1
|
Mehta D, Sihota P, Tikoo K, Kumar S, Kumar N. Type 2 diabetes alters the viscoelastic behavior and macromolecular composition of vertebra. Bone Rep 2023; 18:101680. [PMID: 37187573 PMCID: PMC10176031 DOI: 10.1016/j.bonr.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Type 2 diabetes (T2D) affects the functional behavior of vertebra bone by altering its structural and mechanical properties. The vertebral bones are responsible to carry the body weight and it remains under prolonged constant load which results to viscoelastic deformation. The effect of T2D on the viscoelastic behavior of vertebral bone is not well explored yet. In this study, the effects of T2D on the creep and stress relaxation behavior of vertebral bone are investigated. Also, this study established a correlation between T2D associated alteration in macromolecular structure and viscoelastic behavior of vertebra. In this study T2D female rat SD model was used. The obtained results demonstrated a significant reduction in the amount of creep strain (p ≤ 0.05) and stress relaxation (p ≤ 0.01) in T2D specimens than the control. Also, the creep rate was found significantly lower in T2D specimens. On the other hand, molecular structural parameters such as mineral-to-matrix ratio (control vs T2D: 2.93 ± 0.78 vs 3.72 ± 0.53; p = 0.02), and non-enzymatic cross link ratio (NE-xL) (control vs T2D: 1.53 ± 0.07 vs 3.84 ± 0.20; p = 0.01) were found significantly altered in T2D specimens. Pearson linear correlation tests show a significant correlation; between creep rate and NE-xL (r = -0.94, p < 0.01), and between stress relaxation and NE-xL (r = -0.946, p < 0.01). Overall this study explored the understanding about the disease associated alteration in viscoelastic response of vertebra and its correlation with macromolecular composition which can help to understand the disease related impaired functioning of the vertebrae body.
Collapse
Affiliation(s)
- Deepak Mehta
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Navin Kumar
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| |
Collapse
|
2
|
Nonlinear fiber-bundle-cells-based phenomenological modeling of human tissue samples. Biomech Model Mechanobiol 2022; 21:1803-1823. [DOI: 10.1007/s10237-022-01621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
Abstract
AbstractCertain assemblies of fibers, called fiber bundles, play a crucial role in the statistical macroscale properties of fibrous structures like natural or artificial materials. Based on the concept of using idealized statistical fiber bundle cells (FBCs) as model elements, the software named FiberSpace was developed by us earlier for the phenomenological modeling of the tensile test process of real fibrous structures. The model fibers of these FBCs had been considered linear elastic, which was suitable for modeling certain textiles and composites. However, the biological tissues are multilevel structures with fiber-like building elements on every structural level where the fiber elements on the dominant level are statistical bundles of elementary fibers. Hence, their modeling required us to introduce model fibers of nonlinear mechanical behavior and derive the proper mathematical formulas for the calculation of the expected tensile force processes of the FBCs. Accordingly, we developed a new version of FiberSpace. The proposed nonlinear FBCs-based modeling method is essentially phenomenological that decomposes the measured and averaged stress–strain curve into the weighted sum of the responses of different idealized nonlinear FBCs. However, this decomposition can give certain information about the fibrous structure and some details of its damage and failure sub-processes. A special application of nonlinear E-bundles, where the measured stress–strain curve is expanded into a product-function series, may give another type of description for the failure process and can be applied to single measurements of structured failure process containing significant peaks and drops as well. The fitted phenomenological FBC models provide a decomposition of the measured force–strain curve, which enables to construct informative damage and failure maps. The applicability of the phenomenological modeling method and the fitting procedure is demonstrated with the tensile test data of some human and animal tissues, such as facial nerves and tendons.
Collapse
|
3
|
Liu J, Cheng X, Wang Y, Zhang P, Gao L, Yang X, He S, Liu Y, Zhang W. Biomechanical analysis of vertebral wedge deformity in elderly women with quantitative CT-based finite element analysis. BMC Musculoskelet Disord 2022; 23:575. [PMID: 35701750 PMCID: PMC9195195 DOI: 10.1186/s12891-022-05518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To explore the vertebral deformity angle (VD angle) of 1st lumbar vertebral body (L1) in elderly women, investigate the influence of VD on vertebral stiffness (VS) by biomechanical analysis using quantitative computed tomography-based finite element analysis (QCT-FEA). METHODS Two hundred seventy eight participants were recruited, and underwent QCT scan. Measured VD angles of L1, and constructed QCT-FEA models of L1 with the minimum (0.59°), median (5.79°) and maximum (11.15°) VD angles, respectively. Loads in two directions were applied on the upper edge of L1 with a force of 700 N, and vertebral stiffness (VS) was defined as the ratio of 700 N and displacement at the superior reference point: (1) perpendicular to the upper edge of L1 (defined as VS-U); (2) perpendicular to the lower edge of L1(defined as VS-L). RESULTS Age was very weak positively correlated with VD angle, moderate negatively correlated with vBMD, and moderate negatively correlated with VS (P < 0.05). VS-U was significantly different among three VD angles, so was VS-L (P < 0.001). VS-U was higher than VS-L in 5.79° and 11.15° VD angles (P < 0.05), however no difference in 0.59° VD angles (P > 0.10). CONCLUSIONS VD angle of L1 was slightly increased with age and not correlated with vBMD, and VS was moderate negatively correlated with age, showing that the vertebral body was more likely to fracture with aging. VS-U and VS-L were gradually decreased with the increase of VD angle, and VS-L was lower than VS-U with the increase of VD angle, which showed that vertebral body was more prone to fracture when the load was perpendicular to the lower edge of the vertebral body as the VD angle increasing.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, The Third Hospital of Hebei Medical University, No. 139 Ziqiang St, Qiaoxi District, Shijiazhuang, Hebei, CN 050050, China
| | - Xiaodong Cheng
- Key Laboratory of Biomechanics of Hebei Province and Orthopaedic Research Institution of Hebei Province, Shijiazhuang, 050000, Hebei, China
| | - Yan Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, No. 139 Ziqiang St, Qiaoxi District, Shijiazhaung, Hebei, CN 050000, China
| | - Ping Zhang
- Department of CT/MRI, The Third Hospital of Hebei Medical University, No. 139 Ziqiang St, Qiaoxi District, Shijiazhuang, Hebei, CN 050050, China
| | - Lei Gao
- Department of CT/MRI, The Third Hospital of Hebei Medical University, No. 139 Ziqiang St, Qiaoxi District, Shijiazhuang, Hebei, CN 050050, China
| | - Xingyuan Yang
- Department of Radiology, The Third Hospital of Hebei Medical University, No. 139 Ziqiang St, Qiaoxi District, Shijiazhuang, Hebei, CN 050050, China
| | - Shaoqiang He
- Department of Radiology, The Third Hospital of Hebei Medical University, No. 139 Ziqiang St, Qiaoxi District, Shijiazhuang, Hebei, CN 050050, China
| | - Ying Liu
- Department of CT/MRI, The Third Hospital of Hebei Medical University, No. 139 Ziqiang St, Qiaoxi District, Shijiazhuang, Hebei, CN 050050, China.
| | - Wei Zhang
- Department of Radiology, The Third Hospital of Hebei Medical University, No. 139 Ziqiang St, Qiaoxi District, Shijiazhuang, Hebei, CN 050050, China.
| |
Collapse
|
4
|
Oravec D, Kim W, Flynn MJ, Yeni YN. The Relationship of Whole Human Vertebral Body Creep to Bone Density and Texture via Clinically Available Imaging Modalities. J Biomech 2022; 135:111021. [PMID: 35245836 PMCID: PMC9064953 DOI: 10.1016/j.jbiomech.2022.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Creep deformation of human vertebrae accumulates under physiological levels of load and is understood to contribute to the progression toward clinically observable vertebral fracture. However, little information is available in terms of clinically measurable predictors of creep behavior in human vertebrae. In this study, creep tests were performed on 22 human cadaveric T12 vertebrae (13 male, 9 female; age 41-90). Areal and volumetric bone density parameters were measured from the same specimens using dual x-ray absorptiometry and high resolution computed tomography. Image textural analyses (which probe the organization of image intensities within the cancellous bone in low resolution clinical imaging) were performed using digital tomosynthesis (DTS) images. Multiple regression models were constructed to examine the relationship between creep properties and bone density and DTS image textural parameters. For the standard clinical imaging configuration, models including DTS derived image textural parameters alone were generally more explanatory (adjusted R2: 0.14-0.68) than those with bone density parameters forced in the models (adjusted R2: 0.17-0.61). Metrics of textural heterogeneity and anisotropy presented as the most explanatory imaging markers for creep deformation and recovery from creep. These metrics of image texture may help provide, independent from bone mass, important clinically measurable indicators of the time dependent deformation of human vertebrae.
Collapse
Affiliation(s)
- Daniel Oravec
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - Woong Kim
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - Michael J Flynn
- Department of Radiology, Henry Ford Hospital, Detroit, MI, United States
| | - Yener N Yeni
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States.
| |
Collapse
|
5
|
A comparison of the effectiveness of three types of trunk orthoses on the balance performance of older people with osteoporotic hyperkyphosis: A cross-over study. Musculoskelet Sci Pract 2021; 55:102430. [PMID: 34298492 DOI: 10.1016/j.msksp.2021.102430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Orthotic immobilization is an early treatment for osteoporotic vertebral fracture at the hyperkyphotic thoracic spine. OBJECTIVE This exploratory study compared the immediate impact of three types of trunk orthoses on the balance parameters of older people with osteoporosis hyperkyphosis. METHODS Twenty older people (aged 60-65 years) with osteoporosis kyphosis and a history of falls participated in a pilot cross-over study. Four randomized comparisons were carried out, including either soft, semi-rigid, and rigid trunk orthoses worn on the participants compared to "no orthosis" as the control condition. Kyphosis angle, Forward Reach Test, Timed Up and Go test, and postural stability during standing on a force plate were recorded and compared between study conditions using one-way repeated measures analysis of variance test. RESULTS All orthoses significantly reduced the kyphosis angle (p < 0.01). None of the orthoses has a significant change in the Timed Up and Go test (p > 0.01). Rigid orthosis significantly reduced the forward reach compared to "no orthosis" (p = 0.003, 95% CI: 1.08-6.3 cm). None of the orthosis induced a significant change in postural sway velocity in anteroposterior and mediolateral directions compared to the control condition (p > 0.01). CONCLUSION These findings suggest that using rigid orthosis in older people with osteoporosis hyperkyphosis reduces the balance performance.
