1
|
Löffler MT, Wu PH, Kazakia GJ. MR-based techniques for intracortical vessel visualization and characterization: understanding the impact of microvascular disease on skeletal health. Curr Opin Endocrinol Diabetes Obes 2023; 30:192-199. [PMID: 37335282 PMCID: PMC10461604 DOI: 10.1097/med.0000000000000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW The relationships between bone vasculature and bone microstructure and strength remain incompletely understood. Addressing this gap will require in vivo imaging capabilities. We describe the relevant vascular anatomy of compact bone, review current magnetic resonance imaging (MRI)-based techniques that allow in vivo assessment of intracortical vasculature, and finally present preliminary studies that apply these techniques to investigate changes in intracortical vessels in aging and disease. RECENT FINDINGS Ultra-short echo time MRI (UTE MRI), dynamic contrast-enhanced MRI (DCE-MRI), and susceptibility-weighted MRI techniques are able to probe intracortical vasculature. Applied to patients with type 2 diabetes, DCE-MRI was able to find significantly larger intracortical vessels compared to nondiabetic controls. Using the same technique, a significantly larger number of smaller vessels was observed in patients with microvascular disease compared to those without. Preliminary data on perfusion MRI showed decreased cortical perfusion with age. SUMMARY Development of in vivo techniques for intracortical vessel visualization and characterization will enable the exploration of interactions between the vascular and skeletal systems, and further our understanding of drivers of cortical pore expansion. As we investigate potential pathways of cortical pore expansion, appropriate treatment and prevention strategies will be clarified.
Collapse
Affiliation(s)
- Maximilian T. Löffler
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; 185 Berry St, Suite 350, San Francisco, CA 94107, Tel: (415) 514-9655
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Po-Hung Wu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; 185 Berry St, Suite 350, San Francisco, CA 94107, Tel: (415) 514-9655
| | - Galateia J. Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; 185 Berry St, Suite 350, San Francisco, CA 94107, Tel: (415) 514-9655
| |
Collapse
|
2
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
3
|
Zhang C, McCully KK. The Case for Measuring Long Bone Hemodynamics With Near-Infrared Spectroscopy. Front Physiol 2020; 11:615977. [PMID: 33391034 PMCID: PMC7775486 DOI: 10.3389/fphys.2020.615977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
Diseases and associated fragility of bone is an important medical issue. There is increasing evidence that bone health is related to blood flow and oxygen delivery. The development of non-invasive methods to evaluate bone blood flow and oxygen delivery promise to improve the detection and treatment of bone health in human. Near-infrared spectroscopy (NIRS) has been used to evaluate oxygen levels, blood flow, and metabolism in skeletal muscle and brain. While the limited penetration depth of NIRS restricts its application, NIRS studies have been performed on the medial aspect of the tibia and some other prominent bone sites. Two approaches using NIRS to evaluate bone health are discussed: (1) the rate of re-oxygenation of bone after a short bout of ischemia, and (2) the dynamics of oxygen levels during an intervention such as resistance exercise. Early studies have shown these approaches to have the potential to evaluate bone vascular health as well as the predicted efficacy of an intervention before changes in bone composition are detectable. Future studies are needed to fully develop and exploit the use of NIRS technology for the study of bone health.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Abstract
Although advanced quantitative imaging may not be currently used to any degree in the routine reporting of spinal examinations, this situation will change in the not too distant future. Advanced quantitative imaging has already allowed us to understand a great deal more regarding spinal development, marrow physiology, and disease pathogenesis. Radiologists are ideally suited to drive this research forward. To speed up this process and optimize the impact of studies reporting spine quantitative data, we should work toward universal standards on the acquisition of spine data that will allow quantitative studies to be more easily compared, contrasted, and amalgamated.
Collapse
|
5
|
Fathi Kazerooni A, Pozo JM, McCloskey EV, Saligheh Rad H, Frangi AF. Diffusion MRI for Assessment of Bone Quality; A Review of Findings in Healthy Aging and Osteoporosis. J Magn Reson Imaging 2020; 51:975-992. [PMID: 31709670 PMCID: PMC7078977 DOI: 10.1002/jmri.26973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a growing imaging technique with the potential to provide biomarkers of tissue variation, such as cellular density, tissue anisotropy, and microvascular perfusion. However, the role of dMRI in characterizing different aspects of bone quality, especially in aging and osteoporosis, has not yet been fully established, particularly in clinical applications. The reason lies in the complications accompanied with implementation of dMRI in assessment of human bone structure, in terms of acquisition and quantification. Bone is a composite tissue comprising different elements, each contributing to the overall quality and functional competence of bone. As diffusion is a critical biophysical process in biological tissues, early changes of tissue microstructure and function can affect diffusive properties of the tissue. While there are multiple MRI methods to detect variations of individual properties of bone quality due to aging and osteoporosis, dMRI has potential to serve as a superior method for characterizing different aspects of bone quality within the same framework but with higher sensitivity to early alterations. This is mainly because several properties of the tissue including directionality and anisotropy of trabecular bone and cell density can be collected using only dMRI. In this review article, we first describe components of human bone that can be potentially detected by their diffusivity properties and contribute to variations in bone quality during aging and osteoporosis. Then we discuss considerations and challenges of dMRI in bone imaging, current status, and suggestions for development of dMRI in research studies and clinics to segregate different contributing components of bone quality in an integrated acquisition. Level of Evidence: 5 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:975-992.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jose M. Pozo
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, School of Computing and School of MedicineUniversity of LeedsLeedsUK
| | - Eugene Vincent McCloskey
- Department of Oncology & Metabolism, Mellanby Centre for Bone Research, Centre for Integrated research in Musculoskeletal AgeingUniversity of SheffieldSheffieldUK
| | - Hamidreza Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular ImagingTehran University of Medical SciencesTehranIran
- Department of Medical Physics and Biomedical EngineeringTehran University of Medical SciencesTehranIran
| | - Alejandro F. Frangi
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, School of Computing and School of MedicineUniversity of LeedsLeedsUK
- LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine, School of MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To provide an overview on recent technical development for quantifying marrow composition using magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques, as well as a summary on recent findings of interrelationship between marrow adipose tissue (MAT) and skeletal health in the context of osteoporosis. RECENT FINDINGS There have been significant technical advances in reliable quantification of marrow composition using MR techniques. Cross-sectional studies have demonstrated a negative correlation between MAT and bone, with trabecular bone associating more strongly with MAT than cortical bone. However, longitudinal studies of MAT and bone are limited. MAT contents and composition have been associated with prevalent vertebral fracture. The evidence between MAT and clinical fracture is more limited, and, to date, no studies have reported on the relationship between MAT and incident fracture. Increasing evidence suggests a dynamic role of marrow fat in skeletal health. Reliable non-invasive quantification of marrow composition will facilitate developing novel treatment strategies for osteoporosis.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA.
