1
|
Turner RT, Branscum AJ, Iwaniec UT. Long-duration leptin transgene expression in dorsal vagal complex does not alter bone parameters in female Sprague Dawley rats. Bone Rep 2024; 21:101769. [PMID: 38706522 PMCID: PMC11067478 DOI: 10.1016/j.bonr.2024.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
The hypothalamus and dorsal vagal complex (DVC) are both important for integration of signals that regulate energy balance. Increased leptin transgene expression in either the hypothalamus or DVC of female rats was shown to decrease white adipose tissue and circulating levels of leptin and adiponectin. However, in contrast to hypothalamus, leptin transgene expression in the DVC had no effect on food intake, circulating insulin, ghrelin and glucose, nor on thermogenic energy expenditure. These findings imply different roles for hypothalamus and DVC in leptin signaling. Leptin signaling is required for normal bone accrual and turnover. Leptin transgene expression in the hypothalamus normalized the skeletal phenotype of leptin-deficient ob/ob mice but had no long-duration (≥10 weeks) effects on the skeleton of leptin-replete rats. The goal of this investigation was to determine the long-duration effects of leptin transgene expression in the DVC on the skeleton of leptin-replete rats. To accomplish this goal, we analyzed bone from three-month-old female rats that were microinjected with recombinant adeno-associated virus encoding either rat leptin (rAAV-Leptin, n = 6) or green fluorescent protein (rAAV-GFP, control, n = 5) gene. Representative bones from the appendicular (femur) and axial (3rd lumbar vertebra) skeleton were evaluated following 10 weeks of treatment. Selectively increasing leptin transgene expression in the DVC had no effect on femur cortical or cancellous bone microarchitecture. Additionally, increasing leptin transgene expression had no effect on vertebral osteoblast-lined or osteoclast-lined bone perimeter or marrow adiposity. Taken together, the findings suggest that activation of leptin receptors in the DVC has minimal specific effects on the skeleton of leptin-replete female rats.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Turner RT, Philbrick KA, Wong CP, Branscum AJ, Iwaniec UT. Higher weight in partially leptin-resistant db/+ mice is associated with positive effects on bone. J Endocrinol 2023; 259:e230182. [PMID: 37902096 PMCID: PMC10971785 DOI: 10.1530/joe-23-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Absence of leptin confers metabolic dysfunction resulting in morbid obesity. Bone growth and maturation are also impaired. Partial leptin resistance is more common than leptin deficiency and, when induced by feeding mice a high fat diet, often has a negative effect on bone. Here, we used a genetic model to investigate the skeletal effects of partial and total leptin resistance in mice. This was accomplished by comparing the skeletal phenotypes of 17-week-old female C57Bl6/J wild-type (WT) mice, partial leptin receptor-deficient (db/+) mice and leptin receptor-deficient (db/db) mice (n = 7-8/group), all fed a standard diet. Compared to WT mice, db/db mice were dramatically heavier and hyperleptinemic. These mice were also hypogonadal, hyperglycemic, osteopenic and had lower serum levels of bone turnover markers, osteocalcin and C-terminal telopeptide of type I collagen (CTX). Compared to WT mice, db/+ mice were 14% heavier, had 149% more abdominal white adipose tissue, and were mildly hyperglycemic. db/+ mice did not differ from WT mice in uterine weight or serum levels of markers of bone turnover, although there was a trend for lower osteocalcin. At the bone microarchitectural level, db/+ mice differed from WT mice in having more massive femurs and a trend (P = 0.072) for larger vertebrae. These findings suggest that db/+ mice fed a normal mouse diet compensate for partial leptin resistance by increasing white adipose tissue mass which results in higher leptin levels. Our findings suggest that db/+ mice are a useful diet-independent model for studying the effects of partial leptin resistance on the skeleton.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Kenneth A. Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Turner RT, Nesser KL, Philbrick KA, Wong CP, Olson DA, Branscum AJ, Iwaniec UT. Leptin and environmental temperature as determinants of bone marrow adiposity in female mice. Front Endocrinol (Lausanne) 2022; 13:959743. [PMID: 36277726 PMCID: PMC9582271 DOI: 10.3389/fendo.2022.959743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Bone marrow adipose tissue (BMAT) levels are higher in distal femur metaphysis of female mice housed at thermoneutral (32°C) than in mice housed at 22°C, as are abdominal white adipose tissue (WAT) mass, and serum leptin levels. We performed two experiments to explore the role of increased leptin in temperature-enhanced accrual of BMAT. First, we supplemented 6-week-old female C57BL/6J (B6) mice with leptin for 2 weeks at 10 µg/d using a subcutaneously implanted osmotic pump. Controls consisted of ad libitum (ad lib) fed mice and mice pair fed to match food intake of leptin-supplemented mice. The mice were maintained at 32°C for the duration of treatment. At necropsy, serum leptin in leptin-supplemented mice did not differ from ad lib mice, suggesting suppression of endogenous leptin production. In support, Ucp1 expression in BAT, percent body fat, and abdominal WAT mass were lower in leptin-supplemented mice. Leptin-supplemented mice also had lower BMAT and higher bone formation in distal femur metaphysis compared to the ad lib group, changes not replicated by pair-feeding. In the second experiment, BMAT response was evaluated in 6-week-old female B6 wild type (WT), leptin-deficient ob/ob and leptin-treated (0.3 μg/d) ob/ob mice housed at 32°C for the 2-week duration of the treatment. Compared to mice sacrificed at baseline (22°C), BMAT increased in ob/ob mice as well as WT mice, indicating a leptin independent response to increased temperature. However, infusion of ob/ob mice with leptin, at a dose rate having negligible effects on either energy metabolism or serum leptin levels, attenuated the increase in BMAT. In summary, increased housing temperature and increased leptin have independent but opposing effects on BMAT in mice.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, United States
| | - Kira L. Nesser
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Kenneth A. Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Dawn A. Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, United States
- *Correspondence: Urszula T. Iwaniec,
| |
Collapse
|
4
|
Turner RT, Wong CP, Fosse KM, Branscum AJ, Iwaniec UT. Caloric Restriction and Hypothalamic Leptin Gene Therapy Have Differential Effects on Energy Partitioning in Adult Female Rats. Int J Mol Sci 2021; 22:ijms22136789. [PMID: 34202651 PMCID: PMC8269114 DOI: 10.3390/ijms22136789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Dieting is a common but often ineffective long-term strategy for preventing weight gain. Similar to humans, adult rats exhibit progressive weight gain. The adipokine leptin regulates appetite and energy expenditure but hyperleptinemia is associated with leptin resistance. Here, we compared the effects of increasing leptin levels in the hypothalamus using gene therapy with conventional caloric restriction on weight gain, food consumption, serum leptin and adiponectin levels, white adipose tissue, marrow adipose tissue, and bone in nine-month-old female Sprague-Dawley rats. Rats (n = 16) were implanted with a cannula in the 3rd ventricle of the hypothalamus and injected with a recombinant adeno-associated virus, encoding the rat gene for leptin (rAAV-Lep), and maintained on standard rat chow for 18 weeks. A second group (n = 15) was calorically-restricted to match the weight of the rAAV-Lep group. Both approaches prevented weight gain, and no differences in bone were detected. However, calorically-restricted rats consumed 15% less food and had lower brown adipose tissue Ucp-1 mRNA expression than rAAV-Lep rats. Additionally, calorically-restricted rats had higher abdominal white adipose tissue mass, higher serum leptin and adiponectin levels, and higher marrow adiposity. Caloric restriction and hypothalamic leptin gene therapy, while equally effective in preventing weight gain, differ in their effects on energy intake, energy expenditure, adipokine levels, and body composition.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; (R.T.T.); (C.P.W.); (K.M.F.)