Collapse
|
6
|
Time-resolved in situ synchrotron-microCT: 4D deformation of bone and bone analogues using digital volume correlation. Acta Biomater 2021; 131:424-439. [PMID: 34126266 DOI: 10.1016/j.actbio.2021.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
Digital volume correlation (DVC) in combination with high-resolution micro-computed tomography (microCT) imaging and in situ mechanical testing is gaining popularity for quantifying 3D full-field strains in bone and biomaterials. However, traditional in situ time-lapsed (i.e., interrupted) mechanical testing cannot fully capture the dynamic strain mechanisms in viscoelastic biological materials. The aim of this study was to investigate the time-resolved deformation of bone structures and analogues via continuous in situ synchrotron-radiation microCT (SR-microCT) compression and DVC to gain a better insight into their structure-function relationships. Fast SR-microCT imaging enabled the deformation behaviour to be captured with high temporal and spatial resolution. Time-resolved DVC highlighted the relationship between local strains and damage initiation and progression in the different biostructures undergoing plastic deformation, bending and/or buckling of their main microstructural elements. The results showed that SR-microCT continuous mechanical testing complemented and enhanced the information obtained from time-lapsed testing, which may underestimate the 3D strain magnitudes as a result of the stress relaxation occurring in between steps before image acquisition in porous biomaterials. Altogether, the findings of this study highlight the importance of time-resolved in situ experiments to fully characterise the time-dependent mechanical behaviour of biological tissues and biomaterials and to further explore their micromechanics under physiologically relevant conditions. STATEMENT OF SIGNIFICANCE: Time-resolved synchrotron X-ray tomography in combination with in situ mechanical testing provided the first four-dimensional analysis of the mechanical deformation of bone and bone analogues. To unravel the interplay of damage initiation and progression with local deformation, digital volume correlation was used to map the local strain field while microstructural changes were tracked with high temporal and spatial resolution. The results highlighted the importance of fast imaging and time-resolved in situ experiments to capture the real deformation of complex porous materials to fully characterize the local strain-damage relationship. The findings are notably improving the understanding of time-dependent mechanical behaviour of bone tissue, with the potential to be extend to highly viscoelastic biomaterials and soft tissues.
Collapse
|
7
|
McMorran JG, Gregory DE. The Influence of Axial Compression on the Cellular and Mechanical Function of Spinal Tissues; Emphasis on the Nucleus Pulposus and Annulus Fibrosus: A Review. J Biomech Eng 2021; 143:050802. [PMID: 33454730 DOI: 10.1115/1.4049749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 11/08/2022]
Abstract
In light of the correlation between chronic back pain and intervertebral disc (IVD) degeneration, this literature review seeks to illustrate the importance of the hydraulic response across the nucleus pulposus (NP)-annulus fibrosus (AF) interface, by synthesizing current information regarding injurious biomechanics of the spine, stemming from axial compression. Damage to vertebrae, endplates (EPs), the NP, and the AF, can all arise from axial compression, depending on the segment's posture, the manner in which it is loaded, and the physiological state of tissue. Therefore, this movement pattern was selected to illustrate the importance of the bracing effect of a pressurized NP on the AF, and how injuries interrupting support to the AF may contribute to IVD degeneration.
Collapse
Affiliation(s)
- John G McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5; Department of Health Sciences, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5
| |
Collapse
|
8
|
Luo J, Dolan P, Adams MA, Annesley-Williams DJ, Wang Y. A predictive model for creep deformation following vertebral compression fractures. Bone 2020; 141:115595. [PMID: 32814126 DOI: 10.1016/j.bone.2020.115595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Many vertebral compression fractures continue to collapse over time, resulting in spinal deformity and chronic back pain. Currently, there is no adequate screening strategy to identify patients at risk of progressive vertebral collapse. This study developed a mathematical model to describe the quantitative relationship between initial bone damage and progressive ("creep") deformation in human vertebrae. The model uses creep rate before damage, and the degree of vertebral bone damage, to predict creep rate of a fractured vertebra following bone damage. Mechanical testing data were obtained from 27 vertebral trabeculae samples, and 38 motion segments, from 26 human spines. These were analysed to evaluate bone damage intensity, and creep rates before and after damage, in order to estimate the model parameter, p, which represents how bone damage affects the change of creep rate after damage. Results of the model showed that p was 1.38 (R2 = 0.72, p < 0.001) for vertebral trabeculae, and 1.48 for motion segments (R2 = 0.22, p = 0.003). These values were not significantly different from each other (P > 0.05). Further analyses revealed that p was not significantly influenced by cortical bone damage, endplate damage, disc degeneration, vertebral size, or vertebral areal bone mineral density (aBMD) (P > 0.05). The key determinant of creep deformation following vertebral compression fracture was the degree of trabecular bone damage. The proposed model could be used to identify the measures of bone damage on routine MR images that are associated with creep deformation so that a screening tool can be developed to predict progressive vertebral collapse following compression fracture.
Collapse
Affiliation(s)
- Jin Luo
- School of Biomedical Sciences, University of West London, London W5 5RF, UK.
| | - Patricia Dolan
- Centre for Applied Anatomy, University of Bristol, Bristol BS2 8EJ, UK
| | - Michael A Adams
- Centre for Applied Anatomy, University of Bristol, Bristol BS2 8EJ, UK
| | | | - Yue Wang
- Spine Lab, Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Lu X, Yang J, Zhu Z, Lv X, Wu J, Huang J, Yu L, Wen Z, Luo J, Wang Y. Changes of the adjacent discs and vertebrae in patients with osteoporotic vertebral compression fractures treated with or without bone cement augmentation. Spine J 2020; 20:1048-1055. [PMID: 32105771 DOI: 10.1016/j.spinee.2020.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Although vertebral augmentation with bone cement has been commonly used to treat symptomatic osteoporotic vertebral compression fractures, relatively little is known about the impact of augmentation on the adjacent spinal components. PURPOSE To determine the imaging effects of vertebral augmentation on the adjacent discs, the augmented vertebra, and the involved spinal segment. STUDY DESIGN Retrospective radiographic study. PATIENT SAMPLE Patients with acute osteoporotic vertebral compression fractures who underwent vertebral augmentation or nonoperative treatments. OUTCOME MEASURES On baseline and follow-up mid-sagittal T2W magnetic resonance images, quantitative measurements of disc degeneration, including disc height, bulging, and signal, vertebral height, wedge angle, and segmental kyphotic angle were acquired. METHODS Lumbar spine magnetic resonance images of patients with acute osteoporotic vertebral compression fractures at a local hospital in Eastern China between 2010 and 2017 were reviewed. Student's t-tests and χ2 tests were used to examine the differences of baseline and changes over time between vertebrae underwent vertebral augmentation and those did not. Paired t-tests were used to examine the differences between baseline and follow-up to study the changes of adjacent disc degeneration, creep deformity of the vertebra and progression of segmental kyphosis. RESULTS There were 112 acute vertebral compression fractures (72 treated with kyphoplasty and 40 with nonoperative treatments) in 101 subjects. At final follow-up (mean 21.5 months), the cranial disc of the augmented vertebra decreased in height (p<.001), and both cranial and caudal discs decreased in signal intensity (p≤.02). The discs in the nonoperative group did not undergo such degenerative changes. For the fractured vertebra, vertebral height significantly decreased (p<.01 for both) and vertebral wedge angle significantly increased (p≤.01 for both), regardless of augmentation treatment or not. Segmental kyphotic angle significantly increased in vertebral fractures that underwent vertebral augmentation (p<.001), but not in those underwent nonoperative treatments. CONCLUSIONS Patients that underwent vertebral augmentation had more advanced disc degeneration at adjacent disc levels as compared to those without augmentation. The fractured vertebral body height decreased and the wedge angle increased, regardless of vertebral augmentation treatment or not. Vertebral augmentation may be associated with increased creep deformity of the adjacent vertebra and the progression of segmental kyphosis.
Collapse
Affiliation(s)
- Xuan Lu
- Spine lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Yang
- Spine lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiwei Zhu
- Department of Radiology, Dongyang People's Hospital, Dongyang, China
| | - Xiaoqiang Lv
- Department of Orthopedic Surgery, Dongyang People's Hospital, Dongyang, China
| | - Jialong Wu
- Spine lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiawei Huang
- Spine lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liedao Yu
- Spine lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiqiang Wen
- Spine lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Luo
- School of Applied Sciences, London South Bank University, London, UK.
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Zhang X, Yang W, Zheng Z, Wang J, Huang B, Fan S, Wang X, Zhao F. The influence of long-term shoulder loading on sagittal spino-pelvic morphology: a population-based retrospective study of Chinese farmers from radiology. J Orthop Surg Res 2020; 15:196. [PMID: 32471454 PMCID: PMC7257182 DOI: 10.1186/s13018-020-01698-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background To investigate associations between long-term shoulder loading and sagittal spino-pelvic morphology in Chinese farmers from radiology evidences. Methods We retrospectively analyzed 463 back pain patients who attended outpatient and inpatient departments of two hospitals from January 2016 to December 2018, and who had long, standing lateral X-rays according to inclusion and exclusion criteria. One hundred eighty-four of them were farmers with a long history of heavy shoulder loading for over 20 years in their young age, while others were office workers with no reported long-term shoulder loading history. The following parameters were measured by three researchers independently and then analyzed statistically: thoracic kyphosis (TK), lumbar lordosis (LL), thoracolumbar kyphosis (TLK), T9 sagittal offset (T9SO), T1 sagittal offset (T1SO), sacral slope (SS), pelvic incidence (PI), pelvic tilt (PT), C7 tilt (C7T), spino-pelvic angle (SSA), and sagittal vertical axis (SVA). Results The “Loading group” included 86 males and 98 females with average age 73.3 (SD 8.3) years, whereas the “Non-loading group” included 126 males and 153 females with average age 63.7 (SD 14.1) years. Age was significantly higher in the loading group (p < 0.001), but gender, height, weight, BMI, and BMD were not significantly different (p > 0.05). The following spino-pelvic parameters were significantly greater (p < 0.05) in the loading group: TK (mean 39.1° vs 32.8°), TLK (25.8° vs 10.1°), and T9SO (12.2° vs 10.1°). Other values were not significantly different between the two groups (p > 0.05). Conclusion Long-term shoulder loading in youth is a risk factor for pathological thoracic kyphosis especially in the lower thoracic spinal segments when farmers getting older.
