1
|
Kapat K, Kumbhakarn S, Sable R, Gondane P, Takle S, Maity P. Peptide-Based Biomaterials for Bone and Cartilage Regeneration. Biomedicines 2024; 12:313. [PMID: 38397915 PMCID: PMC10887361 DOI: 10.3390/biomedicines12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The healing of osteochondral defects (OCDs) that result from injury, osteochondritis, or osteoarthritis and bear lesions in the cartilage and bone, pain, and loss of joint function in middle- and old-age individuals presents challenges to clinical practitioners because of non-regenerative cartilage and the limitations of current therapies. Bioactive peptide-based osteochondral (OC) tissue regeneration is becoming more popular because it does not have the immunogenicity, misfolding, or denaturation problems associated with original proteins. Periodically, reviews are published on the regeneration of bone and cartilage separately; however, none of them addressed the simultaneous healing of these tissues in the complicated heterogeneous environment of the osteochondral (OC) interface. As regulators of cell adhesion, proliferation, differentiation, angiogenesis, immunomodulation, and antibacterial activity, potential therapeutic strategies for OCDs utilizing bone and cartilage-specific peptides should be examined and investigated. The main goal of this review was to study how they contribute to the healing of OCDs, either alone or in conjunction with other peptides and biomaterials.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Age-Related Low Bone Mineral Density in C57BL/6 Mice Is Reflective of Aberrant Bone Morphogenetic Protein-2 Signaling Observed in Human Patients Diagnosed with Osteoporosis. Int J Mol Sci 2022; 23:ijms231911205. [PMID: 36232525 PMCID: PMC9570292 DOI: 10.3390/ijms231911205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis (OP) is a bone disorder characterized by decreased bone mineral density (BMD). Bone Morphogenetic Protein-2 (BMP-2) injections are used to promote bone formation in OP patients. However, patients are unresponsive to BMP-2 while displaying an upregulation of BMP Receptor Type 1a (BMPRIa) and protein kinase CK2α (CK2α). A synthetically produced peptide named casein kinase 2.3 (CK2.3) utilizes the BMP-signaling pathway as it enhances osteogenesis of primary osteoblasts isolated from OP patients, whereas BMP-2 does not. Although shown in OP patients, there is currently no reliable mouse model to study BMP-2 and CK2.3 signaling. In this publication, we show that BMPRIa was required for CK2.3-mediated osteogenesis in C2C12 cells with a CRISPR-Cas9-mediated gene knockout for BMPRIa. We utilized the C57BL/6 (B6) mouse strain as an aging-model to study aberrant BMP-2 signaling, demonstrating that, like OP patients, in 15 and 20-month mice, BMP-2 did not increase bone growth and displayed upregulated BMPRIa and CK2α protein expression. Furthermore, CK2.3 enhanced osteogenesis and decreased osteoclastogenesis in all age groups, whereas BMP-2 only increased mineralization in 6-month mice while increasing osteoclast formation in all age groups. These data demonstrated that aging B6 mice were a reliable model and mimicked data obtained from OP patients.
Collapse
|
3
|
The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J Dev Biol 2022; 10:jdb10030031. [PMID: 35997395 PMCID: PMC9397010 DOI: 10.3390/jdb10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protein kinase CK2 (CK2) is a ubiquitous holoenzyme involved in a wide array of developmental processes. The involvement of CK2 in events such as neurogenesis, cardiogenesis, skeletogenesis, and spermatogenesis is essential for the viability of almost all organisms, and its role has been conserved throughout evolution. Further into adulthood, CK2 continues to function as a key regulator of pathways affecting crucial processes such as osteogenesis, adipogenesis, chondrogenesis, neuron differentiation, and the immune response. Due to its vast role in a multitude of pathways, aberrant functioning of this kinase leads to embryonic lethality and numerous diseases and disorders, including cancer and neurological disorders. As a result, CK2 is a popular target for interventions aiming to treat the aforementioned diseases. Specifically, two CK2 inhibitors, namely CX-4945 and CIBG-300, are in the early stages of clinical testing and exhibit promise for treating cancer and other disorders. Further, other researchers around the world are focusing on CK2 to treat bone disorders. This review summarizes the current understanding of CK2 in development, the structure of CK2, the targets and signaling pathways of CK2, the implication of CK2 in disease progression, and the recent therapeutics developed to inhibit the dysregulation of CK2 function in various diseases.
