively during embryogenesis because of increased chondrocyte proliferation in the presence of Fgf2 Oral epithelium expression of mutant Fgfr2, which resulted in a distinctive nasal septal fusion defect, and premature facial suture fusion contributed to the overall dysmorphology. Midface dysgenesis in Fgfr2-related craniosynostosis is a complex phenotype arising from the combined effects of aberrant signaling in multiple craniofacial tissues.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Courtney O'Rourke
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
39
|
Luo F, Xie Y, Wang Z, Huang J, Tan Q, Sun X, Li F, Li C, Liu M, Zhang D, Xu M, Su N, Ni Z, Jiang W, Chang J, Chen H, Chen S, Xu X, Deng C, Wang Z, Du X, Chen L. Adeno-Associated Virus-Mediated RNAi against Mutant Alleles Attenuates Abnormal Calvarial Phenotypes in an Apert Syndrome Mouse Model. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:291-302. [PMID: 30321816 PMCID: PMC6197781 DOI: 10.1016/j.omtn.2018.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/01/2022]
Abstract
Apert syndrome (AS), the most severe form of craniosynostosis, is caused by missense mutations including Pro253Arg(P253R) of fibroblast growth factor receptor 2 (FGFR2), which leads to enhanced FGF/FGFR2-signaling activity. Surgical correction of the deformed skull is the typical treatment for AS. Because of constant maldevelopment of sutures, the corrective surgery is often executed several times, resulting in increased patient challenge and complications. Biological therapies targeting the signaling of mutant FGFR2 allele, in combination with surgery, may bring better outcome. Here we screened and found a small interfering RNA (siRNA) specifically targeting the Fgfr2-P253R allele, and we revealed that it inhibited osteoblastic differentiation and matrix mineralization by reducing the signaling of ERK1/2 and P38 in cultured primary calvarial cells and calvarial explants from Apert mice (Fgfr2+/P253R). Furthermore, AAV9 carrying short hairpin RNA (shRNA) (AAV9-Fgfr2-shRNA) against mutant Fgfr2 was delivered to the skulls of AS mice. Results demonstrate that AAV9-Fgfr2-shRNA attenuated the premature closure of coronal suture and the decreased calvarial bone volume of AS mice. Our study provides a novel practical biological approach, which will, in combination with other therapies, including surgeries, help treat patients with AS while providing experimental clues for the biological therapies of other genetic skeletal diseases.
Collapse
Affiliation(s)
- Fengtao Luo
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zuqiang Wang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junlan Huang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qiaoyan Tan
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xianding Sun
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Fangfang Li
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Can Li
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Mi Liu
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dali Zhang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Meng Xu
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Nan Su
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhenhong Ni
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wanling Jiang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jinhong Chang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hangang Chen
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Shuai Chen
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolan Du
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - Lin Chen
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
40
|
Martínez-Abadías N, Mateu Estivill R, Sastre Tomas J, Motch Perrine S, Yoon M, Robert-Moreno A, Swoger J, Russo L, Kawasaki K, Richtsmeier J, Sharpe J. Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis. eLife 2018; 7:36405. [PMID: 30234486 PMCID: PMC6199133 DOI: 10.7554/elife.36405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/09/2018] [Indexed: 01/03/2023] Open
Abstract
The earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which are hard to detect and can be obscured later in development by secondary effects. Here, we develop a method to trace back the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying Geometric Morphometrics to 3D gene expression data obtained by Optical Projection Tomography, we determined that our approach is sensitive enough to find regulatory abnormalities that have never been detected previously. We identified subtle but significant differences in the gene expression of a downstream target of a Fgfr2 mutation associated with Apert syndrome, demonstrating that these mouse models can further our understanding of limb defects in the human condition. Our method can be applied to different organ systems and models to investigate the etiology of malformations. Our development in the womb is complex. Genes need to switch on and off in a precise order, controlling the activity of millions of cells as they work together to form different tissues. For everything to happen smoothly, cells must use instructions provided by each gene exactly at the correct moment and in the correct place. In this biological assembly line, the slightest change can lead to a defect. Certain genetic mutations can change when and where cells use particular genes, and this can cause errors in development. These kinds of mutations are a common cause of birth defects, but we cannot always pinpoint how they begin. For example, a single mutation in a gene called FGFR2 causes malformations in the head, the heart and the limbs in a rare disease called Apert syndrome. The first signs that development has gone wrong can be subtle changes in the use of certain genes, impossible to detect with standard methods. As development continues, other processes can mask the impact of problems with certain genes. Ultimately, changes alter the shape of the developing embryo. Genetically engineered mouse models can mimic the gene defects that cause disease in humans. But current methods are not sensitive enough to detect the very first signs of defects. Now, Martínez-Abadías et al. developed a new method to detect these subtle changes and reveal the precise moment when development starts to go wrong. In mice, a specific mutation in the FGFR2 gene affects the activity of a series of other genes. To track the levels of one of these genes, Martínez-Abadías et al. marked mouse embryos using a chemical label. Scanning the embryos then revealed the pattern of the cells using the gene during the earliest stages of development. In mice carrying a mutation in the FGFR2 gene, subtle changes in gene expression began just a few hours after their limbs start to develop. But it took another half a day to see the effects of these changes on the shape and size of the growing limbs. This approach revealed changes in gene expression before any problems with development were visible by eye. Tracking subtle changes in the way cells use genes could allow us to detect the origins of embryo malformations before they appear, pointing at the best moment to start a treatment. With further development, the model could extend to other genes, proteins, animal models and diseases.