Collapse
Affiliation(s)
- Xuyang Zhang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China
| | - Wei Yang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China
| | - Zeyu Zheng
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China
| | - Jiasheng Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China
| | - Bao Huang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China
| | - Xianjun Wang
- Department of Orthopaedics, Linhai Second People's Hospital, 198 Dubei Road, Duqiao, Linhai, Taizhou, 317016, People's Republic of China.
| | - Fengdong Zhao
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3, Qingchun Road East, Hangzhou, 310016, People's Republic of China.
| |
Collapse
|
11
|
Rudman HA, Birrell F, Pearce MS, Tuck SP, Francis RM, Treadgold L, Hind K. Obesity, bone density relative to body weight and prevalent vertebral fracture at age 62 years: the Newcastle thousand families study. Osteoporos Int 2019; 30:829-836. [PMID: 30623213 DOI: 10.1007/s00198-018-04817-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/03/2018] [Indexed: 12/21/2022]
Abstract
UNLABELLED Obesity increases the likelihood of prevalent vertebral fracture (VF) in men and women at age 62 years. The higher absolute bone mineral density (BMD) observed in obese individuals is disproportionate to body weight, and this may partly explain the greater prevalence of VF in this group. INTRODUCTION Obesity is a global epidemic, and there remains uncertainty over the effect of obesity on skeletal health, particularly in the context of osteoporosis. The aim of this study was to investigate associations of body mass index (BMI) and obesity with BMD and prevalent VF in men and women aged 62 years. METHODS Three hundred and forty-two men and women aged 62.5 ± 0.5 years from the Newcastle Thousand Families Study birth cohort underwent DXA evaluations of femoral neck and lumbar spine BMD and of the lateral spine for vertebral fracture assessment. RESULTS The likelihood of prevalent VF was significantly increased in men when compared to women (OR = 2.7, p < 0.001, 95% Cl 1.7-4.4). As BMI increased in women, so did the likelihood of prevalent any-grade VF (OR = 1.09, p = 0.006, 95% CI 1.02-1.17). Compared to normal weight women, obese women were more likely to have at least one VF (OR = 2.65, p = 0.025, CI 1.13-6.20) and at least one grade 1 vertebral deformity (OR = 4.39, p = 0.005, CI 1.57-12.28). Obese men were more likely to have a grade 2 and/or grade 3 VF compared to men of normal weight (OR = 3.36, p = 0.032, CI 1.11-10.16). In men and women, BMI was negatively associated with femoral neck BMD/weight (R = - 0.65, R = - 0.66, p < 0.001) and lumbar spine BMD/weight (R = - 0.66, R - 0.60, p < 0.001). CONCLUSIONS Obesity appears to be a risk factor for prevalent VF, and although absolute BMD is higher in obese individuals, this does not appear commensurate to their increased body weight.
Collapse
Affiliation(s)
- H A Rudman
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - F Birrell
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - M S Pearce
- Institute of Health and Society, Sir James Spence Institute of Child Health, Royal Victoria Infirmary, Newcastle University, Newcastle upon Tyne, UK
| | - S P Tuck
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - R M Francis
- Institute of Health and Society, Sir James Spence Institute of Child Health, Royal Victoria Infirmary, Newcastle University, Newcastle upon Tyne, UK
| | - L Treadgold
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - K Hind
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK.
- Department of Sport and Exercise Sciences, Durham University, 42 Old Elvet, Durham, DH1 3HN, UK.
| |
Collapse
|
12
|
Finite Element Investigation of the Effects of the Low-Frequency Vibration Generated by Vehicle Driving on the Human Lumbar Mechanical Properties. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7962414. [PMID: 30364013 PMCID: PMC6186348 DOI: 10.1155/2018/7962414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 11/17/2022]
Abstract
Long-term exposure to low-frequency vibration generated by vehicle driving impairs human lumbar spine health. However, few studies have investigated how low-frequency vibration affects human lumbar mechanical properties. This study established a poroelastic finite element model of human lumbar spinal segments L2–L3 to perform time-dependent vibrational simulation analysis and investigated the effects of different vibrational frequencies generated by normal vehicle driving on the lumbar mechanical properties in one hour. Analysis results showed that vibrational load caused more injury to lumbar health than static load, and vibration at the resonant frequency generated the most serious injury. The axial effective stress and the radial displacement in the intervertebral disc, as well as the fluid loss in the nucleus pulposus, increased, whereas the pore pressure in the nucleus pulposus decreased with increased vibrational frequency under the same vibrational time, which may aggravate the injury degree of human lumbar spine. Therefore, long-term driving on a well-paved road also induces negative effects on human lumbar spine health. When driving on a nonpaved road or operating engineering machinery under poor navigating condition, the auto seat transmits relatively high vibrational frequency, which is highly detrimental to the lumbar spine health of a driver.
Collapse
|
13
|
Ng SY, Bettany-Saltikov J, Cheung IYK, Chan KKY. The Role of Vitamin D in the Pathogenesis of Adolescent Idiopathic Scoliosis. Asian Spine J 2018; 12:1127-1145. [PMID: 30322242 PMCID: PMC6284127 DOI: 10.31616/asj.2018.12.6.1127] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Several theories have been proposed to explain the etiology of adolescent idiopathic scoliosis (AIS) until present. However, limited data are available regarding the impact of vitamin D insufficiency or deficiency on scoliosis. Previous studies have shown that vitamin D deficiency and insufficiency are prevalent in adolescents, including AIS patients. A series of studies conducted in Hong Kong have shown that as many as 30% of these patients have osteopenia. The 25-hydroxyvitamin D3 level has been found to positively correlate with bone mineral density (BMD) in healthy adolescents and negatively with Cobb angle in AIS patients; therefore, vitamin D deficiency is believed to play a role in AIS pathogenesis. This study attempts to review the relevant literature on AIS etiology to examine the association of vitamin D and various current theories. Our review suggested that vitamin D deficiency is associated with several current etiological theories of AIS. We postulate that vitamin D deficiency and/or insufficiency affects AIS development by its effect on the regulation of fibrosis, postural control, and BMD. Subclinical deficiency of vitamin K2, a fat-soluble vitamin, is also prevalent in adolescents; therefore, it is possible that the high prevalence of vitamin D deficiency is related to decreased fat intake. Further studies are required to elucidate the possible role of vitamin D in the pathogenesis and clinical management of AIS.
Collapse
|
14
|
Oravec D, Kim W, Flynn MJ, Yeni YN. The relationship of whole human vertebral body creep to geometric, microstructural, and material properties. J Biomech 2018; 73:92-98. [PMID: 29599039 DOI: 10.1016/j.jbiomech.2018.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/02/2018] [Accepted: 03/09/2018] [Indexed: 12/15/2022]
Abstract
Creep, the time dependent deformation of a structure under load, is an important viscoelastic property of bone and may play a role in the development of permanent deformity of the vertebrae in vivo leading to clinically observable spinal fractures. To date, creep properties and their relationship to geometric, microstructural, and material properties have not been described in isolated human vertebral bodies. In this study, a range of image-based measures of vertebral bone geometry, bone mass, microarchitecture and mineralization were examined in multiple regression models in an effort to understand their contribution to creep behavior. Several variables, such as measures of mineralization heterogeneity, average bone density, and connectivity density persistently appeared as significant effects in multiple regression models (adjusted r2: 0.17-0.56). Although further work is needed to identify additional tissue properties to fully describe the portion of variability not explained by these models, these data are expected to help understand mechanisms underlying creep and improve prediction of vertebral deformities that eventually progress to a clinically observable fracture.
Collapse
Affiliation(s)
- Daniel Oravec
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - Woong Kim
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States
| | - Michael J Flynn
- Department of Radiology, Henry Ford Hospital, Detroit, MI, United States
| | - Yener N Yeni
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, United States.
| |
Collapse
|
15
|
O'Callaghan P, Szarko M, Wang Y, Luo J. Effects of bone damage on creep behaviours of human vertebral trabeculae. Bone 2018; 106:204-210. [PMID: 29081379 DOI: 10.1016/j.bone.2017.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022]
Abstract
A subgroup of patients suffering with vertebral fractures can develop progressive spinal deformities over time. The mechanism underlying such clinical observation, however, remains unknown. Previous studies suggested that creep deformation of the vertebral trabeculae may play a role. Using the acoustic emission (AE) technique, this study investigated effects of bone damage (modulus reduction) on creep behaviours of vertebral trabecular bone. Thirty-seven human vertebral trabeculae samples were randomly assigned into five groups (A to E). Bones underwent mechanical tests using similar experimental protocols but varied degree of bone damage was induced. Samples first underwent creep test (static compressive stress of 0.4MPa) for 30min, and then were loaded in compression to a specified strain level (0.4%, 1.0%, 1.5%, 2.5%, and 4% for group A to E, respectively) to induce different degrees of bone damage (0.4%, no damage control; 1.0%, yield strain; 1.5%, beyond yield strain, 2.5% and 4%, post-ultimate strains). Samples were creep loaded (0.4MPa) again for 30min. AE techniques were used to monitor bone damage. Bone damage increased significantly from group A to E (P<0.05), with >30% of modulus reduction in group D and E. Before compressive loading, creep deformation was not different among the five groups and AE hits in creep test were rare. After compressive loading, creep deformation was significantly greater in group D and E than those in other groups (P<0.05). The number of AE hits and other AE measurements during creep test were significantly greater in group D and E than in group A, B, and C (P<0.05 for all). Data suggested that with the increase of vertebral trabecular bone damage, substantial creep deformation may occur even when the vertebra was under physiological loads. The boosted creep deformation observed may be attributed to newly created trabecular microfractures. Findings provide a possible explanation as to why some vertebral fracture patients develop progressive spinal deformity over time.
Collapse
Affiliation(s)
- Paul O'Callaghan
- School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | - Matthew Szarko
- Institute of Medical and Biomedical Education, St George's University of London, London SW17 0RE, UK
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.
| | - Jin Luo
- School of Applied Sciences, London South Bank University, London SE1 0AA, UK.
| |
Collapse
|
16
|
Morgado Ramirez DZ, Strike S, Lee R. Vibration transmission of the spine during walking is different between the lumbar and thoracic regions in older adults. Age Ageing 2017; 46:982-987. [PMID: 28338888 DOI: 10.1093/ageing/afx041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Indexed: 11/14/2022] Open
Abstract
Background fractures occur more commonly in the thoracic than in the lumbar spine. Physical activity complemented with pharmacological interventions has been advocated as a preventive measure for osteoporosis. However, walking has been shown to produce only a small improvement in spinal bone mineral density. The characteristics of vibration transmission during walking at the lumbar and thoracic spines may be different, and this may help explain the relative incidence of fractures in the two spine regions. Objective to determine how mechanical vibration is transmitted in the lumbar and thoracic spines in older adults with and without osteoporosis. Methods 16 young healthy adults, 19 older adults without osteoporosis and 41 adults with osteoporosis were recruited. Inertial sensors were attached to the skin over the lumbar and thoracic spines for recording the vibration transmitted during level walking. Vibration characteristics were compared across lumbar and thoracic spines and across groups. Results the lumbar spine generally amplified the vibration transmitted during walking, whereas the thoracic spine exhibited a much smaller amplification effect, except at the lowest frequency. The magnitude of vibration was generally reduced in the older spines. Osteoporosis had minimal effects on vibration transmission. Conclusions the larger amplification of vibration in the lumbar spine may explain the lower incidence of vertebral fractures in this region when compared to the thoracic spine. Ageing alters the transmission of vibration in the spine while osteoporosis has minimal effects. Future research should determine the characteristics of vibration transmitted through the thoracic spine during other physical activities.