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; (R.T.T.); (C.P.W.); (K.M.F.)
| | - Kristina M. Fosse
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; (R.T.T.); (C.P.W.); (K.M.F.)
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; (R.T.T.); (C.P.W.); (K.M.F.)
- Correspondence:
| |
Collapse
|
5
|
Jensen VFH, Mølck AM, Dalgaard M, McGuigan FE, Akesson KE. Changes in bone mass associated with obesity and weight loss in humans: Applicability of animal models. Bone 2021; 145:115781. [PMID: 33285255 DOI: 10.1016/j.bone.2020.115781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022]
Abstract
The implications of obesity and weight loss for human bone health are not well understood. Although the bone changes associated with weight loss are similar in humans and rodents, that is not the case for obesity. In humans, obesity is generally associated with increased bone mass, an outcome which is exacerbated by advanced age and menopause. In rodents, by contrast, bone mass decreases in proportion to severity and duration of obesity, and is influenced by sex, age and mechanical load. Despite these discrepancies, rodents are frequently used to model the situation in humans. In this review, we summarise the existing knowledge of the effects of obesity and weight loss on bone mass in humans and rodents, focusing on the translatability of findings from animal models. We then describe how animal models should be used to broaden the understanding of the relationship between obesity, weight loss, and skeletal health in humans. Specifically, we highlight the aspects of study design that should be considered to optimise translatability of the rodent models of obesity and weight loss. Notably, the sex, age, and nutritional status of the animals should ideally match those of interest in humans. With these caveats in mind, and depending on the research question asked, our review underscores that animal models can provide valuable information for obesity and weight-management research.
Collapse
Affiliation(s)
- Vivi F H Jensen
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden.
| | - Anne-Marie Mølck
- Novo Nordisk A/S, Department of Safety Sciences, Imaging & Data Management, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Majken Dalgaard
- Novo Nordisk A/S, Department of Safety Sciences, Imaging & Data Management, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Fiona E McGuigan
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden
| | - Kristina E Akesson
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden
| |
Collapse
|
6
|
Abstract
The skeleton harbors an array of lineage cells that have an essential role in whole body homeostasis. Adipocytes start the colonization of marrow space early in postnatal life, expanding progressively and influencing other components of the bone marrow through paracrine signaling. In this unique, closed, and hypoxic environment close to the endosteal surface and adjacent to the microvascular space the marrow adipocyte can store or provide energy, secrete adipokines, and target neighboring bone cells. Adipocyte progenitors can also migrate from the bone marrow to populate white adipose tissue, a process that accelerates during weight gain. The marrow adipocyte also has an endocrine role in whole body homeostasis through its varied secretome that targets distant adipose depots, skeletal muscle, and the nervous system. Further insights into the biology of this unique and versatile cell will undoubtedly lead to novel therapeutic approaches to metabolic and age-related disorders such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil;
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA;
| |
Collapse
|
7
|
Costa S, Fairfield H, Reagan MR. Inverse correlation between trabecular bone volume and bone marrow adipose tissue in rats treated with osteoanabolic agents. Bone 2019; 123:211-223. [PMID: 30954729 PMCID: PMC6559822 DOI: 10.1016/j.bone.2019.03.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/28/2022]
Abstract
There is currently an unmet clinical need for improved treatments for skeletal diseases such as osteoporosis and cancer-induced bone disease. This is due in part to a paucity of novel targets and an incomplete understanding of the mechanisms of action for established therapies. We defined the effects of anabolic treatments on bone and the bone marrow adipocyte (BMA). Sclerostin-neutralizing antibodies (Scl-Ab), romosozumab, human parathyroid hormone (hPTH, 1-34), and hPTH/hPTHrP analogues (e.g. teriparatide and abaloparatide) stimulate bone formation and have been studied in clinical trials for severe osteoporosis. In this study, eight-week-old male and female rats were administered vehicle, Scl-Ab (3 mg/kg or 50 mg/kg) weekly, or hPTH (1-34) (75 μg/kg) daily for 4 or 26 weeks. Histological analyses of distal femura were performed