Collapse
|
4
|
Sharma A, Sharma L, Goyal R. Molecular Signaling Pathways and Essential Metabolic Elements in Bone Remodeling: An Implication of Therapeutic Targets for Bone Diseases. Curr Drug Targets 2020; 22:77-104. [PMID: 32914712 DOI: 10.2174/1389450121666200910160404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
Abstract
Bone is one of the dynamic tissues in the human body that undergoes continuous remodelling through subsequent actions of bone cells, osteoclasts, and osteoblasts. Several signal transduction pathways are involved in the transition of mesenchymal stem cells into osteoblasts. These primarily include Runx2, ATF4, Wnt signaling and sympathetic signalling. The differentiation of osteoclasts is controlled by M-CSF, RANKL, and costimulatory signalling. It is well known that bone remodelling is regulated through receptor activator of nuclear factor-kappa B ligand followed by binding to RANK, which eventually induces the differentiation of osteoclasts. The resorbing osteoclasts secrete TRAP, cathepsin K, MMP-9 and gelatinase to digest the proteinaceous matrix of type I collagen and form a saucer-shaped lacuna along with resorption tunnels in the trabecular bone. Osteoblasts secrete a soluble decoy receptor, osteoprotegerin that prevents the binding of RANK/RANKL and thus moderating osteoclastogenesis. Moreover, bone homeostasis is also regulated by several growth factors like, cytokines, calciotropic hormones, parathyroid hormone and sex steroids. The current review presents a correlation of the probable molecular targets underlying the regulation of bone mass and the role of essential metabolic elements in bone remodelling. Targeting these signaling pathways may help to design newer therapies for treating bone diseases.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
5
|
Durbano HW, Halloran D, Nguyen J, Stone V, McTague S, Eskander M, Nohe A. Aberrant BMP2 Signaling in Patients Diagnosed with Osteoporosis. Int J Mol Sci 2020; 21:ijms21186909. [PMID: 32967078 PMCID: PMC7555210 DOI: 10.3390/ijms21186909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The most common bone disease in humans is osteoporosis (OP). Current therapeutics targeting OP have several negative side effects. Bone morphogenetic protein 2 (BMP2) is a potent growth factor that is known to activate both osteoblasts and osteoclasts. It completes these actions through both SMAD-dependent and SMAD-independent signaling. A novel interaction between the BMP type Ia receptor (BMPRIa) and casein kinase II (CK2) was discovered, and several CK2 phosphorylation sites were identified. A corresponding blocking peptide (named CK2.3) was designed to further elucidate the phosphorylation site’s function. Previously, CK2.3 demonstrated an increased osteoblast activity and decreased osteoclast activity in a variety of animal models, cell lines, and isolated human osteoblasts. It is hypothesized that CK2.3 completes these actions through the BMP signaling pathway. Furthermore, it was recently discovered that BMP2 did not elicit an osteogenic response in osteoblasts from patients diagnosed with OP, while CK2.3 did. In this study, we explore where in the BMP pathway the signaling disparity or defect lies in those diagnosed with OP. We found that osteoblasts isolated from patients diagnosed with OP did not activate SMAD or ERK signaling after BMP2 stimulation. When OP osteoblasts were stimulated with BMP2, both BMPRIa and CK2 expression significantly decreased. This indicates a major disparity within the BMP signaling pathway in patients diagnosed with osteoporosis.
Collapse
Affiliation(s)
- Hilary W. Durbano
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (H.W.D.); (D.H.); (J.N.); (V.S.)
| | - Daniel Halloran
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (H.W.D.); (D.H.); (J.N.); (V.S.)
| | - John Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (H.W.D.); (D.H.); (J.N.); (V.S.)
| | - Victoria Stone
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (H.W.D.); (D.H.); (J.N.); (V.S.)
| | - Sean McTague
- Christiana Care Hospital, Newark, DE 19716, USA; (S.M.); (M.E.)
| | - Mark Eskander
- Christiana Care Hospital, Newark, DE 19716, USA; (S.M.); (M.E.)
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (H.W.D.); (D.H.); (J.N.); (V.S.)