Collapse
Affiliation(s)
- Dafne Zuleima Morgado Ramirez
- UCL Interaction Centre, University College London, London, WC1E 6BT, United Kingdom of Great Britain and Northern Ireland
| | - Siobhan Strike
- Department of Life Sciences, Roehampton University, Whitelands College, Holybourne Avenue, London, SW15 4JD, United Kingdom of Great Britain and Northern Ireland
| | - Raymond Lee
- The Pain Management & Neuromodulation Centre, Guy's & St. Thomas' NHS Trust, Westminster Bridge Road, London, UK
| |
Collapse
|
17
|
Luo J, Annesley-Williams DJ, Adams MA, Dolan P. How are adjacent spinal levels affected by vertebral fracture and by vertebroplasty? A biomechanical study on cadaveric spines. Spine J 2017; 17:863-874. [PMID: 28167249 DOI: 10.1016/j.spinee.2017.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal injuries and surgery may have important effects on neighboring spinal levels, but previous investigations of adjacent-level biomechanics have produced conflicting results. We use "stress profilometry" and noncontact strain measurements to investigate thoroughly this long-standing problem. PURPOSE This study aimed to determine how vertebral fracture and vertebroplasty affect compressive load-sharing and vertebral deformations at adjacent spinal levels. STUDY DESIGN We conducted mechanical experiments on cadaver spines. METHODS Twenty-eight cadaveric spine specimens, comprising three thoracolumbar vertebrae and the intervening discs and ligaments, were dissected from fourteen cadavers aged 67-92 years. A needle-mounted pressure transducer was used to measure the distribution of compressive stress across the anteroposterior diameter of both intervertebral discs. "Stress profiles" were analyzed to quantify intradiscal pressure (IDP) and concentrations of compressive stress in the anterior and posterior annulus. Summation of stresses over discrete areas yielded the compressive force acting on the anterior and posterior halves of each vertebral body, and the compressive force resisted by the neural arch. Creep deformations of vertebral bodies under load were measured using an optical MacReflex system. All measurements were repeated following compressive injury to one of the three vertebrae, and again after the injury had been treated by vertebroplasty. The study was funded by a grant from Action Medical Research, UK ($143,230). Authors of this study have no conflicts of interest to disclose. RESULTS Injury usually involved endplate fracture, often combined with deformation of the anterior cortex, so that the affected vertebral body developed slight anterior wedging. Injury reduced IDP at the affected level, to an average 47% of pre-fracture values (p<.001), and transferred compressive load-bearing from nucleus to annulus, and also from disc to neural arch. Similar but reduced effects were seen at adjacent (non-fractured) levels, where mean IDP was reduced to 73% of baseline values (p<.001). Vertebroplasty partially reversed these changes, increasing mean IDP to 76% and 81% of baseline values at fractured and adjacent levels, respectively. Injury also increased creep deformation of the vertebral body under load, especially in the anterior region where a 14-fold increase was observed at the fractured level and a threefold increase was observed at the adjacent level. Vertebroplasty also reversed these changes, reducing deformation of the anterior vertebral body (compared with post-fracture values) by 62% at the fractured level, and by 52% at the adjacent level. CONCLUSIONS Vertebral fracture adversely affects compressive load-sharing and increases vertebral deformations at both fractured and adjacent levels. All effects can be partially reversed by vertebroplasty.
Collapse
Affiliation(s)
- Jin Luo
- School of Applied Sciences, London South Bank University, 103 Borough Rd, London SE1 0AA, UK
| | - Deborah J Annesley-Williams
- Department of Neuroradiology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Derby Rd, Nottingham NG7 2UH, UK
| | - Michael A Adams
- Centre of Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK
| | - Patricia Dolan
- Centre of Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK.
| |
Collapse
|
18
|
Hind K, Pearce M, Birrell F. Total and Visceral Adiposity Are Associated With Prevalent Vertebral Fracture in Women but Not Men at Age 62 Years: The Newcastle Thousand Families Study. J Bone Miner Res 2017; 32:1109-1115. [PMID: 28261864 DOI: 10.1002/jbmr.3085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
Abstract
Low body weight is an established risk factor for osteoporosis and fracture, but the skeletal risks of higher adiposity are unclear and appear sex-specific and site-dependent. The aim of this study was to investigate associations of total fat mass (TFM), visceral adipose tissue (VAT), and C-reactive protein (CRP) with bone mineral density (BMD) and prevalent vertebral fracture (VF) in men and women aged 62 years. A total of 352 men and women aged 62.5 ± 0.5 years from the Newcastle Thousand Families Study cohort received dual-energy X-ray absorptiometry (DXA) evaluations of femoral neck and lumbar spine BMD, of the lateral spine for vertebral fracture assessment, and of the whole body for TFM and VAT (GE Lunar CoreScan, Madison, WI, USA). Plasma CRP, FRAX scores, falls in the last 12 months, and occupation at age 50 years were also included in the analysis. Vertebral fractures were less prevalent in women than in men (odds ratio [OR] = 0.33, p < 0.001) and BMD or FRAX scores did not differ between participants with and without VF. Women with VF were heavier and had higher TFM, VAT, and CRP than women without (p < 0.001). In women, greater (+1 SD) TFM and VAT increased the odds of any grade VF (TFM: OR = 1.06, p = 0.001; VAT: OR = 2.50, p = 0.002), and greater VAT mass increased the odds of prevalent mild VF (OR = 2.60, p = 0.002). In contrast, there were no associations in men. In both sexes, after controlling for body weight, neither VAT nor CRP were associated with BMD. In conclusion, irrespective of BMD, total and visceral adiposity were associated with prevalent VF in women but not in men. High fat mass, particularly if visceral, should be considered when assessing VF risk in women. Risk factors for VF in men require further investigation, particularly given their high prevalence. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Karen Hind
- Carnegie Research Institute, Leeds Beckett University, Leeds, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Pearce
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Fraser Birrell
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Xie S, Manda K, Wallace RJ, Levrero-Florencio F, Simpson AHRW, Pankaj P. Time Dependent Behaviour of Trabecular Bone at Multiple Load Levels. Ann Biomed Eng 2017; 45:1219-1226. [PMID: 28130701 PMCID: PMC5397450 DOI: 10.1007/s10439-017-1800-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/19/2017] [Indexed: 11/02/2022]
Abstract
The deformation of bone when subjected to loads is not instantaneous but varies with time. To investigate this time-dependent behaviour sixteen bovine trabecular bone specimens were subjected to compressive loading, creep, unloading and recovery at multiple load levels corresponding to apparent strains of 2000-25,000 με. We found that: the time-dependent response of trabecular bone comprises of both recoverable and irrecoverable strains; the strain response is nonlinearly related to applied load levels; and the response is linked to bone volume fraction. Although majority of strain is recovered after the load-creep-unload-recovery cycle some residual strain always exists. The analysis of results indicates that trabecular bone becomes stiffer initially and then experiences stiffness degradation with the increasing load levels. Steady state creep rate was found to be dependent on applied stress level and bone volume fraction with a power law relationship.
Collapse
Affiliation(s)
- Shuqiao Xie
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh, EH9 3DW, UK
| | - Krishnagoud Manda
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh, EH9 3DW, UK
| | - Robert J Wallace
- Department of Orthopaedics, The University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Francesc Levrero-Florencio
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh, EH9 3DW, UK
| | - A Hamish R W Simpson
- Department of Orthopaedics, The University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Pankaj Pankaj
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Edinburgh, EH9 3DW, UK.
| |
Collapse
|
20
|
Maas F, Spoorenberg A, van der Slik BPG, van der Veer E, Brouwer E, Bootsma H, Bos R, Wink FR, Arends S. Clinical Risk Factors for the Presence and Development of Vertebral Fractures in Patients With Ankylosing Spondylitis. Arthritis Care Res (Hoboken) 2017; 69:694-702. [DOI: 10.1002/acr.22980] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/10/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Fiona Maas
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Anneke Spoorenberg
- University of Groningen, University Medical Center Groningen, Groningen, and Medical Center Leeuwarden; Leeuwarden The Netherlands
| | | | - Eveline van der Veer
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Elisabeth Brouwer
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Hendrika Bootsma
- University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Reinhard Bos
- Medical Center Leeuwarden; Leeuwarden The Netherlands
| | - Freke R. Wink
- Medical Center Leeuwarden; Leeuwarden The Netherlands
| | - Suzanne Arends
- University of Groningen, University Medical Center Groningen, Groningen, and Medical Center Leeuwarden; Leeuwarden The Netherlands
| |
Collapse
|
21
|
Manda K, Wallace RJ, Xie S, Levrero-Florencio F, Pankaj P. Nonlinear viscoelastic characterization of bovine trabecular bone. Biomech Model Mechanobiol 2016; 16:173-189. [PMID: 27440127 PMCID: PMC5285425 DOI: 10.1007/s10237-016-0809-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/08/2016] [Indexed: 11/24/2022]
Abstract
The time-independent elastic properties of trabecular bone have been extensively investigated, and several stiffness–density relations have been proposed. Although it is recognized that trabecular bone exhibits time-dependent mechanical behaviour, a property of viscoelastic materials, the characterization of this behaviour has received limited attention. The objective of the present study was to investigate the time-dependent behaviour of bovine trabecular bone through a series of compressive creep–recovery experiments and to identify its nonlinear constitutive viscoelastic material parameters. Uniaxial compressive creep and recovery experiments at multiple loads were performed on cylindrical bovine trabecular bone samples (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n = 19$$\end{document}n=19). Creep response was found to be significant and always comprised of recoverable and irrecoverable strains, even at low stress/strain levels. This response was also found to vary nonlinearly with applied stress. A systematic methodology was developed to separate recoverable (nonlinear viscoelastic) and irrecoverable (permanent) strains from the total experimental strain response. We found that Schapery’s nonlinear viscoelastic constitutive model describes the viscoelastic response of the trabecular bone, and parameters associated with this model were estimated from the multiple load creep–recovery (MLCR) experiments. Nonlinear viscoelastic recovery compliance was found to have a decreasing and then increasing trend with increasing stress level, indicating possible stiffening and softening behaviour of trabecular bone due to creep. The obtained parameters from MLCR tests, expressed as second-order polynomial functions of stress, showed a similar trend for all the samples, and also demonstrate stiffening–softening behaviour with increasing stress.