using a novel ImageJ method for trabecular bone and bone marrow adipose tissue (BMAT). Adipocyte number, circumference, and total adipose area were compared within the tissue area (T.Ar) or the marrow area (Ma.Ar), (defined as the T.Ar minus the trabecular bone area). After 26 weeks of treatment, a significant inverse correlation between bone and tissue adiposity (total adipocyte area divided by T.Ar) were observed in males and females (p < 0.0001). However, there were no significant correlations between bone and marrow adiposity (total adipocyte area divided by Ma.Ar) for either sex after 26 weeks of treatments. Scl-Ab treatments also resulted in no effect on adipocytes based on marrow adiposity for either sex after 26 weeks. However, chronic hPTH treatments significantly reduced adipocyte number and adiposity within the T.Ar and within the Ma.Ar in males. Overall, our data suggest that with long-term treatment, Scl-Abs decrease total tissue adiposity mainly by increasing trabecular bone, resulting in an overall reduction in the space in which adipocytes can reside. These findings were determined by developing and comparing two different methods of assessment of the marrow cavity, defined to either include or exclude trabecular bone. Thus, researchers should consider which adiposity measurement is more informative and relevant for their studies. Overall, our findings should help design improved therapies or combination treatments to target a potential new contributor to bone diseases: the bone marrow adipocyte.
Collapse
Affiliation(s)
- Samantha Costa
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Heather Fairfield
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Michaela R Reagan
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Mesenchymal stem cells (MSCs) located in the bone marrow have the capacity to differentiate into multiple cell lineages, including osteoblast and adipocyte. Adipocyte density within marrow is inversely associated with bone mass during aging and in some pathological conditions, contributing to the prevailing view that marrow adipocytes play a largely negative role in bone metabolism. However, a negative association between marrow adipocytes and bone balance is not universal. Although MAT levels appear tightly regulated, establishing the precise physiological significance of MAT has proven elusive. Here, we review recent literature aimed at delineating the function of MAT. RECENT FINDINGS An important physiological function of MAT may be to provide an expandable/contractible fat depot, which is critical for minimization of energy requirements for sustaining optimal hematopoiesis. Because the energy requirements for storing fat are negligible compared to those required to maintain hematopoiesis, even small reductions in hematopoietic tissue volume to match a reduced requirement for hematopoiesis could represent an important reduction in energy cost. Such a physiological function would require tight coupling between hematopoietic stem cells and MSCs to regulate the balance between MAT and hematopoiesis. Kit-ligand, an important regulator of proliferation, differentiation, and survival of hematopoietic cells, may function as a prototypic factor coupling MAT and hematopoiesis. Crosstalk between hematopoietic and mesenchymal cells in the bone marrow may contribute to establishing the balance between MAT levels and hematopoiesis.
Collapse
Affiliation(s)
- Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA
| | - Stephen A Martin
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA.
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
9
|
Abstract
Marrow adipocytes, collectively termed marrow adipose tissue (MAT), reside in the bone marrow in close contact to bone cells and haematopoietic cells. Marrow adipocytes arise from the mesenchymal stem cell and share their origin with the osteoblast. Shifts in the lineage allocation of the mesenchymal stromal cell could potentially explain the association between increased MAT and increased fracture risk in diseases such as postmenopausal osteoporosis, anorexia nervosa and diabetes. Functionally, marrow adipocytes secrete adipokines, such as adiponectin, and cytokines, such as RANK ligand and stem cell factor. These mediators can influence both bone remodelling and haematopoiesis by promoting bone resorption and haematopoietic recovery following chemotherapy. In addition, marrow adipocytes can secrete free fatty acids, acting as a energy supply for bone and haematopoietic cells. However, this induced lipolysis is also used by neoplastic cells to promote survival and proliferation. Therefore, MAT could represent a new therapeutic target for multiple diseases from osteoporosis to leukaemia, although the exact characteristics and role of the marrow adipocyte in health and diseases remain to be determined.