- Correspondence: ; Tel.: +1-302-831-2959
| |
Collapse
|
6
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
7
|
A Novel Peptide, CK2.3, Improved Bone Formation in Ovariectomized Sprague Dawley Rats. Int J Mol Sci 2020; 21:ijms21144874. [PMID: 32664215 PMCID: PMC7402306 DOI: 10.3390/ijms21144874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a bone disease that has no definite cure. Current treatments for osteoporosis are divided into two categories: anti-resorptive and anabolic. However, these treatments are not perfect and have considerable risks. In addition, bone quality often declines over time with these treatments. We designed a peptide, CK2.3, that has both anabolic and anti-resorptive effects on bone. We reported that CK2.3 induced osteoblastic mineralization, promoted bone formation, and suppressed osteoclastogenesis in vivo. The effect of CK2.3 to rescue an osteoporosis phenotype model has never been shown. In this study, we demonstrated the effect of CK2.3 in ovariectomized rats, a standard model of osteoporosis. We systemically injected CK2.3 at 2.3 µg/kg each day for five consecutive days. Micro-computed tomography indicated that CK2.3 increased bone mineral density, (bone volume/tissue volume) BV/TV and (trabecular number) TbN, and decreased (trabecular space) TbSp in the femoral head. Similarly, single photon absorptiometry showed that treatment with CK2.3 increased bone mineral density in the lumbar spine and the pelvis. Additionally, we observed increased femoral shaft stiffness with ovariectomized rats treated with CK2.3. We also detected no significant changes in the weight of organs such as the heart, lung, liver, kidney, and spleen. An advantage of CK2.3 over current treatments was that it not only promoted bone formation but also improved fracture resistance. In conclusion, we demonstrated CK2.3 as a new anabolic treatment for osteoporosis.
Collapse
|
8
|
A Synthetic Peptide, CK2.3, Inhibits RANKL-Induced Osteoclastogenesis through BMPRIa and ERK Signaling Pathway. J Dev Biol 2020; 8:jdb8030012. [PMID: 32660129 PMCID: PMC7557985 DOI: 10.3390/jdb8030012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
The skeletal system plays an important role in the development and maturation process. Through the bone remodeling process, 10% of the skeletal system is renewed every year. Osteoblasts and osteoclasts are two major bone cells that are involved in the development of the skeletal system, and their activity is kept in balance. An imbalance between their activities can lead to diseases such as osteoporosis that are characterized by significant bone loss due to the overactivity of bone-resorbing osteoclasts. Our laboratory has developed a novel peptide, CK2.3, which works as both an anabolic and anti-resorptive agent to induce bone formation and prevent bone loss. We previously reported that CK2.3 mediated mineralization and osteoblast development through the SMAD, ERK, and AKT signaling pathways. In this study, we demonstrated the mechanism by which CK2.3 inhibits osteoclast development. We showed that the inhibition of MEK by the U0126 inhibitor rescued the osteoclast development of RAW264.7 induced by RANKL in a co-culture system with CK2.3. We observed that CK2.3 induced ERK activation and BMPRIa expression on Day 1 after stimulation with CK2.3. While CK2.3 was previously reported to induce the SMAD signaling pathway in osteoblast development, we did not observe any changes in SMAD activation in osteoclast development with CK2.3 stimulation. Understanding the mechanism by which CK2.3 inhibits osteoclast development will allow CK2.3 to be developed as a new treatment for osteoporosis.
Collapse
|
9
|
Halloran D, Vrathasha V, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 Conjugated to Quantum Dot ®s is Biologically Functional. NANOMATERIALS 2020; 10:nano10061208. [PMID: 32575709 PMCID: PMC7353091 DOI: 10.3390/nano10061208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Quantum Dot®s (QDot®s) are novel, semi-conductive nanostructures that emit a certain fluorescence when excited by specific wavelengths. QDot®s are more photostable, brighter, and photobleach less than other fluorescent dyes. These characteristics give them the potential to be used in many biological applications. The shells of QDot®s are coated with functional groups, such as carboxylate and organic groups, allowing them to couple to peptides/proteins and be used for real-time imaging and high-resolution microscopy. Here, we utilize Quantum Dot®s and Bone Morphogenetic Protein-2 (BMP-2) to create a BMP-2-QDot®s conjugate. BMP-2 is a growth factor that drives many processes such as cardiogenesis, neural growth, and osteogenesis. Despite its numerous roles, the trafficking and uptake of BMP-2 into cells is not well-established, especially during progression of diseases. The results presented here demonstrate for the first time a fluorescent BMP-2 analog that binds to the BMP-receptors (BMPRs), remains biologically active, and is stable for long time periods. Previous attempts to develop a biological BMP-2 analog with Fluorescein isothiocyanate (FITC) or nanodiamonds lacked data on the analog’s stability. Furthermore, these analogs did not address whether they can signal within the cell by binding to the BMPRs or were mediated by non-stable conjugates.