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Wan L, Wu M, Sheth V, Shao H, Jang H, Bydder G, Du J. Evaluation of cortical bone perfusion using dynamic contrast enhanced ultrashort echo time imaging: a feasibility study. Quant Imaging Med Surg 2019; 9:1383-1393. [PMID: 31559167 DOI: 10.21037/qims.2019.08.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has been used to study perfusion in a wide variety of soft tissues including the bone marrow. Study of perfusion in hard tissues such as cortical bone has been much more limited because of the lack of detectable MR signal from them using conventional pulse sequences. However, two-dimensional (2D) ultrashort echo time (UTE) sequences detect signal from cortical bone and allow fast imaging of this tissue. In addition, adiabatic 2D inversion recovery UTE (IR-UTE) sequences can provide excellent signal suppression of soft tissues, such as muscle and marrow, and allow cortical bone to be seen with high contrast and reduced artefacts. We aimed to assess the feasibility of using 2D UTE and 2D IR-UTE sequences to perform DCE-MRI in the cortical bone of rabbits and human volunteers. Methods Cortical bone perfusion was studied in rabbits (n=12) and human volunteers (n=3) using 2D UTE and 2D IR-UTE sequences on a clinical 3T scanner. Dynamic data with an in-plane resolution of ~0.5×0.5 mm2, single slice thickness of 3 mm for rabbits and 10 mm for human volunteers, and temporal resolution of 23 s for 2D UTE imaging of rabbits, 28 s for 2D UTE imaging of human volunteers, and 60 s for 2D IR-UTE imaging of both the rabbits and human volunteers were acquired before and after the injection of a Gd contrast agent (Gd-BOPTA: Multihance; Bracco Imaging SpA, Milan, Italy). The dose was 0.06 mmol/kg for rabbits and 0.2 mmol/kg for human subjects. Kinetic analyses based on the Brix model, as well as simple calculations of maximum enhancement (ME) and enhancement slope (ES), were performed. Results The 12 rabbits showed a mean Ktrans of 0.36±0.07 min-1, Kep of 8.42±3.17 min-1, ME of 28.30±6.83, ES of 0.35±0.18 for the femur with the 2D UTE sequence, and a mean Ktrans of 0.45±0.10 min-1, Kep of 9.80±0.50 min-1, ME of 48.84±12.12, and ES of 0.69±0.27 for the femur with the 2D IR-UTE sequence. Lower ME and ES values were observed in the tibial midshaft of healthy human volunteers compared to rabbits. Conclusions These results show that 2D UTE and 2D IR-UTE sequences are capable of detecting dynamic contrast enhancement in cortical bone in both rabbits and healthy human volunteers. Clinical studies with these techniques are likely to be feasible.
Collapse
Affiliation(s)
- Lidi Wan
- Department of Radiology, University of California, San Diego, CA, USA
| | - Mei Wu
- Department of Radiology, University of California, San Diego, CA, USA
| | - Vipul Sheth
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hongda Shao
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Graeme Bydder
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
8
|
Guo C, Yang K, Yan Y, Yan D, Cheng Y, Yan X, Qian N, Zhou Q, Chen B, Jiang M, Zhou H, Li C, Wang F, Qi J, Xu X, Deng L. SF-deferoxamine, a bone-seeking angiogenic drug, prevents bone loss in estrogen-deficient mice. Bone 2019; 120:156-165. [PMID: 30385424 DOI: 10.1016/j.bone.2018.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 11/29/2022]
Abstract
Deferoxamine (DFO) possesses a good chelating capability and is therefore used for the clinical treatment of ion deposition diseases. Increasing evidence shows that DFO can inhibit the activity of proline hydroxylase (PHD) by chelating iron, resulting in hypoxia-induced factor (HIF) signaling activation and angiogenesis promotion. However, clinical evidence indicates that a high concentration of DFO could be biotoxic due to its enrichment in related organs. Thus, we established a new compound by conjugating DFO with the bone-seeking agent iminodiacetic acid (IDA); the new agent is called SF-DFO, and we verified its promotion of HIF activation and tube formation in vivo. After confirming the bone-seeking property of SF-DFO in the femur and vertebra of both male and female mice and comparing it to that of DFO, we analyzed the protective effect of DFO and SF-DFO in an ovariectomized (OVX) mouse model. The serum CTX-I level revealed no influence of DFO and SF-DFO on osteoclast activity, but the blood vessels and osteoblasts in the metaphysis were more abundant after SF-DFO treatment, which resulted in a greater protective effect against trabecular bone loss compared to the DFO group. Additionally, the cortical parameters and bone strength performance were identical between the DFO and SF-DFO groups. However, the diffuse inflammatory response in the liver and spleen that occurred after DFO injection was not observed in the SF-DFO group. Thus, with reduced biotoxicity and an equivalent bone-seeking capability, SF-DFO may be a better choice for the prevention of vascular degradation-induced osteoporosis.