Collapse
Affiliation(s)
- A G Veldhuis-Vlug
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - C J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| |
Collapse
|
10
|
Turner RT, Philbrick KA, Kuah AF, Branscum AJ, Iwaniec UT. Role of estrogen receptor signaling in skeletal response to leptin in female ob/ob mice. J Endocrinol 2017; 233:357-367. [PMID: 28428364 PMCID: PMC5527997 DOI: 10.1530/joe-17-0103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022]
Abstract
Leptin, critical in regulation of energy metabolism, is also important for normal bone growth, maturation and turnover. Compared to wild type (WT) mice, bone mass is lower in leptin-deficient ob/ob mice. Osteopenia in growing ob/ob mice is due to decreased bone accrual, and is associated with reduced longitudinal bone growth, impaired cancellous bone maturation and increased marrow adipose tissue (MAT). However, leptin deficiency also results in gonadal dysfunction, disrupting production of gonadal hormones which regulate bone growth and turnover. The present study evaluated the role of increased estrogen in mediating the effects of leptin on bone in ob/ob mice. Three-month-old female ob/ob mice were randomized into one of the 3 groups: (1) ob/ob + vehicle (veh), (2) ob/ob + leptin (leptin) or (3) ob/ob + leptin and the potent estrogen receptor antagonist ICI 182,780 (leptin + ICI). Age-matched WT mice received vehicle. Leptin (40 µg/mouse, daily) and ICI (10 µg/mouse, 2×/week) were administered by subcutaneous injection for 1 month and bone analyzed by X-ray absorptiometry, microcomputed tomography and static and dynamic histomorphometry. Uterine weight did not differ between ob/ob mice and ob/ob mice receiving leptin + ICI, indicating that ICI successfully blocked the uterine response to leptin-induced increases in estrogen levels. Compared to leptin-treated ob/ob mice, ob/ob mice receiving leptin + ICI had lower uterine weight; did not differ in weight loss, MAT or bone formation rate; and had higher longitudinal bone growth rate and cancellous bone volume fraction. We conclude that increased estrogen signaling following leptin treatment is dispensable for the positive actions of leptin on bone and may attenuate leptin-induced bone growth.
Collapse
Affiliation(s)
- Russell T Turner
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| | - Kenneth A Philbrick
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Amida F Kuah
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Adam J Branscum
- Biostatistics ProgramSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Urszula T Iwaniec
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| |
Collapse
|
11
|
PIXE study on the effects of parathyroid hormone on elemental content in rat bones. Phys Med 2016; 32:1615-1620. [PMID: 27899269 DOI: 10.1016/j.ejmp.2016.11.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022] Open
Abstract
Parathyroid hormone (PTH) has attracted considerable interest as a bone anabolic agent. PTH plays a central role in regulating calcium phosphate metabolism and its increases in production in response to low serum calcium levels. A continuous hypersecretion of PTH, as occurs in primary hyperparathyroidism, leads to bone resorption. In this study, the effect of different doses of parathyroid hormone (PTH) on bone mineral content (BMC) in rats was investigated by particle-induced X-ray emission (PIXE). This study will help in investigating further the toxicity of extremely high doses of PTH on BMC. For this study, PTH at doses of 15, 45, or 135μg/kg/day were applied to 9-month-old male and female Sprague Dawley (SD) rats. The concentrations of calcium (Ca), phosphorus (P), strontium (Sr), and zinc (Zn) were measured for bone treatment of PTH. From the results of the research, it was revealed that the biomechanical characteristics of the bone as well as the bone mass were enhanced after the treatment. It was further found that the concentrations of other elements also increased, excluding Zn. This research proved that PTH assists in the treatment of osteoporosis as revealed by the characteristics of different elements. PIXE can be used to determine the concentrations of bone mineral content.