Collapse
Affiliation(s)
| | | | | | - Anja Nohe
- Correspondence: ; Tel.: +1-302-831-6977
| |
Collapse
|
10
|
Kim JM, Yang YS, Park KH, Ge X, Xu R, Li N, Song M, Chun H, Bok S, Charles JF, Filhol-Cochet O, Boldyreff B, Dinter T, Yu PB, Kon N, Gu W, Takarada T, Greenblatt MB, Shim JH. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun 2020; 11:2289. [PMID: 32385263 PMCID: PMC7210266 DOI: 10.1038/s41467-020-16038-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/10/2020] [Indexed: 12/21/2022] Open
Abstract
The osteoblast differentiation capacity of skeletal stem cells (SSCs) must be tightly regulated, as inadequate bone formation results in low bone mass and skeletal fragility, and over-exuberant osteogenesis results in heterotopic ossification (HO) of soft tissues. RUNX2 is essential for tuning this balance, but the mechanisms of posttranslational control of RUNX2 remain to be fully elucidated. Here, we identify that a CK2/HAUSP pathway is a key regulator of RUNX2 stability, as Casein kinase 2 (CK2) phosphorylates RUNX2, recruiting the deubiquitinase herpesvirus-associated ubiquitin-specific protease (HAUSP), which stabilizes RUNX2 by diverting it away from ubiquitin-dependent proteasomal degradation. This pathway is important for both the commitment of SSCs to osteoprogenitors and their subsequent maturation. This CK2/HAUSP/RUNX2 pathway is also necessary for HO, as its inhibition blocked HO in multiple models. Collectively, active deubiquitination of RUNX2 is required for bone formation and this CK2/HAUSP deubiquitination pathway offers therapeutic opportunities for disorders of inappropriate mineralization.
Collapse
Affiliation(s)
- Jung-Min Kim
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yeon-Suk Yang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Xianpeng Ge
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Fujian, China
| | - Na Li
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Fujian, China
| | - Minkyung Song
- Department of integrative biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Hyunho Chun
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Julia F Charles
- Department of Orthopedics and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Odile Filhol-Cochet
- INSERM U1036, pour le Vivant/Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Énerigies Alternatives Grenoble, Grenoble, France
| | | | - Teresa Dinter
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ning Kon
- Institute of Cancer Genetics, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Wei Gu
- Institute of Cancer Genetics, College of Physicians and Surgeons of Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Weidner H, Yuan Gao V, Dibert D, McTague S, Eskander M, Duncan R, Wang L, Nohe A. CK2.3, a Mimetic Peptide of the BMP Type I Receptor, Increases Activity in Osteoblasts over BMP2. Int J Mol Sci 2019; 20:ijms20235877. [PMID: 31771161 PMCID: PMC6929093 DOI: 10.3390/ijms20235877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Bone is one of the most important organs in the human body. It provides structure, function, and protection for other vital organs; therefore, bone maintenance and homeostasis are critical processes. As humans age, their bone mineral density decreases, which leads to diseases like osteoporosis. This disease affects one in two women and one in five men aged 50 and over. As the aging population increases, the interest and significance of studying this debilitating bone disease becomes more relevant. Current therapeutic products for osteoporosis have many side effects and can be taken for a limited number of years. Most therapeutic products only focus on decreasing bone resorption, not increasing bone formation. Bone morphogenetic protein 2 is an essential growth factor that drives osteoblast differentiation and activity and is essential for bone formation. However, usage in the clinic is unsuccessful due to several side effects. Recently, a signaling disparity in bone marrow stromal cells within the bone morphogenetic protein pathway that led to decreased bone morphogenetic protein 2 responsiveness was identified in patients diagnosed with osteoporosis. However, it is unclear how other cell populations, especially osteoblasts, which are key players in bone remodeling, are affected and whether the bone morphogenetic protein pathway is affected during osteoporosis. Our research group designed a novel peptide, casein kinase 2.3, that acts downstream of the bone morphogenetic receptor type Ia and increases bone mineralization in murine cells and primary bovine osteoblasts. The aim of the study presented here was to compare the responsiveness of osteoblasts to bone morphogenetic protein 2 and casein kinase 2.3, especially in patients diagnosed with osteoporosis. Mature osteoblasts were extracted from patients diagnosed with osteoporosis or osteoarthritis from Christiana Care Hospital in Newark, Delaware. They were stimulated with either bone morphogenetic protein 2 or casein kinase 2.3, and their effect on osteoblast activity was determined. The osteoporotic patients showed no mineralization response to bone morphogenetic protein 2 stimulation, while the osteoarthritis patients significantly responded to bone morphogenetic protein 2 stimulation. Furthermore, markers for osteoblast activity were increased by casein kinase 2.3, which was in sharp contrast to bone morphogenetic protein 2. This further supports a major bone morphogenetic protein signaling disparity in both the elderly and those suffering with osteoporosis. Both patient types did significantly respond to casein kinase 2.3. Further analysis of the bone morphogenetic protein pathway could lead to new therapeutic products for osteoporosis.