Collapse
Affiliation(s)
- Neus Martínez-Abadías
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
| | | | | | | | - Melissa Yoon
- Pennsylvania State University, Pennsylvania, United States
| | - Alexandre Robert-Moreno
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
| | - Jim Swoger
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
| | - Lucia Russo
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - James Sharpe
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
41
|
Al-Hakeim HK, Alhillawi ZH. Effect of serum fibroblast growth factor receptor 2 and CAPS proteins on calcium status in β-thalassaemia major patients who are free from overt inflammation. Growth Factors 2018; 36:178-185. [PMID: 30375242 DOI: 10.1080/08977194.2018.1520707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bone disorders and disturbed calcium (Ca) homeostasis are common disorders in β-thalassaemia major (β-TM). In the present study, two bone related markers are studied in β-TM patients with negative C-reactive protein for the first time; fibroblast growth factor receptor 2 (FGFR2) and CAPS protein. Another goal is to estimate the correlation between the recent parameters and bone biomaterials as a function of iron status parameters in β-TM patients. The results revealed that, in patients with β-TM serum FGFR2, CAPS, alkaline phosphatase (ALP) and Mg significantly increased while serum Ca levels were low as compared with controls. Ca status is correlated with iron overload in β-TM. A significant correlation was present between CAPS and FGFR2. In conclusion, FGFR2 and CAPS associated with Ca status and subsequent bone disturbances in β-TM patients. Their level can be predicted from the equation: CAPS =0.001ALP +0.48FGFR2-1.26Ca - 3.95Pi +12.76 with acceptable applicability.
Collapse
|
42
|
Moore ER, Jacobs CR. The primary cilium as a signaling nexus for growth plate function and subsequent skeletal development. J Orthop Res 2018; 36:533-545. [PMID: 28901584 PMCID: PMC5839937 DOI: 10.1002/jor.23732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 02/04/2023]
Abstract
The primary cilium is a solitary, antenna-like sensory organelle with many important roles in cartilage and bone development, maintenance, and function. The primary cilium's potential role as a signaling nexus in the growth plate makes it an attractive therapeutic target for diseases and disorders associated with bone development and maintenance. Many signaling pathways that are mediated by the cilium-such as Hh, Wnt, Ihh/PTHrP, TGFβ, BMP, FGF, and Notch-are also known to influence endochondral ossification, primarily by directing growth plate formation and chondrocyte behavior. Although a few studies have demonstrated that these signaling pathways can be directly tied to the primary cilium, many pathways have yet to be evaluated in context of the cilium. This review serves to bridge this knowledge gap in the literature, as well as discuss the cilium's importance in the growth plate's ability to sense and respond to chemical and mechanical stimuli. Furthermore, we explore the importance of using the appropriate mechanism to study the cilium in vivo and suggest IFT88 deletion is the best available technique. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:533-545, 2018.