Collapse
Affiliation(s)
- Krishnagoud Manda
- School of Engineering, The University of Edinburgh, The King's Buildings, EH9 3DW, Edinburgh, UK.
| | - Robert J Wallace
- Department of Orthopaedics, The University of Edinburgh, Chancellors building, EH16 4SB, Edinburgh, UK
| | - Shuqiao Xie
- School of Engineering, The University of Edinburgh, The King's Buildings, EH9 3DW, Edinburgh, UK
| | | | - Pankaj Pankaj
- School of Engineering, The University of Edinburgh, The King's Buildings, EH9 3DW, Edinburgh, UK
| |
Collapse
|
22
|
Manda K, Xie S, Wallace RJ, Levrero-Florencio F, Pankaj P. Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone. Biomech Model Mechanobiol 2016; 15:1631-1640. [PMID: 27090522 PMCID: PMC5106511 DOI: 10.1007/s10237-016-0787-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/30/2016] [Indexed: 12/05/2022]
Abstract
Trabecular bone has been previously recognized as time-dependent (viscoelastic) material, but the relationships of its viscoelastic behaviour with bone volume fraction (BV/TV) have not been investigated so far. Therefore, the aim of the present study was to quantify the time-dependent viscoelastic behaviour of trabecular bone and relate it to BV/TV. Uniaxial compressive creep experiments were performed on cylindrical bovine trabecular bone samples (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{n}\,{=}\,13$$\end{document}n=13) at loads corresponding to physiological strain level of 2000 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\upmu }{\upvarepsilon }$$\end{document}με. We assumed that the bone behaves in a linear viscoelastic manner at this low strain level and the corresponding linear viscoelastic parameters were estimated by fitting a generalized Kelvin–Voigt rheological model to the experimental creep strain response. Strong and significant power law relationships (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r^2\,{=}\,0.73,\ p\,{<}\,0.001$$\end{document}r2=0.73,p<0.001) were found between time-dependent creep compliance function and BV/TV of the bone. These BV/TV-based material properties can be used in finite element models involving trabecular bone to predict time-dependent response. For users’ convenience, the creep compliance functions were also converted to relaxation functions by using numerical interconversion methods and similar power law relationships were reported between time-dependent relaxation modulus function and BV/TV.
Collapse
Affiliation(s)
- Krishnagoud Manda
- School of Engineering, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3DW, UK.
| | - Shuqiao Xie
- School of Engineering, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3DW, UK
| | - Robert J Wallace
- Department of Orthopaedics, The University of Edinburgh, Chancellors building, Edinburgh, EH16 4SB, UK
| | | | - Pankaj Pankaj
- School of Engineering, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3DW, UK
| |
Collapse
|
23
|
Luo J, Pollintine P, Annesley-Williams D, Dolan P, Adams M. Vertebroplasty reduces progressive ׳creep’ deformity of fractured vertebrae. J Biomech 2016; 49:869-874. [DOI: 10.1016/j.jbiomech.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/04/2015] [Accepted: 09/14/2015] [Indexed: 01/25/2023]
|
24
|
Yang H, Jekir MG, Davis MW, Keaveny TM. Effective modulus of the human intervertebral disc and its effect on vertebral bone stress. J Biomech 2016; 49:1134-1140. [PMID: 26949100 DOI: 10.1016/j.jbiomech.2016.02.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 11/20/2022]
Abstract
The mechanism of vertebral wedge fractures remains unclear and may relate to typical variations in the mechanical behavior of the intervertebral disc. To gain insight, we tested 16 individual whole discs (between levels T8 and L5) from nine cadavers (mean±SD: 66±16 years), loaded in compression at different rates (0.05-20.0% strain/s), to measure a homogenized "effective" linear elastic modulus of the entire disc. The measured effective modulus, and average disc height, were then input and varied parametrically in micro-CT-based finite element models (60-μm element size, up to 80 million elements each) of six T9 human vertebrae that were virtually loaded to 3° of moderate forward-flexion via a homogenized disc. Across all specimens and loading rates, the measured effective modulus of the disc ranged from 5.8 to 42.7MPa and was significantly higher for higher rates of loading (p<0.002); average disc height ranged from 2.9 to 9.3mm. The parametric finite element analysis indicated that, as disc modulus increased and disc height decreased across these ranges, the vertebral bone stresses increased but their spatial distribution was largely unchanged: most of the highest stresses occurred in the central trabecular bone and endplates, and not anteriorly. Taken together with the literature, our findings suggest that the effective modulus of the human intervertebral disc should rarely exceed 100MPa and that typical variations in disc effective modulus (and less so, height) minimally influence the spatial distribution but can appreciably influence the magnitude of stress within the vertebral body.
Collapse
Affiliation(s)
- Haisheng Yang
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA.
| | - Michael G Jekir
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Maxwell W Davis
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Tony M Keaveny
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
25
|
Fan R, Gong H, Qiu S, Zhang X, Fang J, Zhu D. Effects of resting modes on human lumbar spines with different levels of degenerated intervertebral discs: a finite element investigation. BMC Musculoskelet Disord 2015; 16:221. [PMID: 26300114 PMCID: PMC4546817 DOI: 10.1186/s12891-015-0686-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/14/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The negative effect of long-term working load on lumbar is widely known. However, insertion of different resting modes on long-term working load, and its effects on the lumbar spine is rarely studied. The purpose of this study was to investigate the biomechanical responses of lumbar spine with different levels of degenerated intervertebral discs under different working-resting modes. METHODS Four poroelastic finite element models of lumbar spinal segments L2-L3 with different grades of disc degeneration were developed. Four different loading conditions represented four different resting frequencies, namely, no rest, one-time long rest, three-time moderate rests, and five-time short rests, on the condition that the total resting time was the same except in the no rest mode. Loading amplitudes of diurnal activities included 100 N, 300 N, and 500 N. RESULTS With increasing resting frequency, the axial effective stress and fluid loss decreased, whereas the pore pressure and radial displacement increased. Under different resting frequencies, the changing rate of each biomechanical parameter was different. CONCLUSIONS Under a situation of fixed total resting time, high resting frequency was advisable. If sufficient resting frequency was unavailable for healthy people as well as patients with mildly and moderately degenerated intervertebral discs, they could similarly benefit from relatively less resting frequencies. However, one-time rest will not be useful in cases where intervertebral discs were seriously degenerated. Reasonable working-resting modes for different degrees of disc degeneration, which could assist patients achieve a better restoration, were provided in this study.
Collapse
Affiliation(s)
- Ruoxun Fan
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, 130025, P. R. China.
| | - He Gong
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, 130025, P. R. China.
| | - Sen Qiu
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130025, P. R. China.
| | - Xianbin Zhang
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, 130025, P. R. China.
| | - Juan Fang
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, 130025, P. R. China.
| | - Dong Zhu
- Department of Orthopedic Surgery, No. 1 Hospital of Jilin University, Changchun, 130025, People's Republic of China.
| |
Collapse
|
26
|
Purcell P, Tiernan S, McEvoy F, Morris S. Strong similarities in the creep and damage behaviour of a synthetic bone model compared to human trabecular bone under compressive cyclic loading. J Mech Behav Biomed Mater 2015; 48:51-59. [DOI: 10.1016/j.jmbbm.2015.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 11/27/2022]
|
27
|
Abstract
STUDY DESIGN Biomechanical and radiographical study on cadaveric spines. OBJECTIVE To explain the pathogenesis of vertebral "anterior wedge" deformity, which causes senile kyphosis. SUMMARY OF BACKGROUND DATA This deformity arises with minimal trauma and is difficult to reproduce in cadaveric spines. We hypothesize that wedging is created by a 2-stage process. First, excessive loading damages a vertebral endplate and decompresses the adjacent intervertebral disc. This alters load sharing between the vertebral body cortex and trabeculae so that subsequent cyclic loading causes progressive collapse of the unsupported anterior cortex. METHODS Thirty-four cadaveric thoracolumbar "motion segments," aged 70 to 98 years, were positioned in flexion and overloaded in compression. Physiologically reasonable cyclic compressive loading was then applied to each flexed specimen, at progressively higher loads, for up to 2 hours. Before and after initial overload and again after cyclic loading, the distribution of loading on the vertebra was assessed from measurements of compressive stress within the adjacent disc. These "stress profiles" were repeated in the neutral, flexed, and extended postures. Progressive vertebral body deformity was assessed radiographically. RESULTS Compressive overload induced endplate fracture at an average force of 2.31 kN. There was minimal anterior wedging, but pressure in the adjacent disc nucleus (in flexion) fell by an average of 55% and neural arch load bearing increased by 166%. Subsequent cyclic loading exaggerated these changes and concentrated compressive stress within the anterior annulus. After both stages, height of the anterior and posterior vertebral cortexes was reduced by 32% and 12%, respectively, so that anterior wedging of the vertebral body increased from 5.0° to 11.4° on average. All changes were highly significant (P < 0.001). CONCLUSION Anterior wedge deformities can be created consistently by a 2-stage process involving initial endplate damage, followed by progressive collapse of the anterior cortex. Detecting initial endplate damage may be important to minimize vertebral deformity in patients with osteoporosis. LEVEL OF EVIDENCE N/A.
Collapse
|
28
|
Adams MA, Lama P, Zehra U, Dolan P. Why do some intervertebral discs degenerate, when others (in the same spine) do not? Clin Anat 2014; 28:195-204. [PMID: 24753325 DOI: 10.1002/ca.22404] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/04/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023]
Abstract
This review suggests why some discs degenerate rather than age normally. Intervertebral discs are avascular pads of fibrocartilage that allow movement between vertebral bodies. Human discs have a low cell density and a limited ability to adapt to mechanical demands. With increasing age, the matrix becomes yellowed, fibrous, and brittle, but if disc structure remains intact, there is little impairment in function, and minimal ingrowth of blood vessels or nerves. Approximately half of old lumbar discs degenerate in the sense of becoming physically disrupted. The posterior annulus and lower lumbar discs are most affected, presumably because they are most heavily loaded. Age and genetic inheritance can weaken discs to such an extent that they are physically disrupted during everyday activities. Damage to the endplate or annulus typically decompresses the nucleus, concentrates stress within the annulus, and allows ingrowth of nerves and blood vessels. Matrix disruption progresses by mechanical and biological means. The site of initial damage leads to two disc degeneration "phenotypes": endplate-driven degeneration is common in the upper lumbar and thoracic spine, and annulus-driven degeneration is common at L4-S1. Discogenic back pain can be initiated by tissue disruption, and amplified by inflammation and infection. Healing is possible in the outer annulus only, where cell density is highest. We conclude that some discs degenerate because they are disrupted by excessive mechanical loading. This can occur without trauma if tissues are weakened by age and genetic inheritance. Moderate mechanical loading, in contrast, strengthens all spinal tissues, including discs.
Collapse
Affiliation(s)
- Michael A Adams
- Centre for Comparative and Clinical Anatomy, University of Bristol, United Kingdom
| | | | | | | |
Collapse
|
29
|
Novitskaya E, Zin C, Chang N, Cory E, Chen P, D'Lima D, Sah RL, McKittrick J. Creep of trabecular bone from the human proximal tibia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:219-27. [PMID: 24857486 DOI: 10.1016/j.msec.2014.03.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/05/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae.