Collapse
|
12
|
Iwaniec UT, Philbrick KA, Wong CP, Gordon JL, Kahler-Quesada AM, Olson DA, Branscum AJ, Sargent JL, DeMambro VE, Rosen CJ, Turner RT. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss. Osteoporos Int 2016; 27:3091-101. [PMID: 27189604 PMCID: PMC5421618 DOI: 10.1007/s00198-016-3634-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/06/2016] [Indexed: 01/02/2023]
Abstract
UNLABELLED Room temperature housing (22 °C) results in premature cancellous bone loss in female mice. The bone loss was prevented by housing mice at thermoneutral temperature (32 °C). Thermogenesis differs markedly between mice and humans and mild cold stress induced by standard room temperature housing may introduce an unrecognized confounding variable into preclinical studies. INTRODUCTION Female mice are often used as preclinical models for osteoporosis but, in contrast to humans, mice exhibit cancellous bone loss during growth. Mice are routinely housed at room temperature (18-23 °C), a strategy that exaggerates physiological differences in thermoregulation between mice (obligatory daily heterotherms) and humans (homeotherms). The purpose of this investigation was to assess whether housing female mice at thermoneutral (temperature range where the basal rate of energy production is at equilibrium with heat loss) alters bone growth, turnover and microarchitecture. METHODS Growing (4-week-old) female C57BL/6J and C3H/HeJ mice were housed at either 22 or 32 °C for up to 18 weeks. RESULTS C57BL/6J mice housed at 22 °C experienced a 62 % cancellous bone loss from the distal femur metaphysis during the interval from 8 to 18 weeks of age and lesser bone loss from the distal femur epiphysis, whereas cancellous and cortical bone mass in 32 °C-housed mice were unchanged or increased. The impact of thermoneutral housing on cancellous bone was not limited to C57BL/6J mice as C3H/HeJ mice exhibited a similar skeletal response. The beneficial effects of thermoneutral housing on cancellous bone were associated with decreased Ucp1 gene expression in brown adipose tissue, increased bone marrow adiposity, higher rates of bone formation, higher expression levels of osteogenic genes and locally decreased bone resorption. CONCLUSIONS Housing female mice at 22 °C resulted in premature cancellous bone loss. Failure to account for species differences in thermoregulation may seriously confound interpretation of studies utilizing mice as preclinical models for osteoporosis.
Collapse
Affiliation(s)
- U T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA
| | - K A Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - C P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - J L Gordon
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - A M Kahler-Quesada
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - D A Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - A J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - J L Sargent
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - V E DeMambro
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA
| | - C J Rosen
- Maine Medical Center Research Institute, Scarborough, ME, 04074, USA
| | - R T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA.
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
13
|
Iwaniec UT, Turner RT. Influence of body weight on bone mass, architecture and turnover. J Endocrinol 2016; 230:R115-30. [PMID: 27352896 PMCID: PMC4980254 DOI: 10.1530/joe-16-0089] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating the development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. Although the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size.
Collapse
Affiliation(s)
- Urszula T Iwaniec
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| | - Russell T Turner
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| |
Collapse
|
14
|
Keune JA, Branscum AJ, Iwaniec UT, Turner RT. Effects of Spaceflight on Bone Microarchitecture in the Axial and Appendicular Skeleton in Growing Ovariectomized Rats. Sci Rep 2015; 5:18671. [PMID: 26691062 PMCID: PMC4687043 DOI: 10.1038/srep18671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022] Open
Abstract
This study investigated the effects of a 14-day spaceflight on bone mass, density and microarchitecture in weight bearing (femur and humerus) and non-weight bearing (2nd lumbar vertebra and calvarium) bones in the context of ovarian hormone insufficiency. 12-week-old Fisher 344 rats were ovariectomized 2 weeks before flight and randomized into one of three groups: 1) baseline (n = 6), 2) ground control (n = 12) or 3) spaceflight (n = 12). Additional ground-based ovary-intact rats provided age-matched reference values at baseline (n = 8) and landing (n = 10). Ovariectomy resulted in bone- and bone compartment-specific deficits in cancellous bone volume fraction. Spaceflight resulted in lower cortical bone accrual in the femur but had no effect on cortical bone in the humerus or calvarium. Cancellous bone volume fraction was lower in flight animals compared to ground control animals in lumbar vertebra and distal femur metaphysis and epiphysis; significant differences were not detected in the distal humerus. Bone loss (compared to baseline controls) in the femur metaphysis was associated with lower trabecular number, whereas trabecular thickness and number were lower in the epiphysis. In summary, the effect of spaceflight on bone microarchitecture in ovariectomized rats was bone-and bone compartment-specific but not strictly related to weight bearing.