Collapse
Affiliation(s)
- Changjun Guo
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Department of Orthopedics, Rui Jin North Hospital, Shanghai Jiao Tong University School of Medicine, 999 Xiwang Road, Shanghai 201801, China
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yufei Yan
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Dongming Yan
- National Shanghai Center for New Drug Safety Evaluation and Research, 199 Guoshoujing Road, China (Shanghai) Pilot Free Trade Zone, Shanghai 201203, China
| | - Yifan Cheng
- National Shanghai Center for New Drug Safety Evaluation and Research, 199 Guoshoujing Road, China (Shanghai) Pilot Free Trade Zone, Shanghai 201203, China
| | - Xueming Yan
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Niandong Qian
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Qi Zhou
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Bo Chen
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Min Jiang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Jin Qi
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Xiangyang Xu
- Department of Orthopedics, Rui Jin North Hospital, Shanghai Jiao Tong University School of Medicine, 999 Xiwang Road, Shanghai 201801, China; Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| |
Collapse
|
9
|
Budzik JF, Lefebvre G, Behal H, Verclytte S, Hardouin P, Teixeira P, Cotten A. Assessment of the zonal variation of perfusion parameters in the femoral head: a 3-T dynamic contrast-enhanced MRI pilot study. Skeletal Radiol 2018; 47:261-270. [PMID: 29143112 DOI: 10.1007/s00256-017-2802-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objective was to describe MR perfusion characteristics of the femoral head, with a focus on the subchondral bone. MATERIALS AND METHODS This prospective monocentric study was approved by our local Ethics Committee. Written informed consent was obtained from all subjects. Dynamic contrast-enhanced MRI of the right hip was performed in 59 adults with suspected spondyloarthritis (32 women, 28 men). Mean age was 37.5 (±12.5) years. Regions of interest were drawn in the femoral head epiphysis, in the subchondral areas the most exposed to mechanical load (superolateral, anterosuperior, and posterior zones) and in areas less exposed to mechanical load (inferior subchondral zone and center of the femoral head). Semi-quantitative and pharmacokinetic parameters were calculated using the Tofts model. Statistical analysis was performed with a linear mixed model to compare the perfusion parameters in the different femoral head zones. RESULTS Extravascular extracellular volume and area under the curve were lower in the superolateral zone than in the inferior zone (p = 0.0135 and p < 0.0001 respectively) and the central zone (p = 0.007 and p = 0.0134 respectively). Extravascular extracellular volume and rate constant were lower in the anterosuperior zone than in the inferior zones (p = 0.011 and p = 0.029). In the anterosuperior zone, extravascular extracellular volume was lower, and time to peak was higher than in the central zones (p = 0.0056 and p = 0.0013 respectively). No significant differences were found for any values between other paired zones. CONCLUSION The perfusion of femoral head subchondral bone assessed with dynamic contrast-enhanced magnetic resonance imaging is not homogeneous: the areas exposed to more mechanical loading are less perfused.
Collapse
Affiliation(s)
- Jean-François Budzik
- Imaging Department, Lille Catholic Hospitals, Lille Catholic University, F-59000, Lille, France.
- Lille University, Littoral Côte d'Opale University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France.
| | - Guillaume Lefebvre
- Musculoskeletal Imaging Department, Centre de Consultation et d'Imagerie de l'Appareil Locomoteur, CHU Lille, University of Lille Nord de France, F-59000, Lille, France
| | - Hélène Behal
- Biostatistics Department, Lille Regional University Hospital, University of Lille Nord de France, F-59000, Lille, France
| | - Sébastien Verclytte
- Imaging Department, Lille Catholic Hospitals, Lille Catholic University, F-59000, Lille, France
| | - Pierre Hardouin
- Littoral Côte d'Opale University, Lille University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France
| | - Pedro Teixeira
- Service d'Imagerie Guilloz, Hôpital Central, Centre Hospitalier Universitaire de Nancy, 29 Ave du Maréchal de Lattre de Tassigny, F-54035, Nancy, France
| | - Anne Cotten
- Lille University, Littoral Côte d'Opale University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-59000, Lille, France
- Musculoskeletal Imaging Department, Centre de Consultation et d'Imagerie de l'Appareil Locomoteur, CHU Lille, University of Lille Nord de France, F-59000, Lille, France
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review assembles recent understanding of the profound loss of muscle and bone in spinal cord injury (SCI). It is important to try to understand these changes, and the context in which they occur, because of their impact on the wellbeing of SC-injured individuals, and the urgent need for viable preventative therapies. RECENT FINDINGS Recent research provides new understanding of the effects of age and systemic factors on the response of bone to loading, of relevance to attempts to provide load therapy for bone in SCI. The rapidly growing dataset describing the biochemical crosstalk between bone and muscle, and the cell and molecular biology of myokines signalling to bone and osteokines regulating muscle metabolism and mass, is reviewed. The ways in which this crosstalk may be altered in SCI is summarised. Therapeutic approaches to the catabolic changes in muscle and bone in SCI require a holistic understanding of their unique mechanical and biochemical context.
Collapse
Affiliation(s)
- Jillian M Clark
- Discipline of Orthopaedics and Trauma, The University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - David M Findlay
- Discipline of Orthopaedics and Trauma, The University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
11
|
Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, Honig S, Regatte RR. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging 2017; 46:323-337. [PMID: 28165650 PMCID: PMC5690546 DOI: 10.1002/jmri.25647] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a disease of weak bone and increased fracture risk caused by low bone mass and microarchitectural deterioration of bone tissue. The standard-of-care test used to diagnose osteoporosis, dual-energy x-ray absorptiometry (DXA) estimation of areal bone mineral density (BMD), has limitations as a tool to identify patients at risk for fracture and as a tool to monitor therapy response. Magnetic resonance imaging (MRI) assessment of bone structure and microarchitecture has been proposed as another method to assess bone quality and fracture risk in vivo. MRI is advantageous because it is noninvasive, does not require ionizing radiation, and can evaluate both cortical and trabecular bone. In this review article, we summarize and discuss research progress on MRI of bone structure and microarchitecture over the last decade, focusing on in vivo translational studies. Single-center, in vivo studies have provided some evidence for the added value of MRI as a biomarker of fracture risk or treatment response. Larger, prospective, multicenter studies are needed in the future to validate the results of these initial translational studies. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. MAGN. RESON. IMAGING 2017;46:323-337.