Collapse
Affiliation(s)
- Ekaterina Novitskaya
- Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093, USA; Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093, USA.
| | - Carolyn Zin
- Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Neil Chang
- Departments of Bioengineering & Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093, USA
| | - Esther Cory
- Departments of Bioengineering & Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093, USA
| | - Peter Chen
- Departments of Bioengineering & Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093, USA
| | - Darryl D'Lima
- Shiley Center for Orthopaedic Research & Education, Scripps Health, La Jolla, CA 92037, USA
| | - Robert L Sah
- Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093, USA; Departments of Bioengineering & Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093, USA
| | - Joanna McKittrick
- Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093, USA; Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
BRANDOLINI NICOLA, CRISTOFOLINI LUCA, VICECONTI MARCO. EXPERIMENTAL METHODS FOR THE BIOMECHANICAL INVESTIGATION OF THE HUMAN SPINE: A REVIEW. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414300026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In vitro mechanical testing of spinal specimens is extremely important to better understand the biomechanics of the healthy and diseased spine, fracture, and to test/optimize surgical treatment. While spinal testing has extensively been carried out in the past four decades, testing methods are quite diverse. This paper aims to provide a critical overview of the in vitro methods for mechanical testing the human spine at different scales. Specimens of different type are used, according to the aim of the study: spine segments (two or more adjacent vertebrae) are used both to investigate the spine kinematics, and the mechanical properties of the spine components (vertebrae, ligaments, discs); single vertebrae (whole vertebra, isolated vertebral body, or vertebral body without endplates) are used to investigate the structural properties of the vertebra itself; core specimens are extracted to test the mechanical properties of the trabecular bone at the tissue-level; mechanical properties of spine soft tissue (discs, ligaments, spinal cord) are measured on isolated elements, or on tissue specimens. Identification of consistent reference frames is still a debated issue. Testing conditions feature different pre-conditioning and loading rates, depending on the simulated action. Tissue specimen preservation is a very critical issue, affecting test results. Animal models are often used as a surrogate. However, because of different structure and anatomy, extreme caution is required when extrapolating to the human spine. In vitro loading conditions should be based on reliable in vivo data. Because of the high complexity of the spine, such information (either through instrumented implants or through numerical modeling) is currently unsatisfactory. Because of the increasing ability of computational models in predicting biomechanical properties of musculoskeletal structures, a synergy is possible (and desirable) between in vitro experiments and numerical modeling. Future perspectives in spine testing include integration of mechanical and structural properties at different dimensional scales (from the whole-body-level down to the tissue-level) so that organ-level models (which are used to predict the most relevant phenomena such as fracture) include information from all dimensional scales.
Collapse
Affiliation(s)
- NICOLA BRANDOLINI
- Laboratory for Medical Technology, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
- School of Mechanical Engineering, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, UK
| | - LUCA CRISTOFOLINI
- Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - MARCO VICECONTI
- Laboratory for Medical Technology, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
31
|
Reproducible reference frame for in vitro testing of the human vertebrae. J Biomech 2014; 47:313-8. [DOI: 10.1016/j.jbiomech.2013.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 11/21/2022]
|
32
|
Primary migration of a mini-implant under a functional orthodontic loading. Clin Oral Investig 2013; 18:721-8. [DOI: 10.1007/s00784-013-1045-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
|
33
|
Ertas AH, Winwood K, Zioupos P, Cotton JR. Simulation of creep in non-homogenous samples of human cortical bone. Comput Methods Biomech Biomed Engin 2013; 15:1121-8. [PMID: 21574078 DOI: 10.1080/10255842.2011.575069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Characterising the mechanisms causing viscoelastic mechanical properties of human cortical bone, as well as understanding sources of variation, is important in predicting response of the bone to creep and fatigue loads. Any better understanding, when incorporated into simulations including finite element analysis, would assist bioengineers, clinicians and biomedical scientists. In this study, we used an empirically verified model of creep strain accumulation, in a simulation of 10 non-homogeneous samples, which were created from micro-CT scans of human cortical bone of the femur midshaft obtained from a 74-year-old female cadaver. These non-homogeneous samples incorporate the presence of Haversian canals and resorption cavities. The influence of inhomogeneity on the response and variation in the samples in both creep and stress relaxation tests are examined. The relationship between steady-state creep rate, applied loads (stress relaxation and creep tests) and microstructure, that is bone apparent porosity, is obtained. These relations may provide insight into damage accumulation of whole human bones and be relevant to studies on osteoporosis.
Collapse
Affiliation(s)
- Ahmet H Ertas
- Department of Mechanical Engineering, Karabuk University, Karabuk 78050, Turkey.
| | | | | | | |
Collapse
|
34
|
Contributions of Remodeling and Asymmetrical Growth to Vertebral Wedging in a Scoliosis Model. Spine Deform 2013; 1:2-9. [PMID: 27927317 DOI: 10.1016/j.jspd.2012.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/01/2012] [Accepted: 07/31/2012] [Indexed: 11/20/2022]
Abstract
STUDY DESIGN We performed a laboratory study of rats of 3 different ages with imposed angulation and compressive loading to caudal vertebrae to determine causes of vertebral wedging. OBJECTIVES The purpose was to determine the percentage of total vertebral wedging that was caused by asymmetric growth, vertebral body, and epiphyseal wedging. Approval from the Institutional Animal Care and Use Committee, the University of Vermont, was obtained for the live animal procedures used in this study. BACKGROUND SUMMARY Vertebral wedging from asymmetrical growth (Hueter-Volkmann law) is reported to cause vertebral wedging in scoliosis with little attention to the possible contribution of bony remodeling (Wolff's law). METHODS In our study, an external fixator imposed a 30° lateral curvature and compression of 0.1 megapascal (MPa) in 5- and 14-week-old animals (Groups 1 and 2) and 0.2 MPa in 14- and 32-week-old animals (groups 3 and 4). Total vertebral wedging was measured from micro CT scans. Wedging due to asymmetrical growth and epiphyseal remodeling was calculated from fluorescent labels and the difference was attributed to vertebral body wedging. RESULTS Total vertebral wedging averaged 18°, 6°, 10° and 5° in Groups 1, 2, 3, and 4, respectively. Metaphyseal asymmetrical growth averaged 8°, 1°, 4°, 0° (44%, 17%, 40% and 0% of total). Epiphyseal wedging averaged 9°, 0°, 3°, and -1°. The difference (vertebral body) averaged 1°, 5°, 3°, and 7° (6%, 83%, 30% and 140% of total). The growth of the loaded vertebrae as a percentage of control vertebrae was 56%, 39% and 25% in Groups 1, 2 and 3; negligible in Group 4. Vertebral body cortical remodeling, with increased thickness and increased curvature on the concave side was evident in young animals and 0.2 MPa loaded older animals. CONCLUSIONS We conclude that asymmetrical growth was the largest contributor to vertebral wedging in young animals; vertebral body remodeling was the largest contributor in older animals. If, conversely, vertebral wedging can be corrected by appropriate loading in young and old animals, it has important implications for the nonfusion treatment of scoliosis.
Collapse
|
35
|
Kim DG, Navalgund AR, Tee BC, Noble GJ, Hart RT, Lee HR. Increased variability of bone tissue mineral density resulting from estrogen deficiency influences creep behavior in a rat vertebral body. Bone 2012; 51:868-75. [PMID: 22944606 PMCID: PMC3455132 DOI: 10.1016/j.bone.2012.08.124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/17/2012] [Accepted: 08/20/2012] [Indexed: 11/21/2022]
Abstract
Progressive vertebral deformation increases the fracture risk of a vertebral body in the postmenopausal patient. Many studies have observed that bone can demonstrate creep behavior, defined as continued time-dependent deformation even when mechanical loading is held constant. Creep is a characteristic of viscoelastic behavior, which is common in biological materials. We hypothesized that estrogen deficiency-dependent alteration of the mineral distribution of bone at the tissue level could influence the progressive postmenopausal vertebral deformity that is observed as the creep response at the organ level. The objective of this study was thus to examine whether the creep behavior of vertebral bone is changed by estrogen deficiency, and to determine which bone property parameters are responsible for the creep response of vertebral bone at physiological loading levels using an ovariectomized (OVX) rat model. Correlations of creep parameters with bone mineral density (BMD), tissue mineral density (TMD) and architectural parameters of both OVX and sham surgery vertebral bone were tested. As the vertebral creep was not fully recovered during the post-creep unloading period, there was substantial residual displacement for both the sham and OVX groups. A strong positive correlation between loading creep and residual displacement was found (r=0.868, p<0.001). Of the various parameters studied, TMD variability was the parameter that best predicted the creep behavior of the OVX group (p<0.038). The current results indicated that creep caused progressive, permanent reduction in vertebral height for both the sham and OVX groups. In addition, estrogen deficiency-induced active bone remodeling increased variability of trabecular TMD in the OVX group. Taken together, these results suggest that increased variability of trabecular TMD resulting from high bone turnover influences creep behavior of the OVX vertebrae.
Collapse
Affiliation(s)
- Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Yang H, Nawathe S, Fields AJ, Keaveny TM. Micromechanics of the human vertebral body for forward flexion. J Biomech 2012; 45:2142-8. [PMID: 22704826 DOI: 10.1016/j.jbiomech.2012.05.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/21/2012] [Accepted: 05/19/2012] [Indexed: 11/18/2022]
Abstract
To provide mechanistic insight into the etiology of osteoporotic wedge fractures, we investigated the spatial distribution of tissue at the highest risk of initial failure within the human vertebral body for both forward flexion and uniform compression loading conditions. Micro-CT-based linear elastic finite element analysis was used to virtually load 22 human T9 vertebral bodies in either 5° of forward flexion or uniform compression; we also ran analyses replacing the simulated compliant disc (E=8 MPa) with stiff polymethylmethacrylate (PMMA, E=2500 MPa). As expected, we found that, compared to uniform compression, forward flexion increased the overall endplate axial load on the anterior half of the vertebra and shifted the spatial distribution of high-risk tissue within the vertebra towards the anterior aspect of the vertebral body. However, despite that shift, the high-risk tissue remained primarily within the central regions of the trabecular bone and endplates, and forward flexion only slightly altered the ratio of cortical-to-trabecular load sharing at the mid-vertebral level (mean±SD for n=22: 41.3±7.4% compression; 44.1±8.2% forward flexion). When the compliant disc was replaced with PMMA, the anterior shift of high-risk tissue was much more severe. We conclude that, for a compliant disc, a moderate degree of forward flexion does not appreciably alter the spatial distribution of stress within the vertebral body.