Collapse
Affiliation(s)
- Hilary Weidner
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| | - Victor Yuan Gao
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (V.Y.G.); (L.W.)
| | - Debra Dibert
- Christiana Care Hospital, Newark, DE 19716, USA; (D.D.); (S.M.); (M.E.)
| | - Sean McTague
- Christiana Care Hospital, Newark, DE 19716, USA; (D.D.); (S.M.); (M.E.)
| | - Mark Eskander
- Christiana Care Hospital, Newark, DE 19716, USA; (D.D.); (S.M.); (M.E.)
| | - Randall Duncan
- Department of Biology, University of Michigan, Flint, MI 48502, USA;
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (V.Y.G.); (L.W.)
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
12
|
Vrathasha V, Weidner H, Nohe A. Mechanism of CK2.3, a Novel Mimetic Peptide of Bone Morphogenetic Protein Receptor Type IA, Mediated Osteogenesis. Int J Mol Sci 2019; 20:E2500. [PMID: 31117181 PMCID: PMC6567251 DOI: 10.3390/ijms20102500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Osteoporosis is a degenerative skeletal disease with a limited number of treatment options. CK2.3, a novel peptide, may be a potential therapeutic. It induces osteogenesis and bone formation in vitro and in vivo by acting downstream of BMPRIA through releasing CK2 from the receptor. However, the detailed signaling pathways, the time frame of signaling, and genes activated remain largely unknown. METHODS Using a newly developed fluorescent CK2.3 analog, specific inhibitors for the BMP signaling pathways, Western blot, and RT-qPCR, we determined the mechanism of CK2.3 in C2C12 cells. We then confirmed the results in primary BMSCs. RESULTS Using these methods, we showed that CK2.3 stimulation activated OSX, ALP, and OCN. CK2.3 stimulation induced time dependent release of CK2β from BMPRIA and concurrently CK2.3 colocalized with CK2α. Furthermore, CK2.3 induced BMP signaling depends on ERK1/2 and Smad1/5/8 signaling pathways. CONCLUSION CK2.3 is a novel peptide that drives osteogenesis, and we detailed the molecular sequence of events that are triggered from the stimulation of CK2.3 until the induction of mineralization. This knowledge can be applied in the development of future therapeutics for osteoporosis.
Collapse
Affiliation(s)
- Vrathasha Vrathasha
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Hilary Weidner
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
13
|
Chaves I, van der Eerden B, Boers R, Boers J, Streng AA, Ridwan Y, Schreuders-Koedam M, Vermeulen M, van der Pluijm I, Essers J, Gribnau J, Reiss IKM, van der Horst GTJ. Gestational jet lag predisposes to later-life skeletal and cardiac disease. Chronobiol Int 2019; 36:657-671. [PMID: 30793958 DOI: 10.1080/07420528.2019.1579734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Circadian rhythm disturbance (CRD) increases the risk of disease, e.g. metabolic syndrome, cardiovascular disease, and cancer. In the present study, we investigated later life adverse health effects triggered by repeated jet lag during gestation. Pregnant mice were subjected to a regular light-dark cycle (CTRL) or to a repeated delay (DEL) or advance (ADV) jet lag protocol. Both DEL and ADV offspring showed reduced weight gain. ADV offspring had an increased circadian period, and an altered response to a jet lag was observed in both DEL and ADV offspring. Analysis of the bones of adult male ADV offspring revealed reduced cortical bone mass and strength. Strikingly, analysis of the heart identified structural abnormalities and impaired heart function. Finally, DNA methylation analysis revealed hypermethylation of miR17-92 cluster and differential methylation within circadian clock genes, which correlated with altered gene expression. We show that developmental CRD affects the circadian system and predisposes to non-communicable disease in adult life.