Collapse
Affiliation(s)
- Emily R. Moore
- Department of Biomedical Engineering; Columbia University; 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue New York 10027 New York
| | - Christopher R. Jacobs
- Department of Biomedical Engineering; Columbia University; 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue New York 10027 New York
| |
Collapse
|
43
|
Xu W, Luo F, Wang Q, Tan Q, Huang J, Zhou S, Wang Z, Sun X, Kuang L, Jin M, Su N, Jiang W, Chen L, Qi H, Zhu Y, Chen B, Chen H, Chen S, Gao Y, Xu X, Deng C, Chen L, Xie Y, Du X. Inducible Activation of FGFR2 in Adult Mice Promotes Bone Formation After Bone Marrow Ablation. J Bone Miner Res 2017. [PMID: 28650109 DOI: 10.1002/jbmr.3204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apert syndrome is one of the most severe craniosynostoses, resulting from gain-of-function mutations in fibroblast growth factor receptor 2 (FGFR2). Previous studies have shown that gain-of-function mutations of FGFR2 (S252W or P253R) cause skull malformation of human Apert syndrome by affecting both chondrogenesis and osteogenesis, underscoring the key role of FGFR2 in bone development. However, the effects of FGFR2 on bone formation at the adult stage have not been fully investigated. To investigate the role of FGFR2 in bone formation, we generated mice with tamoxifen-inducible expression of mutant FGFR2 (P253R) at the adult stage. Mechanical bone marrow ablation (BMX) was performed in both wild-type and Fgfr2 mutant (MT) mice. Changes in newly formed trabecular bone were assessed by micro-computed tomography and bone histomorphometry. We found that MT mice exhibited increased trabecular bone formation and decreased bone resorption after BMX accompanied with a remarkable increase in bone marrow stromal cell recruitment and proliferation, osteoblast proliferation and differentiation, and enhanced Wnt/β-catenin activity. Furthermore, pharmacologically inhibiting Wnt/β-catenin signaling can partially reverse the increased trabecular bone formation and decreased bone resorption in MT mice after BMX. Our data demonstrate that gain-of-function mutation in FGFR2 exerts a Wnt/β-catenin-dependent anabolic effect on trabecular bone by promoting bone formation and inhibiting bone resorption at the adult stage. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wei Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Quan Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Siru Zhou
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xianding Sun
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang Kuang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Min Jin
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Su
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wanling Jiang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Huabing Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bo Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Shuai Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Gao
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
44
|
He F, Soriano P. Dysregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification. Development 2017; 144:4026-4036. [PMID: 28947535 DOI: 10.1242/dev.151068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023]
Abstract
Craniosynostosis is a prevalent human birth defect characterized by premature fusion of calvarial bones. In this study, we show that tight regulation of endogenous PDGFRα activity is required for normal calvarium development in the mouse and that dysregulated PDGFRα activity causes craniosynostosis. Constitutive activation of PDGFRα leads to expansion of cartilage underlying the coronal sutures, which contribute to suture closure through endochondral ossification, in a process regulated in part by PI3K/AKT signaling. Our results thus identify a novel mechanism underlying calvarial development in craniosynostosis.
Collapse
Affiliation(s)
- Fenglei He
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
45
|
Maruyama T, Jiang M, Abbott A, Yu HMI, Huang Q, Chrzanowska-Wodnicka M, Chen EI, Hsu W. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development. J Bone Miner Res 2017; 32:1816-1828. [PMID: 28520221 PMCID: PMC5555789 DOI: 10.1002/jbmr.3171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/22/2022]
Abstract
Recent identification and isolation of suture stem cells capable of long-term self-renewal, clonal expanding, and differentiating demonstrate their essential role in calvarial bone development, homeostasis, and injury repair. These bona fide stem cells express a high level of Axin2 and are able to mediate bone regeneration and repair in a cell autonomous fashion. The importance of Axin2 is further demonstrated by its genetic inactivation in mice causing skeletal deformities resembling craniosynostosis in humans. The fate determination and subsequent differentiation of Axin2+ stem cells are highly orchestrated by a variety of evolutionary conserved signaling pathways including Wnt, FGF, and BMP. These signals are often antagonistic of each other and possess differential effects on osteogenic and chondrogenic cell types. However, the mechanisms underlying the interplay of these signaling transductions remain largely elusive. Here we identify Rap1b acting downstream of Axin2 as a signaling interrogator for FGF and BMP. Genetic analysis reveals that Rap1b is essential for development of craniofacial and body skeletons. Axin2 regulates Rap1b through modulation of canonical BMP signaling. The BMP-mediated activation of Rap1b promotes chondrogenic fate and chondrogenesis. Furthermore, by inhibiting MAPK signaling, Rap1b mediates the antagonizing effect of BMP on FGF to repress osteoblast differentiation. Disruption of Rap1b in mice not only enhances osteoblast differentiation but also impairs chondrocyte differentiation during intramembranous and endochondral ossifications, respectively, leading to severe defects in craniofacial and body skeletons. Our findings reveal a dual role of Rap1b in development of the skeletogenic cell types. Rap1b is critical for balancing the signaling effects of BMP and FGF during skeletal development and disease. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Department of Dentistry, University of Rochester Medical Center, Rochester, NY, USA.,Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ming Jiang
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alycia Abbott
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - H-M Ivy Yu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Qirong Huang
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Emily I Chen
- Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center and Department of Pharmacology, Columbia University, New York, NY, USA
| | - Wei Hsu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
46
|
Das S, Munshi A. Research advances in Apert syndrome. J Oral Biol Craniofac Res 2017; 8:194-199. [PMID: 30191107 DOI: 10.1016/j.jobcr.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Apert syndrome is one of the several genetic syndromes associated with craniosynostosis, a condition that includes premature fusion of one or multiple cranial sutures. There has been significant clinical variation among different sutural synostoses and also within particular suture synostosis. Enormous progress has been made in identifying various mutations associated with Apert Syndrome. Although a causal gene has been defined, the precise role of this mutation in producing craniofacial dysmorphology and other related abnormalities is in the process of discovery. Most of the understanding regarding this rare disorder has been possible due to mouse models that have helped in deciphering the elements of this rare human disease. Thus, molecular and cellular understanding of the disease has taken a leap and further with the advent of technology definitive diagnosis of the syndrome is no more of an issue. In this review, we have discussed and consolidated the possible molecular studies that have contributed in understanding of this rare syndrome. This article may help clinicians and researchers to inform about the latest progress in Apert syndrome.