Collapse
Affiliation(s)
- Gregory Chang
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Sean Boone
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Dimitri Martel
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Chamith S Rajapakse
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert S Hallyburton
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Mitch Valko
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Stephen Honig
- Osteoporosis Center, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Dirkes RK, Ortinau LC, Rector RS, Olver TD, Hinton PS. Insulin-Stimulated Bone Blood Flow and Bone Biomechanical Properties Are Compromised in Obese, Type 2 Diabetic OLETF Rats. JBMR Plus 2017; 1:116-126. [PMID: 30283885 PMCID: PMC6124191 DOI: 10.1002/jbm4.10007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 01/20/2023] Open
Abstract
Type 2 diabetes (T2D) increases skeletal fragility and fracture risk; however, the underlying mechanisms remain to be identified. Impaired bone vascular function, in particular insulin‐stimulated vasodilation and blood flow is a potential, yet unexplored mechanism. The purpose of this study was to determine the effects of T2D on femoral biomechanical properties, trabecular microarchitecture, and insulin‐stimulated bone vasodilation by comparison of hyperphagic Otsuka Long‐Evans Tokushima Fatty (OLETF) rats with normoglycemic control OLETF rats. Four‐week old, male OLETF rats were randomized to two groups: type 2 diabetes (O‐T2D) or normoglycemic control (O‐CON). O‐T2D were allowed ad libitum access to a rodent chow diet and O‐CON underwent moderate caloric restriction (30% restriction relative to intake of O‐T2D) to maintain normal body weight (BW) and glycemia until 40 weeks of age. Hyperphagic O‐T2D rats had significantly greater BW, body fat, and blood glucose than O‐CON. Total cross‐sectional area (Tt.Ar), cortical area (Ct.Ar), Ct.Ar/Tt.Ar, and polar moment of inertia of the mid‐diaphyseal femur adjusted for BW were greater in O‐T2D rats versus O‐CON. Whole‐bone biomechanical properties of the femur assessed by torsional loading to failure did not differ between O‐T2D and O‐CON, but tissue‐level strength and stiffness adjusted for BW were reduced in O‐T2D relative to O‐CON. Micro–computed tomography (μCT) of the distal epiphysis showed that O‐T2D rats had reduced percent bone volume, trabecular number, and connectivity density, and greater trabecular spacing compared with O‐CON. Basal tibial blood flow assessed by microsphere infusion was similar in O‐T2D and O‐CON, but the blood flow response to insulin stimulation in both the proximal epiphysis and diaphyseal marrow was lesser in O‐T2D compared to O‐CON. In summary, impaired insulin‐stimulated bone blood flow is associated with deleterious changes in bone trabecular microarchitecture and cortical biomechanical properties in T2D, suggesting that vascular dysfunction might play a causal role in diabetic bone fragility. © 2017 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rebecca K Dirkes
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA
| | - Laura C Ortinau
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA.,Division of Gastroenterology and Hepatology Department of Medicine University of Missouri-Columbia Columbia MO USA.,Research Service Harry S Truman Memorial VA Hospital Columbia MO USA
| | - T Dylan Olver
- Department of Biomedical Sciences University of Missouri-Columbia Columbia MO USA
| | - Pamela S Hinton
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA
| |
Collapse
|
13
|
Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, Krug R, Baum T. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging 2017; 47:332-353. [PMID: 28570033 PMCID: PMC5811907 DOI: 10.1002/jmri.25769] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Maximilian Diefenbach
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Alexandra S Gersing
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Thomas Baum
- Section for Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
|
15
|
Naringin promotes fracture healing through stimulation of angiogenesis by regulating the VEGF/VEGFR-2 signaling pathway in osteoporotic rats. Chem Biol Interact 2017; 261:11-17. [DOI: 10.1016/j.cbi.2016.10.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/19/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022]
|
16
|
Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EHG. Quantitative imaging methods in osteoporosis. Quant Imaging Med Surg 2016; 6:680-698. [PMID: 28090446 DOI: 10.21037/qims.2016.12.13] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.
Collapse
Affiliation(s)
- Ling Oei
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Fjorda Koromani
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Barzilay JI, Bůžková P, Fink HA, Cauley JA, Robbins JA, Garimella PS, Jalal DI, Mukamal KJ. Systemic markers of microvascular disease and bone mineral density in older adults : The cardiovascular health study. Osteoporos Int 2016; 27:3217-3225. [PMID: 27250972 DOI: 10.1007/s00198-016-3649-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Here we report that abnormal brain white matter and, to a lesser extent, albuminuria are associated with reduced bone mineral density in the hip, spine, and total body in men and women. These findings may explain the increased hip fracture risk reported in some studies in association with microvascular disorders. INTRODUCTION Markers of microvascular disease have been individually associated with increased risk of osteoporotic fractures in some studies. Here, we examine whether these markers are associated with reduced bone mineral density (BMD) individually and together. METHODS BMD testing using dual x-ray absorptiometry of the hip, lumbar spine, and total body was performed in 1473 participants from the Cardiovascular Health Study (mean age ~ 78 years): 1215 were assessed for urinary albumin-creatinine ratio, 944 for abnormal white matter disease (AWMD) by brain MRI, and 541 for retinal vascular disease with fundus photographs. Linear regression models were used to evaluate the cross-sectional association of each marker with BMD accounting for potentially confounding factors. RESULTS AWMD was associated with lower hip, spine, and total body BMD in women (β -3.08 to -4.53; p < 0.01 for all) and lower hip and total body BMD in men (β -2.90 to -4.24; p = 0.01-0.03). Albuminuria was associated with lower hip (β -3.37; p = .05) and total body (β -3.21; p = .02) BMD in men, but not in women. The associations of AWMD and albuminuria with BMD persisted with mutual adjustment and appeared to be additive to each other. Retinal vascular disease was not associated with BMD in men or women. CONCLUSION AWMD and, to a lesser extent, albuminuria were independently associated with lower BMD, suggesting that microvascular disease may play a role in the pathogenesis of reduced BMD. These findings need to be confirmed by longitudinal studies.
Collapse
Affiliation(s)
- J I Barzilay
- Kaiser Permanente of Georgia, Division of Endocrinology and the Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA.
- Kaiser Permanente of Georgia, 3650 Steve Reynolds Blvd, Duluth, GA, 30096, USA.
| | - P Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - H A Fink
- Geriatric Research Education and Clinical Center, VA Health Care System, Minneapolis, MN, USA
| | - J A Cauley
- Department of Epidemiology, Graduate School, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - J A Robbins
- Department of Medicine, University of California at Davis, Modesto, CA, USA
| | - P S Garimella
- Division of Nephrology, Tufts Medical Center, Boston, MA, USA
| | - D I Jalal
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - K J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, USA
| |
Collapse
|
18
|
Hinton PS. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility. Med Hypotheses 2016; 93:81-6. [DOI: 10.1016/j.mehy.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/28/2016] [Accepted: 05/11/2016] [Indexed: 01/22/2023]
|
19
|
Böhm AM, Dirckx N, Maes C. Recruitment of osteogenic cells to bone formation sites during development and fracture repair. Z Rheumatol 2016; 76:5-9. [PMID: 27001056 DOI: 10.1007/s00393-015-1574-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recruitment of osteoblast lineage cells to their bone-forming locations is essential for skeletal development and fracture healing. In developing bones, osteoprogenitor cells invade the cartilage mold to establish the primary ossification center. Similarly, osteogenic cells infiltrate and populate the callus tissue that is formed following an injury. Proper bone development and successful fracture repair must, therefore, rely on controlled temporal and spatial navigation cues guiding the cells to the sites where new bone formation is needed. Some cellular mechanisms and molecular pathways involved have been elucidated.