Collapse
Affiliation(s)
- Haisheng Yang
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740, USA.
| | | | | | | |
Collapse
|
37
|
Luo J, Pollintine P, Gomm E, Dolan P, Adams MA. Vertebral deformity arising from an accelerated "creep" mechanism. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2012; 21:1684-91. [PMID: 22447410 DOI: 10.1007/s00586-012-2279-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 01/20/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Vertebral deformities often occur in patients who recall no trauma, and display no evident fracture on radiographs. We hypothesise that vertebral deformity can occur by a gradual creep mechanism which is accelerated following minor damage. "Creep" is continuous deformation under constant load. MATERIALS AND METHODS Forty-five thoracolumbar spine motion segments were tested from cadavers aged 42-92 years. Vertebral body areal BMD was measured using DXA. Specimens were compressed at 1 kN for 30 min, while creep in each vertebral body was measured using an optical MacReflex system. After 30 min recovery, each specimen was subjected to a controlled overload event which caused minor damage to one of its vertebrae. The creep test was then repeated. RESULTS Vertebral body creep was measurable in specimens with BMD <0.5 g/cm(2). Creep was greater anteriorly than posteriorly (p < 0.001), so that vertebrae gradually developed a wedge deformity. Compressive overload reduced specimen height by 2.24 mm (STD 0.77 mm), and increased vertebral body creep by 800 % (anteriorly), 1,000 % (centrally) and 600 % (posteriorly). In 34 vertebrae with complete before-and-after data, anterior wedging occurring during the 1st creep test averaged 0.07° (STD 0.17°), and in the 2nd test (after minor damage) it averaged 0.79° (STD 1.03°). The increase was highly significant (P < 0.001). Vertebral body wedging during the 2nd creep test was proportional to the severity of damage, as quantified by specimen height loss during the overload event (r (2) = 0.51, p < 0.001, n = 34). CONCLUSIONS Minor damage to an old vertebral body, even if it is barely discernible on radiographs, can accelerate creep to such an extent that it makes a substantial contribution to vertebral deformity.
Collapse
Affiliation(s)
- Jin Luo
- University of Roehampton, London, UK.
| | | | | | | | | |
Collapse
|
38
|
Ferrar L, Roux C, Reid DM, Felsenberg D, Glüer CC, Eastell R. Prevalence of non-fracture short vertebral height is similar in premenopausal and postmenopausal women: the osteoporosis and ultrasound study. Osteoporos Int 2012; 23:1035-40. [PMID: 21611843 DOI: 10.1007/s00198-011-1657-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED We observed similar prevalence of short vertebral height without endplate depression (SVH) in young women aged 20-39 years and older women aged 55-79 years. There was no association between SVH and low bone density. In older women, therefore, SVH may be largely long standing and not indicative of osteoporotic fracture. INTRODUCTION Algorithm-based qualitative (ABQ) definition of osteoporotic vertebral fracture (VF) requires evidence of endplate fracture, and there is no minimum threshold for apparent 'reduction' in vertebral height. In older women, SVH without endplate fracture identified on baseline assessment may be long standing and unrelated to VF. If this is so, we would expect to see a similar prevalence of SVH in younger women. We aimed to compare the prevalence of pre- and postmenopausal women with SVH and the characteristics of women with and without SVH. METHODS We used the ABQ method to classify baseline vertebral images (DXA-based imaging) from 257 premenopausal and 1,361 postmenopausal women participating in the population-based Osteoporosis and Ultrasound Study. Images were classified as follows: normal (no VF, no SVH), SVH (no VF) or VF (with/without SVH in unfractured vertebrae). We compared proportions of women with SVH (chi-squared test) and compared age, height, weight and bone mineral density (BMD) by ABQ classification (two-sample t test/analysis of variance). RESULTS The prevalence of pre- and postmenopausal women with SVH was 37% and 33%, respectively (P>0.05). Compared to women without SVH, premenopausal women with SVH were older (P<0.001) and heavier (P=0.05), and postmenopausal women with SVH were taller (P<0.05), with higher spine BMD (P<0.01). Postmenopausal women with VF were older (P<0.001) and shorter (P<0.01) with lower BMD (P<0.001) than women without VF. CONCLUSIONS Short vertebral height without endplate fracture is equally prevalent in pre- and postmenopausal women and not associated with low bone density.
Collapse
Affiliation(s)
- L Ferrar
- Sheffield NIHR Bone Biomedical Research Unit, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Laslett LL, Just Nee Foley SJ, Quinn SJ, Winzenberg TM, Jones G. Excess body fat is associated with higher risk of vertebral deformities in older women but not in men: a cross-sectional study. Osteoporos Int 2012; 23:67-74. [PMID: 21850547 DOI: 10.1007/s00198-011-1741-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
UNLABELLED Thinness is a risk factor for fractures, but the effect of obesity on fracture risk is less clear. We found an association between measures of obesity and prevalence and number of vertebral deformities in women but not in men, in a cross-sectional study of 1,011 participants aged 50-80 years. INTRODUCTION Low body weight is well recognised as a risk factor for fractures, but the association between overweight and fracture risk is less well described. This cross-sectional study describes the association between measures of obesity and vertebral deformities in 1,011 male and female participants in the Tasmanian Older Adult Cohort study. METHODS Vertebral deformities (anterior wedging) of T4-L4 were determined by morphometric dual-emission X-ray absorptiometry. Body fat was assessed as weight, body mass index (BMI), waist-hip ratio (WHR), waist circumference and DXA measures of trunk fat (in percent) and total fat mass. RESULTS The mean age of participants was 63 ± 7 years, and mean BMI was 28 ± 5. Prevalent thoracic vertebral deformities were associated with increasing weight [standardised β (Sβ) 0.29, p = 0.003], BMI (Sβ 0.33, p < 0.001), trunk fat (Sβ 0.20, p = 0.03), waist circumference (Sβ 0.19, p = 0.03) and fat mass (Sβ 0.23, p = 0.03), but not the WHR in women, and only with decreasing total fat mass in men. In addition, the number of vertebral deformities increased as weight, BMI or fat mass increased in women (all p < 0.05) but decreased with increasing total fat mass in men. Associations between fat mass and vertebral deformities were mainly linear, but there was some evidence of a threshold effect in women with a BMI ≥ 35. CONCLUSIONS There is a deleterious association between increasing amounts of body fat in women but not in men and the prevalence and number of vertebral deformities, which may reflect loading of the thoracic spine.
Collapse
Affiliation(s)
- L L Laslett
- Menzies Research Institute Tasmania, University of Tasmania, Private Bag 23, Hobart, Tasmania 7000, Australia.
| | | | | | | | | |
Collapse
|
40
|
Adams MA, Dolan P. Biomechanics of vertebral compression fractures and clinical application. Arch Orthop Trauma Surg 2011; 131:1703-10. [PMID: 21805360 DOI: 10.1007/s00402-011-1355-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Indexed: 12/27/2022]
Abstract
Local biomechanical factors in the etiology of vertebral compression fractures are reviewed. The vertebral body is particularly vulnerable to compression fracture when its bone mineral density (BMD) falls with age. However, the risk of fracture, and the type of fracture produced, does not depend simply on BMD. Equally important is the state of degeneration of the adjacent intervertebral discs, which largely determines how compressive forces are distributed over the vertebral body. Disc height also influences load-sharing between the vertebral body and neural arch, and hence by Wolff's Law can influence regional variations in trabecular density within the vertebral body. Vertebral deformity is not entirely attributable to trauma: it can result from the gradual accumulation of fatigue damage, and can progress by a quasi-continuous process of "creep". Cement injection techniques such as vertebroplasty and kyphoplasty are valuable in the treatment of these fractures. Both techniques can stiffen a fractured vertebral body, and kyphoplasty may contribute towards restoring its height. The presence of cement can limit endplate deformation, and thereby partially reverse the adverse changes in load-sharing which follow vertebral fracture. Cement also reduces time-dependent "creep" deformation of damaged vertebrae.
Collapse
Affiliation(s)
- Michael A Adams
- Centre for Comparative and Clinical Anatomy, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK.
| | | |
Collapse
|
41
|
Abstract
STUDY DESIGN Mechanical testing of cadaveric spines. OBJECTIVE To determine whether vertebral body osteophytes act primarily to reduce compressive stress on the intervertebral discs, or to stabilize the spine in bending. SUMMARY OF BACKGROUND DATA The mechanical significance of vertebral osteophytes is unclear. METHODS Thoracolumbar spines were obtained from cadavers, aged 51 to 92 years, with vertebral body osteophytes, mostly anterolateral. Twenty motion segments, from T5-T6 to L3-L4, were loaded in compression to 1.5 kN, and then in flexion, extension, and lateral bending to 10 to 25 Nm (depending on specimen size) with a compressive preload. Vertebral movements were tracked using an optical 2-dimensional MacReflex system. Tests were performed in random order, and were repeated after excision of all osteophytes. Osteophyte function was inferred from (a) changes in the force or moment resisted and (b) changes in tangent stiffness, measured at maximum displacement or rotation angle. Volumetric bone mineral density (BMD) was measured using dual photon x-ray absorptiometry and water immersion. Results were analyzed using repeated measures analysis of variance. RESULTS Resistance to compression was reduced by an average of 17% after osteophyte removal (P < 0.05), and resistance to bending moment in flexion, extension, and left and right lateral bending was reduced by 49%, 36%, 36%, and 35%, respectively (all P < 0.01). Changes in tangent stiffness were similar. Osteophyte removal increased the neutral zone in bending (P < 0.05) and, on average, reduced motion segment BMD by 7% to 9%. Results were insensitive to applied loads and moments, but several changes were proportional to osteophyte size. CONCLUSION Vertebral body osteophytes resist bending movements more than compression. Because they reverse the instability in bending that can stimulate their formation, these osteophytes seem to be adaptive rather than degenerative. Results suggest that osteophytes could cause clinical BMD measurements to underestimate vertebral compressive strength.
Collapse
|
42
|
Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone. J Biomech 2011; 44:1660-5. [PMID: 21481880 DOI: 10.1016/j.jbiomech.2011.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 11/21/2022]
Abstract
Creep is a time-dependent viscoelastic deformation observed under a constant prolonged load. It has been indicated that progressive vertebral deformation due to creep may increase the risk of vertebral fracture in the long-term. The objective of this study was to examine the relationships of creep with trabecular architecture and tissue mineral density (TMD) parameters in human vertebral cancellous bone at a physiological static strain level. Architecture and TMD parameters of cancellous bone were analyzed using microcomputerized tomography (micro-CT) in specimens cored out of human vertebrae. Then, creep and residual strains of the specimens were measured after a two-hour physiological compressive constant static loading and unloading cycle. Creep developed (3877 ± 2158 με) resulting in substantial levels of non-recoverable post-creep residual strain (1797 ± 1391 με). A strong positive linear correlation was found between creep and residual strain (r = 0.94, p < 0.001). The current results showed that smaller thickness, larger surface area, greater connectivity of trabeculae, less mean tissue mineral density (TMD, represented by gray levels) and higher variability of TMD are associated with increasing logarithmic creep rate. The TMD variability (GL(COV)) was the strongest correlate of creep rate (r = 0.79, p < 0.001). This result suggests that TMD variability may be a useful parameter for estimating the long-term deformation of a whole vertebral body. The results further suggest that the changes in TMD variability resulting from bone remodeling are of importance and may provide an insight into the understanding of the mechanisms underlying progressive failure of vertebral bodies and development of a clinical fracture.