Collapse
Affiliation(s)
- Jessica A Keune
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.,Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.,Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
15
|
Turner RT, Dube M, Branscum AJ, Wong CP, Olson DA, Zhong X, Kweh MF, Larkin IV, Wronski TJ, Rosen CJ, Kalra SP, Iwaniec UT. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss. J Endocrinol 2015; 227:129-41. [PMID: 26487675 PMCID: PMC4917201 DOI: 10.1530/joe-15-0280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 02/04/2023]
Abstract
Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.
Collapse
Affiliation(s)
- Russell T Turner
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Michael Dube
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Adam J Branscum
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Carmen P Wong
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Dawn A Olson
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Xiaoying Zhong
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Mercedes F Kweh
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Iske V Larkin
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Thomas J Wronski
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Clifford J Rosen
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Satya P Kalra
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Urszula T Iwaniec
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| |
Collapse
|
16
|
Turner RT, Philbrick KA, Wong CP, Olson DA, Branscum AJ, Iwaniec UT. Morbid obesity attenuates the skeletal abnormalities associated with leptin deficiency in mice. J Endocrinol 2014; 223:M1-15. [PMID: 24990938 PMCID: PMC4161659 DOI: 10.1530/joe-14-0224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leptin-deficient ob/ob mice are morbidly obese and exhibit low total bone mass and mild osteopetrosis. In order to disassociate the skeletal effects of leptin deficiency from those associated with morbid obesity, we evaluated bone mass, architecture, gene expression, and indices of bone turnover in WT mice, ob/ob mice allowed to feed ad libitum (ob/ob), and ob/ob mice pair-fed equivalent to WT mice (pair-fed ob/ob). Mice were maintained at 32 °C (thermoneutral) from 6 to 18 weeks of age to minimize differences in resting energy expenditure. ob/ob mice were heavier, had more abdominal white adipose tissue (WAT), and were hyperglycemic compared with WT mice. Femur length, bone mineral content (BMC) and bone mineral density, and midshaft femur cortical thickness were lower in ob/ob mice than in WT mice. Cancellous bone volume (BV) fraction was higher but indices of bone formation and resorption were lower in ob/ob mice compared with WT mice; reduced bone resorption in ob/ob mice resulted in pathological retention of calcified cartilage. Pair-fed ob/ob mice were lighter and had lower WAT, uterine weight, and serum glucose than ob/ob mice. Similarly, femoral length, BMC, and cortical thickness were lower in pair-fed ob/ob mice compared with ob/ob mice, as were indices of cancellous bone formation and resorption. In contrast, bone marrow adiposity, calcified cartilage, and cancellous BV fraction were higher at one or more cancellous sites in pair-fed ob/ob mice compared with ob/ob mice. These findings indicate that the skeletal abnormalities caused by leptin deficiency are markedly attenuated in morbidly obese ob/ob mice.