Collapse
Affiliation(s)
- Satrupa Das
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, India.,Dr. NTR University of Health Sciences, Vijayawada, Andhra Pradesh, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
47
|
Song D, Zhang F, Reid RR, Ye J, Wei Q, Liao J, Zou Y, Fan J, Ma C, Hu X, Qu X, Chen L, Li L, Yu Y, Yu X, Zhang Z, Zhao C, Zeng Z, Zhang R, Yan S, Wu T, Wu X, Shu Y, Lei J, Li Y, Zhang W, Wang J, Lee MJ, Wolf JM, Huang D, He TC. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients. J Cell Mol Med 2017; 21:2782-2795. [PMID: 28470873 PMCID: PMC5661262 DOI: 10.1111/jcmm.13193] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023] Open
Abstract
The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long-term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long-term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering.
Collapse
Affiliation(s)
- Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Fugui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Departments of Neurosurgery and Otolaryngology-Head & Neck Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xiangyang Qu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Liqun Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - Yichun Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Emergency Medicine, Beijing Hospital, Beijing, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhicai Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Tingting Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jiayan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Laboratory Medicine and Clinical Diagnostics, the Affiliated Yantai Hospital, Binzhou Medical University, Yantai, China
| | - Jia Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
48
|
Luo F, Xie Y, Xu W, Huang J, Zhou S, Wang Z, Luo X, Liu M, Chen L, Du X. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome. Int J Biol Sci 2017; 13:32-45. [PMID: 28123344 PMCID: PMC5264259 DOI: 10.7150/ijbs.16287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/24/2016] [Indexed: 02/04/2023] Open
Abstract
Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2+/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2+/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2+/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2+/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS.
Collapse
Affiliation(s)
- Fengtao Luo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wei Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Siru Zhou
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoqing Luo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Mi Liu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
49
|
Salva JE, Merrill AE. Signaling networks in joint development. Dev Dyn 2016; 246:262-274. [PMID: 27859991 DOI: 10.1002/dvdy.24472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints such as the intervertebral disc unite adjacent bones through either a hyaline cartilage or a fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. Developmental Dynamics 246:262-274, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna E Salva
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
50
|
Pettitt DA, Arshad Z, Mishra A, McArthur P. Apert syndrome: A consensus on the management of Apert hands. J Craniomaxillofac Surg 2016; 45:223-231. [PMID: 28087285 DOI: 10.1016/j.jcms.2016.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Apert Syndrome is a congenital condition characterised by primary craniosynostosis, midfacial malformations and complex symmetrical malformations of the hands and feet. The hands demonstrate one of the most complex collections of congenital upper limb deformities, posing a significant challenge for the paediatric hand surgeon. This study examines the extant literature and current practice of the four UK specialist craniofacial units regarding the management of Apert hands in order to provide a basis for guideline development. METHODS The current literature was reviewed. Survey-type questionnaires were distributed to the four UK specialist craniofacial units and responses analysed. RESULTS Management of the Apert hand is largely dictated by the degree of malformation present. Although all units aim to achieve a five digit hand, variation in the timing of surgery, operative protocols and mobilisation policies exist. CONCLUSION The results of this study provide an interesting snapshot of the current management of Apert hands across four UK craniofacial surgery units. The four UK units remain congruent on most areas surrounding the management of Apert hands although some minor inter-unit variation exists. A multidisciplinary approach to management remains fundamental in optimising the regain of function and aesthetically acceptable hands.
Collapse
Affiliation(s)
- David A Pettitt
- Mersey Regional Plastic Surgery Unit, Whiston Hospital, Warrington Rd, Prescot, Merseyside, L35 5DR, UK
| | - Zeeshaan Arshad
- Mersey Regional Plastic Surgery Unit, Whiston Hospital, Warrington Rd, Prescot, Merseyside, L35 5DR, UK.
| | - Anuj Mishra
- Mersey Regional Plastic Surgery Unit, Whiston Hospital, Warrington Rd, Prescot, Merseyside, L35 5DR, UK
| | - Paul McArthur
- Mersey Regional Plastic Surgery Unit, Whiston Hospital, Warrington Rd, Prescot, Merseyside, L35 5DR, UK
| |
Collapse
|