Collapse
|
43
|
Morosano ME, Menoyo I, Caferra DA, Sánchez A, Tomat MF, Bocanera R, Pezzotto SM, Masoni AM. Vulnerability of healthy vertebrae in patients with and without previous vertebral fracture. Bone 2011; 48:820-7. [PMID: 21185414 DOI: 10.1016/j.bone.2010.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/12/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Vertebral deformities are associated with a marked increase in morbidity, mortality, and burden in terms of sanitary expenditures. Patients with vertebral fractures have a negative impact in their health, less quality of life, and loss of functional capacity and independence. The purpose of this study was to explore the vulnerability of healthy vertebrae in patients who have sustained already a compression fracture and in patients who do not have prevalent fractures in the thoracic spine; and to explore the association of the deformity in healthy vertebrae with different variables, such as bone mineral density (BMD), body mass index, age, loss of height, presence of clinical kyphosis, history of other osteoporotic fractures, and falls occurring during the last year. Clinical data and complementary studies from 175 postmenopausal outpatients were analyzed. These women (age: 69.7±11.1 years) had not received any treatment for osteoporosis. Anteroposterior and lateral radiographs of the thoracic spine and bone densitometry of the hip were obtained; morphometry was performed in 1575 thoracic vertebrae from T4 to T12. The angle of wedging of each vertebral body was calculated using a trigonometric formula. Then, the sum of wedge angles of vertebral bodies (SWA) was determined, and Cobb angle was measured. In patients with vertebral fractures, after excluding the angles of fractured vertebral bodies, the mean wedge angle of the remaining vertebrae (MWAhealthy) was calculated. The same procedure was followed in patients without vertebral fractures. MWAhealthy was considered as an indicator of the structural vulnerability of non-fractured vertebrae. Patients with prevalent fractures had lower BMD, wider Cobb angle, and higher sum of wedge angles than patients without vertebral fractures. The proportion of patients with accentuation of clinical kyphosis was higher in the group with prevalent vertebral fractures. A highly significant difference was found in the MWAhealthy, which was higher in patients with prevalent fractures (4.1±1.3° vs. 3.0±1.1°; p<0.001). Patients showing vertebral fractures had 7.1±4.2 cm height loss in average, significantly superior than that found among non-fractured women (3.6±3.2 cm; p<0.01). In multivariate analysis, the increase of MWAhealthy was associated with advancing age (p<0.02), lower femoral neck BMD (p<0.005), presence of clinical kyphosis (p<0.01) and vertebral fractures (p<0.02). This study presents evidence that a series of factors independently influence the increase in wedging deformity of vertebral bodies that are not fractured yet. These factors could contribute to an increased vulnerability of the vertebrae, making them more susceptible to fracture.
Collapse
Affiliation(s)
- Mario E Morosano
- Cátedra de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Melton LJ, Riggs BL, Keaveny TM, Achenbach SJ, Kopperdahl D, Camp JJ, Rouleau PA, Amin S, Atkinson EJ, Robb RA, Therneau TM, Khosla S. Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res 2010; 25:1922-30. [PMID: 20533526 PMCID: PMC3153401 DOI: 10.1002/jbmr.150] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Because they are not reliably discriminated by areal bone mineral density (aBMD) measurements, it is unclear whether minimal vertebral deformities represent early osteoporotic fractures. To address this, we compared 90 postmenopausal women with no deformity (controls) with 142 women with one or more semiquantitative grade 1 (mild) deformities and 51 women with any grade 2-3 (moderate/severe) deformities. aBMD was measured by dual-energy X-ray absorptiometry (DXA), lumbar spine volumetric bone mineral density (vBMD) and geometry by quantitative computed tomography (QCT), bone microstructure by high-resolution peripheral QCT at the radius (HRpQCT), and vertebral compressive strength and load-to-strength ratio by finite-element analysis (FEA) of lumbar spine QCT images. Compared with controls, women with grade 1 deformities had significantly worse values for many bone density, structure, and strength parameters, although deficits all were much worse for the women with grade 2-3 deformities. Likewise, these skeletal parameters were more strongly associated with moderate to severe than with mild deformities by age-adjusted logistic regression. Nonetheless, grade 1 vertebral deformities were significantly associated with four of the five main variable categories assessed: bone density (lumbar spine vBMD), bone geometry (vertebral apparent cortical thickness), bone strength (overall vertebral compressive strength by FEA), and load-to-strength ratio (45-degree forward bending ÷ vertebral compressive strength). Thus significantly impaired bone density, structure, and strength compared with controls indicate that many grade 1 deformities do represent early osteoporotic fractures, with corresponding implications for clinical decision making.
Collapse
Affiliation(s)
- L Joseph Melton
- Division of Epidemiology, Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Luo J, Adams MA, Dolan P. Vertebroplasty and Kyphoplasty Can Restore Normal Spine Mechanics following Osteoporotic Vertebral Fracture. J Osteoporos 2010; 2010:729257. [PMID: 20981329 PMCID: PMC2957176 DOI: 10.4061/2010/729257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/06/2010] [Indexed: 01/09/2023] Open
Abstract
Osteoporotic vertebral fractures often lead to pain and disability. They can be successfully treated, and possibly prevented, by injecting cement into the vertebral body, a procedure known as vertebroplasty. Kyphoplasty is similar, except that an inflatable balloon is used to restore vertebral body height before cement is injected. These techniques are growing rapidly in popularity, and a great deal of recent research, reviewed in this paper, has examined their ability to restore normal mechanical function to fractured vertebrae. Fracture reduces the height and stiffness of a vertebral body, causing the spine to assume a kyphotic deformity, and transferring load bearing to the neural arch. Vertebroplasty and kyphoplasty are equally able to restore vertebral stiffness, and restore load sharing towards normal values, although kyphoplasty is better at restoring vertebral body height. Future research should optimise these techniques to individual patients in order to maximise their beneficial effects, while minimising the problems of cement leakage and adjacent level fracture.
Collapse
Affiliation(s)
- Jin Luo
- Department of Anatomy, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - Michael A. Adams
- Department of Anatomy, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - Patricia Dolan
- Department of Anatomy, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK,*Patricia Dolan:
| |
Collapse
|
46
|
Luo J, Bertram W, Sangar D, Adams MA, Annesley-Williams DJ, Dolan P. Is kyphoplasty better than vertebroplasty in restoring normal mechanical function to an injured spine? Bone 2010; 46:1050-7. [PMID: 20004264 DOI: 10.1016/j.bone.2009.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Kyphoplasty is gaining in popularity as a treatment for painful osteoporotic vertebral body fracture. It has the potential to restore vertebral shape and reduce spinal deformity, but the actual clinical and mechanical benefits of kyphoplasty remain unclear. In a cadaveric study, we compare the ability of vertebroplasty and kyphoplasty to restore spine mechanical function, and vertebral body shape, following vertebral fracture. METHODS Fifteen pairs of thoracolumbar "motion segments" (two vertebrae with the intervening disc and ligaments) were obtained from cadavers aged 42-96 years. All specimens were compressed to induce vertebral body fracture. Then one of each pair underwent vertebroplasty and the other kyphoplasty, using 7 ml of polymethylmethacrylate cement. Augmented specimens were compressed for 2 hours to allow consolidation. At each stage of the experiment, motion segment stiffness was measured in bending and compression, and the distribution of loading on the vertebrae was determined by pulling a miniature pressure transducer through the intervertebral disc. Disc pressure measurements were performed in flexed and extended postures with a compressive load of 1.0-1.5 kN. They revealed the intradiscal pressure (IDP) which acts on the central vertebral body, and they enabled compressive load-bearing by the neural arch (F(N)) to be calculated. Changes in vertebral height and wedge angle were assessed from radiographs. The volume of leaked cement was determined by water displacement. Volumetric bone mineral density (BMD) of each vertebral body was calculated using DXA and water displacement. RESULTS Vertebral fracture reduced motion segment compressive stiffness by 55%, and bending stiffness by 39%. IDP fell by 61-88%, depending on posture. F(N) increased from 15% to 36% in flexion and from 30% to 58% in extension (P<0.001). Fracture reduced vertebral height by an average 0.94 mm and increased vertebral wedging by 0.95 degrees (P<0.001). Vertebroplasty and kyphoplasty were equally effective in partially restoring all aspects of mechanical function (including stiffness, IDP, and F(N)), but vertebral wedging was reduced only by kyphoplasty (P<0.05). Changes in mechanical function and vertebral wedging were largely maintained after consolidation, but height restoration was not. Cement leakage was similar for both treatments. CONCLUSIONS Vertebroplasty and kyphoplasty were equally effective at restoring mechanical function to an injured spine. Only kyphoplasty was able to reverse minor vertebral wedging.
Collapse
Affiliation(s)
- Jin Luo
- Department of Anatomy, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
STUDY DESIGN Mechanical testing of cadaveric spines. OBJECTIVE To test the hypothesis that, in the ageing spine, vertebrae deform more than discs, and contribute to time-dependent creep. SUMMARY OF BACKGROUND DATA Intervertebral discs and vertebrae deform under load, narrowing the intervertebral foramen and increasing the risk of nerve root entrapment. Little is known about compressive deformations when elderly spines are subjected to sustained physiologic loading. METHODS A total of 117 thoracolumbar motion segments, aged 19 to 96 yrs (mean, 69), were subjected to 1kN compressive loading for 0.5, 1, or 2 hours. Deformations during the first 7 seconds were designated "elastic" and subsequent deformations as "creep". A 3-parameter model was fitted to experimental data in order to characterize their viscous modulus E1, elastic modulus E2 (initial stiffness), and viscosity eta (resistance to fluid flow). Intradiscal pressure (IDP) was measured using a miniature needle-mounted transducer. In 17 specimens loaded for 0.5 hours, an optical MacReflex system measured compressive deformations separately in the disc and each vertebral body. RESULTS On average, the disc contributed 28% of the spine's elastic deformation, 51% of the creep deformation, and 38% of total deformation. Elastic, creep, and total deformations of 84 motion segments in 2-hour tests averaged 0.87, 1.37, and 2.24 mm respectively. Measured deformations were predicted accurately by the model (average r2 = 0.97), but E1, E2, and eta depended on the duration of loading. E1 and eta decreased with advancing age and disc degeneration, in proportion to falling IDP (P < 0.001). Total compressive deformation increased with age, but rarely exceeded 3 mm. CONCLUSION When the ageing spine is compressed, vertebral bodies show greater elastic deformations than intervertebral discs, and creep by a similar amount. Responses to axial compression depend largely on IDP, but deformations appear to be limited by impaction of adjacent neural arches. Total compressive deformations are sufficient to cause foraminal stenosis in some individuals.
Collapse
|