Collapse
Affiliation(s)
- Inês Chaves
- a Department of Molecular Genetics , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Bram van der Eerden
- b Department of Internal Medicine , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Ruben Boers
- c Department of Developmental Biology , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Joachim Boers
- c Department of Developmental Biology , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Astrid A Streng
- a Department of Molecular Genetics , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Yanto Ridwan
- d Department of Vascular Surgery , University Medical Center Rotterdam , Rotterdam , The Netherlands.,e Department of Radiology & Nuclear Medicine, Erasmus MC , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Marijke Schreuders-Koedam
- b Department of Internal Medicine , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Marijn Vermeulen
- f Department of Pediatrics , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Ingrid van der Pluijm
- a Department of Molecular Genetics , University Medical Center Rotterdam , Rotterdam , The Netherlands.,d Department of Vascular Surgery , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Jeroen Essers
- a Department of Molecular Genetics , University Medical Center Rotterdam , Rotterdam , The Netherlands.,d Department of Vascular Surgery , University Medical Center Rotterdam , Rotterdam , The Netherlands.,g Department of Radiation Oncology , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Joost Gribnau
- c Department of Developmental Biology , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Irwin K M Reiss
- e Department of Radiology & Nuclear Medicine, Erasmus MC , University Medical Center Rotterdam , Rotterdam , The Netherlands
| | | |
Collapse
|
14
|
Bao Q, Li A, Chen S, Feng J, Liu H, Qin H, Li J, Liu D, Shen Y, Zong Z. Disruption of bone morphogenetic protein type IA receptor in osteoblasts impairs bone quality and bone strength in mice. Cell Tissue Res 2018; 374:263-273. [DOI: 10.1007/s00441-018-2873-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 06/13/2018] [Indexed: 12/23/2022]
|
15
|
Vrathasha V, Booksh K, Duncan RL, Nohe A. Mechanisms of Cellular Internalization of Quantum Dot® Conjugated Bone Formation Mimetic Peptide CK2.3. NANOMATERIALS 2018; 8:nano8070513. [PMID: 29987256 PMCID: PMC6071089 DOI: 10.3390/nano8070513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a debilitating skeletal disorder that is characterized by loss of bone density over time. It affects one in two women and one in four men, age 50 and older. New treatments that specifically drive bone formation are desperately needed. We developed a peptide, CK2.3, that acts downstream of the bone morphogenetic protein receptor type Ia and it induces osteogenesis in-vitro and in-vivo. However, its mechanism of action, especially its mode of uptake by cells remains unknown. To demonstrate CK2.3 internalization within a cell, we conjugated CK2.3 to Quantum Dot®s (Qdot®s), semiconductor nanoparticles. We purified CK2.3-Qdot®s by size exclusion chromatography and verified the conjugation and stability using UV/VIS and Fourier transform infrared spectroscopy. Our results show that CK2.3 was conjugated to the Qdot®s and the conjugate was stable for at least 4 days at 37 °C. Moreover, CK2.3-Qdot®s exerted biological response similar to CK2.3. Addition of CK2.3-Qdot®s to cells followed by confocal imaging revealed that CK2.3-Qdot®s were internalized at 6 h post stimulation. Furthermore, using pharmacological inhibitors against endocytic pathways, we demonstrated that CK2.3-Qdot®s were internalized by caveolae. These results show for the first time that the novel peptide CK2.3 is taken up by the cell through caveolae mediated endocytosis.
Collapse
Affiliation(s)
- Vrathasha Vrathasha
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Karl Booksh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
16
|
Nguyen J, Weidner H, Schell LM, Sequeira L, Kabrick R, Dharmadhikari S, Coombs H, Duncan RL, Wang L, Nohe A. Synthetic Peptide CK2.3 Enhances Bone Mineral Density in Senile Mice. ACTA ACUST UNITED AC 2018; 6. [PMID: 30294717 PMCID: PMC6173331 DOI: 10.4172/2572-4916.1000190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Osteoporosis is a silent disease caused by low bone mineral density that results in bone fractures in 1 out of 2 women and 1 in 4 men over the age of 50. Although several treatments for osteopenia and osteoporosis are available, they have severe side effects and new treatments are desperately needed. Current treatments usually target osteoclasts and inhibit their activity or differentiation. Treatments that decrease osteoclast differentiation and activity but enhance osteogenesis and osteoblast activity are not available. We recently developed a peptide, CK2.3, that induces bone formation and increases bone mineral density as demonstrated by injection over the calvaria of 6 to 9-day-old mice and tail vein injection of 8-week-old mice. CK2.3 also decreased osteoclast formation and activity. However, these studies raise questions: does CK2.3 induce similar results in old mice and if so, what is the effective CK2.3 concentration and, is the bone mineral density of vertebrae of the spinal column increased as well? Methods: CK2.3 was systematically injected into the tail vein of female 6-month old mice with various concentrations of CK2.3: 0.76 μg/kg, 2.3 μg/kg, or 6.9 μg/kg per mice. Mice were sacrificed one week, two weeks, and four weeks after the first injection. Their spines and femurs were collected and analyzed for bone formation. Results: Femur and lumbar spine analyses found increased bone mineral density (BMD) and mineral apposition rate, with greater stiffness observed in femoral samples four weeks after the first injection. Histochemistry showed that osteoclastogenesis was suppressed in CK2.3 treated senile mice. Conclusions: For the first time, this study showed the increase of lumbar spine BMD by CK2.3. Moreover, it showed that enhancement of femur BMD was accompanied by increased femur stiffness only at medium concentration of CK2.3 four weeks after the first injection indicating the maintenance of bone’s structural integrity by CK2.3.