Collapse
Affiliation(s)
- Russell T Turner
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Kenneth A Philbrick
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Carmen P Wong
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Dawn A Olson
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Adam J Branscum
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
17
|
Voluntary wheel running in growing rats does not protect against doxorubicin-induced osteopenia. J Pediatr Hematol Oncol 2013; 35:e144-8. [PMID: 23211689 DOI: 10.1097/mph.0b013e318279b1fb] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is growing concern regarding the long-term negative side effects of chemotherapy in childhood cancer survivors. Doxorubicin (DOX) is commonly used in the treatment of childhood cancers and has been shown to be both cardiotoxic and osteotoxic. It is unclear whether exercise can attenuate the negative skeletal effects of this chemotherapy. Rat pups were treated with saline or DOX. Animals remained sedentary or voluntarily exercised. After 10 weeks, femoral bone mineral content and bone mineral density were measured using dual-energy x-ray absorptiometry. Cortical and cancellous bone architecture was then evaluated by microcomputed tomography. DOX had a profound negative effect on all measures of bone mass and cortical and cancellous bone architecture. Treatment with DOX resulted in shorter femora and lower femoral bone mineral content and bone mineral density, lower cross-sectional volume, cortical volume, marrow volume, cortical thickness, and principal (IMAX, IMIN) and polar (IPOLAR) moments of inertia in the femur diaphysis, and lower cancellous bone volume/tissue volume, trabecular number, and trabecular thickness in the distal femur metaphysis. Exercise failed to protect bones from the damaging effects of DOX. Other modalities may be necessary to mitigate the deleterious skeletal effects that occur in juveniles undergoing treatment with anthracyclines.
Collapse
|
18
|
Abstract
Excess body weight due to obesity has traditionally been considered to have a positive effect on bone; however, more recent findings suggest that bone quality is compromised. Both obesity and caloric restriction increase fracture risk and are regulated by endocrine factors and cytokines that have direct and indirect effects on bone and calcium absorption. Weight reduction will decrease bone mass and mineral density, but this varies by the individual's age, gender, and adiposity. Dietary modifications, exercise, and medications have been shown to attenuate the bone loss associated with weight reduction. Future obesity and weight loss trials would benefit from assessment of key hormones, adipokine and gut peptides that regulate calcium absorption, and bone mineral density and quality by using sensitive techniques in high-risk populations.
Collapse
Affiliation(s)
- Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
19
|
Stunes AK, Westbroek I, Gordeladze JO, Gustafsson BI, Reseland JE, Syversen U. Systemic leptin administration in supraphysiological doses maintains bone mineral density and mechanical strength despite significant weight loss. Endocrinology 2012; 153:2245-53. [PMID: 22374968 DOI: 10.1210/en.2011-1848] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of leptin on bone are controversial. Although in vitro studies have shown that leptin stimulates osteoblast differentiation and mineralization and inhibits osteoclastogenesis, some rodent studies have shown that leptin administered centrally might result in decreased bone formation. In the present study we have investigated the skeletal effects of supraphysiological concentrations of leptin administered sc to rats. Female Fischer rats were given leptin 100 μg/d, 200 μg/d, or saline by continuous infusion for 9 wk. Bone mineral density (BMD) was measured by dual energy x-ray absorptiometry, bone microarchitecture was analyzed by micro-computed tomography, and biomechanical properties were tested by three-point bending experiments. At the end of the study, the body weight was significantly lower in rats receiving leptin compared with controls (-10.8% and -12.0% in low- and high-dose leptin groups, respectively). The high-dose leptin group also significantly lost weight compared with baseline. The plasma leptin concentration was 14- and 33-fold increased in the low- and high-dose groups, respectively. No significant differences in femoral BMD were observed. Whole-body BMD was significantly lower in the low-dose leptin group, whereas there was no difference between the high-dose leptin group and the control. Mechanical strength and microarchitecture were similar in the high-dose and the control group. The low-dose group, however, had decreased cortical volume in the femoral metaphysis, lowered bone strength, and altered moment of inertia. In conclusion, leptin given at very high doses maintains BMD, microarchitecture, and mechanical strength in female rats, despite a significant decrease in body weight.
Collapse
Affiliation(s)
- Astrid K Stunes
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
20
|
Yanaka K, Higuchi M, Ishimi Y. Effect of long-term voluntary exercise and energy restriction on bone mineral density in mature female rats. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|