Collapse
Affiliation(s)
- A-M Böhm
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, Gasthuisberg O&N 1, KU Leuven, Herestraat 49, box 813, B-3000, Leuven, Belgium
| | - N Dirckx
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, Gasthuisberg O&N 1, KU Leuven, Herestraat 49, box 813, B-3000, Leuven, Belgium
| | - C Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, Gasthuisberg O&N 1, KU Leuven, Herestraat 49, box 813, B-3000, Leuven, Belgium.
| |
Collapse
|
20
|
Böhm AM, Dirckx N, Maes C. [Recruitment of osteogenic cells to bone formation sites during development and fracture repair - German Version]. Z Rheumatol 2016; 75:316-21. [PMID: 27003859 DOI: 10.1007/s00393-016-0065-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recruitment of osteoblast lineage cells to their bone-forming locations is essential for skeletal development and fracture healing. In developing bones, osteoprogenitor cells invade the cartilage mold to establish the primary ossification center. Similarly, osteogenic cells infiltrate and populate the callus tissue that is formed following an injury. Proper bone development and successful fracture repair must, therefore, rely on controlled temporal and spatial navigation cues guiding the cells to the sites where new bone formation is needed. Some cellular mechanisms and molecular pathways involved have been elucidated.
Collapse
Affiliation(s)
- A-M Böhm
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Gasthuisberg O&N 1, Herestraat 49, Box 813, 3000, Leuven, Belgien
| | - N Dirckx
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Gasthuisberg O&N 1, Herestraat 49, Box 813, 3000, Leuven, Belgien
| | - C Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Gasthuisberg O&N 1, Herestraat 49, Box 813, 3000, Leuven, Belgien.
| |
Collapse
|
21
|
Griffith JF. Functional imaging of the musculoskeletal system. Quant Imaging Med Surg 2015; 5:323-31. [PMID: 26029633 DOI: 10.3978/j.issn.2223-4292.2015.03.07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 12/17/2022]
Abstract
Functional imaging, which provides information of how tissues function rather than structural information, is well established in neuro- and cardiac imaging. Many musculoskeletal structures, such as ligaments, fascia and mineralized bone, have by definition a mainly structural role and clearly don't have the same functional capacity as the brain, heart, liver or kidney. The main functionally responsive musculoskeletal tissues are the bone marrow, muscle and nerve and, as such, magnetic resonance (MR) functional imaging has primarily addressed these areas. Proton or phosphorus spectroscopy, other fat quantification techniques, perfusion imaging, BOLD imaging, diffusion and diffusion tensor imaging (DTI) are the main functional techniques applied. The application of these techniques in the musculoskeletal system has mainly been research orientated where they have already greatly enhanced our understanding of marrow physiology, muscle physiology and neural function. Going forwards, they will have a greater clinical impact helping to bridge the disconnect often seen between structural appearances and clinical symptoms, allowing a greater understanding of disease processes and earlier recognition of disease, improving prognostic prediction and optimizing the monitoring of treatment effect.
Collapse
Affiliation(s)
- James F Griffith
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| |
Collapse
|
22
|
Lafage-Proust MH, Roche B, Langer M, Cleret D, Vanden Bossche A, Olivier T, Vico L. Assessment of bone vascularization and its role in bone remodeling. BONEKEY REPORTS 2015; 4:662. [PMID: 25861447 DOI: 10.1038/bonekey.2015.29] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
Abstract
Bone is a composite organ that fulfils several interconnected functions, which may conflict with each other in pathological conditions. Bone vascularization is at the interface between these functions. The roles of bone vascularization are better documented in bone development, growth and modeling than in bone remodeling. However, every bone remodeling unit is associated with a capillary in both cortical and trabecular envelopes. Here we summarize the most recent data on vessel involvement in bone remodeling, and we present the characteristics of bone vascularization. Finally, we describe the various techniques used for bone vessel imaging and quantitative assessment, including histology, immunohistochemistry, microtomography and intravital microscopy. Studying the role of vascularization in adult bone should provide benefits for the understanding and treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Marie-Hélène Lafage-Proust
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Bernard Roche
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Max Langer
- Université de Lyon , Lyon, France ; CREATIS, CNRS UMR 5220-INSERM U1044 , Lyon, France
| | - Damien Cleret
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Arnaud Vanden Bossche
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Thomas Olivier
- Université de Lyon , Lyon, France ; Laboratoire Hubert Curien , Saint-Etienne, France
| | - Laurence Vico
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| |
Collapse
|
23
|
Wáng YXJ, Griffith JF, Deng M, Yeung DKW, Yuan J. Rapid increase in marrow fat content and decrease in marrow perfusion in lumbar vertebra following bilateral oophorectomy: an MR imaging-based prospective longitudinal study. Korean J Radiol 2015; 16:154-9. [PMID: 25598684 PMCID: PMC4296264 DOI: 10.3348/kjr.2015.16.1.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/04/2014] [Indexed: 11/15/2022] Open
Abstract
Objective Bilateral oophorectomy leads to reduced bone mineral density (BMD), and reduced BMD is associated with increased marrow fat and reduced marrow perfusion. Purpose of this study was to investigate how soon these changes occur following surgical oophorectomy. Materials and Methods Six patients who underwent hysterectomy and bilateral salpingo-oophorectomy were studied. At baseline, mean patient age was 49.5 years (range: 45-54 years). Third lumbar vertebral body BMD measurement using quantitative CT, marrow fat fraction (FF) using MR spectroscopy and marrow perfusion using dynamic contrast enhanced MRI were conducted immediately prior to surgery and at 3, 9, and 21 months after surgery. Results Reduced BMD, increased marrow FF, and reduced marrow perfusion occurred synchronously post-oophorectomy. There was a sharp decrease of 12.5 ± 7.2% in BMD (n = 6), a sharp increase of 92.2 ± 46.3% (n = 6) in FF, a sharp decrease of 23.6 ± 3.9% in maximum contrast enhancement (n = 5), and of 45.4 ± 7.7% for enhancement slope (n = 5) during the initial 3 months post surgery. BMD and marrow perfusion continued to decrease, and marrow FF continued to increase at a slower rate during the following 18 months. Friedman test showed a significant trend for these changes (p < 0.05). Conclusion Bilateral oophorectomy leads to a rapid decrease in lumbar BMD, an increase in marrow fat content, and a decrease in marrow blood perfusion.