Collapse
Affiliation(s)
- John Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Hilary Weidner
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lora M Schell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Linda Sequeira
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Ryan Kabrick
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
17
|
Akkiraju H, Srinivasan PP, Xu X, Jia X, Safran CBK, Nohe A. CK2.1, a bone morphogenetic protein receptor type Ia mimetic peptide, repairs cartilage in mice with destabilized medial meniscus. Stem Cell Res Ther 2017; 8:82. [PMID: 28420447 PMCID: PMC5395786 DOI: 10.1186/s13287-017-0537-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/22/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) of the knee involves degeneration of articular cartilage of the diarthrodial joints. Current treatment options temporarily relieve the joint pain but do not restore the lost cartilage. We recently designed a novel bone morphogenetic protein receptor type I (BMPRI) mimetic peptide, CK2.1, that activates BMPRIa signaling in the absence of bone morphogenetic protein (BMP). Our previous research demonstrated that CK2.1 induced chondrogenesis in vitro and in vivo; however, it is unknown if CK2.1 restores damaged articular cartilage in vivo. In this study, we demonstrate that CK2.1 induced articular cartilage (AC) repair in an OA mouse model. METHODS We designed hyaluronic acid (HA)-based hydrogel particles (HGPs) that slowly release CK2.1. HGP-CK2.1 particles were tested for chondrogenic potency on pluripotent mesenchymal stem cells (C3H10T1/2 cells) and locally injected into the intra-articular capsule in mice with cartilage defects. C57BL/6J mice were operated on to destabilize the medial meniscus and these mice were kept for 6 weeks after surgery to sustain OA-like damage. Mice were then injected via the intra-articular capsule with HGP-CK2.1; 4 weeks after injection the mice were sacrificed and their femurs were analyzed for cartilage defects. RESULTS Immunohistochemical analysis of the cartilage demonstrated complete repair of the AC compared to sham-operated mice. Immunofluorescence analysis revealed collagen type IX production along with collagen type II in the AC of mice injected with HGP-CK2.1. Mice injected with phosphate-buffered saline (PBS) and HGP alone had greater collagen type X and osteocalcin production, in sharp contrast to those injected with HGP-CK2.1, indicating increased chondrocyte hypertrophy. CONCLUSIONS Our results demonstrate that the slow release HGP-CK2.1 drives cartilage repair without the induction of chondrocyte hypertrophy. The peptide CK2.1 could be a powerful tool in understanding the signaling pathways contributing to the repair process, and also may be used as a potential therapeutic for treating degenerative cartilage diseases such as OA.
Collapse
Affiliation(s)
- Hemanth Akkiraju
- Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY, 10027, USA
| | | | - Xian Xu
- Department of Material Sciences and Engineering, University of Delaware, Newark, DE, 19716, USA.,Present address: NAL Pharmaceuticals Ltd, Monmouth Junction, NJ, 08852, USA
| | - Xinqiao Jia
- Department of Material Sciences and Engineering, University of Delaware, Newark, DE, 19716, USA
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
18
|
Akkiraju H, Bonor J, Nohe A. CK2.1, a novel peptide, induces articular cartilage formation in vivo. J Orthop Res 2017; 35:876-885. [PMID: 27312334 PMCID: PMC5522739 DOI: 10.1002/jor.23342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Bone morphogenetic protein 2 regulates chondrogenesis and cartilage formation. However, it also induces chondrocyte hypertrophy and cartilage matrix degradation. We recently designed three peptides CK2.1, CK2.2, and CK2.3 that activate the BMP signaling pathways by releasing casein kinase II (CK2) from distinct sites at the bone morphogenetic protein receptor type Ia (BMPRIa). Since BMP2 is a major regulator of chondrogenesis and the peptides activated BMP signaling in a similar way, we evaluated the effect of these peptides on chondrogenesis and cartilage formation. C3H10T1/2 cells were stimulated with CK2.1, CK2.2, and CK2.3 and evaluated for the chondrogenic and osteogenic potential. For chondrogenesis, Alcian blue staining was performed. Additionally, collagen types II and X expression was measured. For osteogenesis, osteocalcin and von Kossa staining were performed. From the three peptides, CK2.1 was the most promising peptide to induce chondrogenesis but not osteogenesis. To investigate the effect of CK2.1 on articular cartilage formation in vivo, we injected CK2.1 into the tail vein of mice. Injection of CK2.1 into the tail vein of mice led to increased articular cartilage formation but not BMD. In sharp contrast, injection of BMP2 led to increased BMD and expression of collagen type X, a marker of chondrocyte hypertrophy. MMP13 expression was unchanged. Our study demonstrates that CK2.1 drives chondrogenesis and cartilage formation without induction of chondrocyte hypertrophy. Peptide CK2.1 may, therefore, be a valuable therapeutic for cartilage degenerative diseases. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:876-885, 2017.