Collapse
Affiliation(s)
- Yi-Xiáng J Wáng
- Department of Imaging & Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - James F Griffith
- Department of Imaging & Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Min Deng
- Department of Imaging & Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - David K W Yeung
- Department of Imaging & Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jing Yuan
- Department of Imaging & Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
24
|
Wurnig MC, Calcagni M, Kenkel D, Vich M, Weiger M, Andreisek G, Wehrli FW, Boss A. Characterization of trabecular bone density with ultra-short echo-time MRI at 1.5, 3.0 and 7.0 T--comparison with micro-computed tomography. NMR IN BIOMEDICINE 2014; 27:1159-66. [PMID: 25088271 PMCID: PMC5730971 DOI: 10.1002/nbm.3169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 05/30/2014] [Accepted: 06/23/2014] [Indexed: 05/16/2023]
Abstract
The goal of this study was to test the potential of ultra-short echo-time (UTE) MRI at 1.5, 3.0 and 7.0 T for depiction of trabecular bone structure (of the wrist bones), to evaluate whether T2* relaxation times of bone water and parametric maps of T2* of trabecular bone could be obtained at all three field strengths, and to compare the T2* relaxation times with structural parameters obtained from micro-computed tomography (micro-CT) as a reference standard. Ex vivo carpal bones of six wrists were excised en bloc and underwent MRI at 1.5, 3.0 and 7.0 T in a whole-body MR imager using the head coil. A three-dimensional radial fat-suppressed UTE sequence was applied with subsequent acquisitions, with six different echo times TE of 150, 300, 600, 1200, 3500 and 7000 µs. The T2* relaxation time and pixel-wise computed T2* parametric maps were compared with a micro-computed-tomography reference standard providing trabecular bone structural parameters including porosity (defined as the bone-free fraction within a region of interest), trabecular thickness, trabecular separation, trabecular number and fractal dimension (Dk). T2* relaxation curves and parametric maps could be computed from datasets acquired at all field strengths. Mean T2* relaxation times of trabecular bone were 4580 ± 1040 µs at 1.5 T, 2420 ± 560 µs at 3.0 T and 1220 ± 300 µs at 7.0 T, when averaged over all carpal bones. A positive correlation of T2* with trabecular bone porosity and trabecular separation, and a negative correlation of T2* relaxation time with trabecular thickness, trabecular number and fractal dimension, was detected (p < 0.01 for all field strengths and micro-CT parameters). We conclude that UTE MRI may be useful to characterize the structure of trabecular bone, comparable to micro-CT.
Collapse
Affiliation(s)
- Moritz C. Wurnig
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
- Correspondence to: M. C. Wurnig, Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland.
| | - Maurizio Calcagni
- Division of Plastic and Reconstructive Surgery, University Hospital Zurich, Switzerland
| | - David Kenkel
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | | | - Markus Weiger
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland
| | - Gustav Andreisek
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| | - Felix W. Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, USA
| | - Andreas Boss
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland
| |
Collapse
|
25
|
Budzik JF, Lefebvre G, Forzy G, El Rafei M, Chechin D, Cotten A. Study of proximal femoral bone perfusion with 3D T1 dynamic contrast-enhanced MRI: a feasibility study. Eur Radiol 2014; 24:3217-23. [PMID: 25120203 DOI: 10.1007/s00330-014-3340-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this study was to compare measurements of semi-quantitative and pharmacokinetic parameters in areas of red (RBM) and yellow bone marrow (YBM) of the hip, using an in-house high-resolution DCE T1 sequence, and to assess intra- and inter-observer reproducibility of these measurements. METHODS The right hips of 21 adult patients under 50 years of age were studied. Spatial resolution was 1.8 × 1.8 × 1.8 mm(3), and temporal resolution was 13.5 seconds. Two musculoskeletal radiologists independently processed DCE images and measured semi-quantitative and pharmacokinetic parameters in areas of YBM and RBM. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated. Intra- and inter-observer reproducibility was assessed. RESULTS Area under the curve (AUC) and initial slope (IS) were significantly greater for RBM than for YBM (p < 0.05). K(trans) and kep were also significantly greater for RBM (p < 0.05). There was no significant difference in time to peak between the regions (p < 0.05). SNR, CNR, and intra- and inter-observer reproducibility were all good. CONCLUSIONS DCE study of the whole hip is feasible with high spatial resolution using a 3D T1 sequence. Measures were possible even in low vascularized areas of the femoral head. K(trans), kep, AUC, and IS values were significantly different between red and yellow marrow, whereas TTP values were not. KEY POINTS High-spatial-resolution dynamic contrast-enhanced MRI of hip structures is feasible. Intra- and inter-observer reproducibility is good. Red and yellow bone marrow have different perfusion patterns.
Collapse
Affiliation(s)
- Jean-François Budzik
- Service d'Imagerie Médicale, Groupe Hospitalier de l'Institut Catholique de Lille / Faculté Libre de Médecine, 59000, Lille, France,
| | | | | | | | | | | |
Collapse
|
26
|
Roche B, Vanden-Bossche A, Normand M, Malaval L, Vico L, Lafage-Proust MH. Validated Laser Doppler protocol for measurement of mouse bone blood perfusion - response to age or ovariectomy differs with genetic background. Bone 2013; 55:418-26. [PMID: 23571049 DOI: 10.1016/j.bone.2013.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/15/2013] [Accepted: 03/30/2013] [Indexed: 12/29/2022]
Abstract
The physiological role of bone vascularization in bone metabolism begins to be understood; however, its involvement in pathological situations remains poorly explored. Bone blood supply depends on both vascular density and blood flow. However, in mice, the specific evaluation of perfusion in bone suffers from a lack of easy-handling measurement tools. In the present study, we first developed a Laser Doppler Perfusion Measurement (LDPM) protocol in mouse tibia, which we validated with ex vivo and in vivo experiments. Then we carried out a study associating both structural (vascular quantitative histomorphometry) and functional (LDPM) approaches. We studied the effects of aging in 4, 7 and 17 month-old male mice and the early effects of ovariectomy in 4 month-old females. Both studies were carried out in inbred mice (C57BL/6) and in mice of mixed background (129sv/CD1). The significant differences we observed between strains in unchallenged 4 month-old animals concerned both perfusion and vascular density and depended on gender. Additionally, the age-related bone loss observed in male mice was not temporally associated with vascular changes in either strain. Between 7 and 17 months, we did not find any decrease in bone vascular density or perfusion. In contrast, ovariectomy triggered early vascular structural and functional adaptations which differed between genetic backgrounds. We observed that bone vessel density did not generally account for bone perfusion levels. In conclusion, we describe here a LDPM-based experimental protocol which provides a reproducible quantitative evaluation of bone perfusion in mouse tibia, hence allowing intergroup comparisons. This integrative structural and functional approach of bone vascularization showed that bone vascular adaptation occurs during aging or after ovariectomy and is affected by the genetic background.
Collapse
Affiliation(s)
- Bernard Roche
- INSERM U1059, Université de Lyon, Saint-Etienne F-42023, France.
| | | | | | | | | | | |
Collapse
|
27
|
Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR IN BIOMEDICINE 2013; 26:489-506. [PMID: 23280581 PMCID: PMC4206448 DOI: 10.1002/nbm.2906] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 10/19/2012] [Accepted: 11/18/2012] [Indexed: 05/08/2023]
Abstract
Osteoporosis causes over 1.5 million fractures per year, costing about $15 billion annually in the USA. Current guidelines utilize bone mineral density (BMD) to assess fracture risk; however, BMD alone only accounts for 30-50% of fractures. The other two major components of bone, organic matrix and water, contribute significantly to bone mechanical properties, but cannot be assessed with conventional imaging techniques in spite of the fact that they make up about 57% of cortical bone by volume. Conventional clinical MRI usually detects signals from water in tissues without difficulty, but cannot detect the water bound to the organic matrix, or the free water in the microscopic pores of the Haversian and the lacunar-canalicular system of cortical bone, because of their very short apparent transverse relaxation times (T2 *). In recent years, a new class of sequences, ultrashort-TE (UTE) sequences, with nominal TEs of less than 100 µs, which are much shorter than the TEs available with conventional sequences, have received increasing interest. These sequences can detect water signals from within cortical bone and provide an opportunity to study disease of this tissue in a new way. This review summarizes the recent developments in qualitative UTE imaging (techniques and contrast mechanisms to produce bone images with high contrast) and quantitative UTE imaging (techniques to quantify the MR properties, including T1 , T2 * and the magnetization transfer ratio, and tissue properties, including bone perfusion, as well as total, bound and free water content) of cortical bone in vitro and in vivo. The limitations of the current techniques for clinical applications and future directions are also discussed.
Collapse
Affiliation(s)
- Jiang Du
- Department of Radiology, University of California, San Diego, CA 92103-8226, USA.
| | | |
Collapse
|
28
|
Griffith JF, Genant HK. New advances in imaging osteoporosis and its complications. Endocrine 2012; 42:39-51. [PMID: 22618377 DOI: 10.1007/s12020-012-9691-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/30/2012] [Indexed: 01/08/2023]
Abstract
Tremendous advances have been made over the past several decades in assessing osteoporosis and its complications. High resolution imaging combined with sophisticated computational techniques now provide a detailed analysis of bone structure and a much more accurate prediction of bone strength. These techniques have shown how different mechanisms of age-related bone weakening exist in males and females. Limitations peculiar to these more advanced imaging techniques currently hinder their adoption into mainstream clinical practice. As such, the ultimate quest remains a readily available, safe, high resolution technique capable of fully predicting bone strength, capable of showing how bone strength is faltering and precisely monitoring treatment effect. Whether this technique will be based on acquisition of spine/hip data or data obtained at peripheral sites reflective of changes happening in the spine and hip regions is still not clear. In the meantime, mainstream imaging will continue to improve the detection of osteoporosis related insufficiency fracture in the clinical setting. We, as clinicians, should aim to increase awareness of this fracture type both as a frequent and varied source of pain in patients with osteoporosis and as the ultimate marker of severely impaired bone strength.
Collapse
Affiliation(s)
- James F Griffith
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | | |
Collapse
|
29
|
Zhao Q, Shen X, Zhang W, Zhu G, Qi J, Deng L. Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss. Bone 2012; 50:763-70. [PMID: 22193550 DOI: 10.1016/j.bone.2011.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/24/2011] [Accepted: 12/04/2011] [Indexed: 11/20/2022]
Abstract
Postmenopausal osteoporosis is characterized by a reduction in the numbers of sinusoidal and arterial capillaries in the bone marrow and reduced bone perfusion suggesting a role of vascular component in the pathogenesis of osteoporosis. Previous studies have shown that bone formation and angiogenesis are positively coupled through activation of the hypoxia inducible factor (HIF1α) signaling pathway. Therefore, we hypothesized that mice with increased angiogenesis and osteogenesis due to activation of the HIF signaling pathway in osteoblasts, via osteoblast specific disruption of HIF degrading protein von Hippel-Lindau (VHL) (ΔVhl), are protected from ovariectomy induced bone loss. ΔVhl mice and control littermates were ovariectomized or sham operated and four weeks later bone quality was evaluated along with blood vessel formation. Trabecular and cortical bone volume was strikingly increased in ΔVhl mice along with blood vessel formation as compared to control littermates. In control mice, ovariectomy significantly decreased bone mineral density, deteriorated bone microarchitecture, and decreased mechanical strength compared to the sham operated control mice. This was accompanied with a significant decrease in blood vessel volume and expressions of HIF1α, HIF2α, and VEGF proteins at the distal femur in ovariectomized control mice. In contrast, ovariectomy in ΔVhl mice had absolutely no effect on either the blood vessel formation or the bone structural and mechanical quality parameters. These data indicate that activation of HIF signaling pathway in osteoblasts may prevent estrogen deficiency-induced bone loss and decrease in blood vessels in bone marrow.
Collapse
Affiliation(s)
- Qiang Zhao
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Wang YXJ, Griffith JF, Deng M, T Ma H, Zhang YF, Yan SX, Ahuja AT. Compromised perfusion in femoral head in normal rats: distinctive perfusion MRI evidence of contrast washout delay. Br J Radiol 2011; 85:e436-41. [PMID: 22167506 DOI: 10.1259/bjr/25916692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The femoral head is prone to osteonecrosis. This study investigated dynamic contrast-enhanced (DCE) MRI contrast washout features of the femoral head and compared the data with data from other bony compartments in normal rats. METHODS 7-month-old Wistar rats were used. DCE MRI of the right hip (n=18), right knee (n=12) and lumbar spine (n=10) was performed after an intravenous bolus injection of Gd-DOTA (0.3 mmol kg(-1)). Temporal resolution was 0.6 s for hip and spine, and 0.3 s for knee. The total scan duration was 8 min for hip and spine, and 4.5 min for knee. The regions of interest for enhancement measurement included femoral head, proximal femoral diaphysis, distal femoral diaphysis and epiphysis, proximal tibial epiphysis and diaphysis, and lumbar vertebrae L1-5. RESULTS Femoral head showed no enhancement signal decay during the DCE MRI period, while all other bony compartments showed a contrast washin phase followed by a contrast washout phase. In the knee joint, the contrast washout of the proximal tibia diaphysis was slower that of other bony compartments of the knee. CONCLUSION Based on the evidence of delayed contrast washout, this study showed that blood perfusion in the femoral head could be compromised in normal rats.
Collapse
Affiliation(s)
- Y-X J Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Griffith JF, Yeung DKW, Leung JCS, Kwok TCY, Leung PC. Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy. Eur Radiol 2011; 21:1160-9. [PMID: 21225266 DOI: 10.1007/s00330-010-2054-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/12/2010] [Accepted: 12/15/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine whether MR perfusion indices or marrow fat content at baseline can predict areal bone mineral density (BMDa) loss. METHODS Repeat dual x-ray absorptiometry (DXA) of the hip was performed in female subjects at 2 years (n = 52) and 4 years (n = 45) following baseline MR perfusion imaging and spectroscopy of the hip. RESULTS Percentage reduction in femoral neck BMDa at 4 years post-baseline was greater in subjects with below median acetabulum enhancement slope (E(slope)) (-5.6 ± 1.2 Vs -1.1 ± 1.2 (mean ± standard error) p = 0.014) or muscle maximum enhancement (E(max)) (-5.7 ± 1.2 Vs -0.23 ± 1.2, p = 0.009) after adjusting for baseline co-variables. Baseline MR parameters correlated with reduction in BMDa at 4 years (acetabulum E(slope) r = 0.517, p = 0.0003; muscle E(max) r = 0.306, p = 0.043) as well as traditionally applied clinical risk factors. Acetabulum E(slope), femoral neck E(max) and marrow fat content at baseline had sensitivities of 89%, 81% and 72% respectively at distinguishing between fast (>1%/annum) (n = 18) and slow (<1%/annum) (n = 27) BMD losers. CONCLUSION Elderly female subjects with reduced perfusion indices at baseline had increased femoral neck bone loss at 4 years. Selected perfusion indices and marrow fat content have a moderate to high sensitivity in discriminating between fast and slow bone losers.
Collapse
Affiliation(s)
- James F Griffith
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | | | | | | | | |
Collapse
|
32
|
Utting JC, Flanagan AM, Brandao-Burch A, Orriss IR, Arnett TR. Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochem Funct 2010; 28:374-80. [PMID: 20556743 DOI: 10.1002/cbf.1660] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Active pathological bone destruction in humans often occurs in locations where oxygen tension (pO(2)) is likely to be low, for example, at the sites of tumours, inflammation, infections and fractures, or the poorly vascularized yellow fatty marrow of the elderly. We examined the effect of pO(2) on formation of osteoclasts, the cells responsible for bone resorption, in 14-day cultures of normal human peripheral blood mononuclear cells (hPBMCs) on ivory discs. Hypoxia (1-2% O(2)) caused threefold increases in the number of osteoclasts formed, compared with 20% O(2). Hypoxia also caused a twofold increase in the number of nuclei per osteoclast, leading to stimulations of resorption pit formation of up to 10-fold. Exposure to hypoxia led to stabilization of the hypoxia-inducible factors, HIF1alpha and HIF2alpha, and upregulation of vascular endothelial growth factor and interleukin-6 expression by hPBMCs. These findings help explain why extravasation of mononuclear precursors into relatively O(2)-deficient bone microenvironments could result in osteoclast formation and suggest a new mechanism for the bone loss associated with the pathophysiological conditions where hypoxia commonly occurs.
Collapse
Affiliation(s)
- Jennifer C Utting
- Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | | | | |
Collapse
|
33
|
Abstract
Measurement of bone blood flow and perfusion characteristics in a noninvasive and serial manner would be advantageous in assessing revascularization after trauma and the possible risk of avascular necrosis. Many disease states, including osteoporosis, osteoarthritis, and bone neoplasms, result in disturbed bone perfusion. A causal link between bone perfusion and remodeling has shown its importance in sustained healing and regrowth following injury. Measurement of perfusion and permeability within the bone was performed with small and macromolecular contrast media, using dynamic contrast-enhanced magnetic resonance imaging in models of osteoarthritis and the femoral head. Bone blood flow and remodeling was estimated using (18)F-Fluoride positron emission tomography in fracture healing and osteoarthritis. Multimodality assessment of bone blood flow, permeability, and remodeling by using noninvasive imaging techniques may provide information essential in monitoring subsequent rates of healing and response to treatment as well as identifying candidates for additional therapeutic or surgical interventions.
Collapse
Affiliation(s)
- J P Dyke
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.
| | | |
Collapse
|
34
|
Griffith JF, Wang YXJ, Zhou H, Kwong WH, Wong WT, Sun YL, Huang Y, Yeung DKW, Qin L, Ahuja AT. Reduced Bone Perfusion in Osteoporosis: Likely Causes in an Ovariectomy Rat Model. Radiology 2010; 254:739-746. [DOI: 10.1148/radiol.09090608] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|