Collapse
Affiliation(s)
- Hemanth Akkiraju
- Department of Biological Sciences; University of Delaware; Newark Delaware 19716
| | - Jeremy Bonor
- Department of Biological Sciences; University of Delaware; Newark Delaware 19716
| | - Anja Nohe
- Department of Biological Sciences; University of Delaware; Newark Delaware 19716
| |
Collapse
|
19
|
Lisberg A, Ellis R, Nicholson K, Moku P, Swarup A, Dhurjati P, Nohe A. Mathematical modeling of the effects of CK2.3 on mineralization in osteoporotic bone. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:208-215. [PMID: 28181418 PMCID: PMC5351412 DOI: 10.1002/psp4.12154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022]
Abstract
Osteoporosis is caused by decreased bone mineral density (BMD) and new treatments for this disease are desperately needed. Bone morphogenetic protein 2 (BMP2) is crucial for bone formation. The mimetic peptide CK2.3 acts downstream of BMP2 and increases BMD when injected systemically into the tail vein of mice. However, the most effective dosage needed to induce BMD in humans is unknown. We developed a mathematical model for CK2.3‐dependent bone mineralization. We used a physiologically based pharmacokinetic (PBPK) model to derive the CK2.3 concentration needed to increase BMD. Based on our results, the ideal dose of CK2.3 for a healthy individual to achieve the maximum increase of mineralization was about 409 µM injected in 500 µL volume, while dosage for osteoporosis patients was about 990 µM. This model showed that CK2.3 could increase the average area of bone mineralization in patients and in healthy adults.
Collapse
Affiliation(s)
- A Lisberg
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - R Ellis
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - K Nicholson
- Department of Mathematical SciencesUniversity of DelawareNewarkDelewareUSA
| | - P Moku
- Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| | - A Swarup
- Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| | - P Dhurjati
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Mathematical SciencesUniversity of DelawareNewarkDelewareUSA
- Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| | - A Nohe
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
20
|
Inhibition of Protein Kinase CK2 Prevents Adipogenic Differentiation of Mesenchymal Stem Cells Like C3H/10T1/2 Cells. Pharmaceuticals (Basel) 2017; 10:ph10010022. [PMID: 28208768 PMCID: PMC5374426 DOI: 10.3390/ph10010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/20/2017] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
Protein kinase CK2 as a holoenzyme is composed of two catalytic α- or α'-subunits and two non-catalytic β-subunits. Knock-out experiments revealed that CK2α and CK2β are required for embryonic development. Little is known about the role of CK2 during differentiation of stem cells. Mesenchymal stem cells (MSCs) are multipotent cells which can be differentiated into adipocytes in vitro. Thus, MSCs and in particular C3H/10T1/2 cells are excellent tools to study a possible role of CK2 in adipogenesis. We found downregulation of the CK2 catalytic subunits as well as a decrease in CK2 kinase activity with progression of differentiation. Inhibition of CK2 using the potent inhibitor CX-4945 impeded differentiation of C3H/10T1/2 cells into adipocytes. The inhibited cells lacked the observed decrease in CK2 expression, but showed a constant expression of all three CK2 subunits. Furthermore, inhibition of CK2 resulted in decreased cell proliferation in the early differentiation phase. Analysis of the main signaling cascade revealed an elevated expression of C/EBPβ and C/EBPδ and reduced expression of the adipogenic master regulators C/EBPα and PPARγ2. Thus, CK2 seems to be implicated in the regulation of different steps early in the adipogenic differentiation of MSC.
Collapse
|
21
|
Götz C, Montenarh M. Protein kinase CK2 in development and differentiation. Biomed Rep 2016; 6:127-133. [PMID: 28357063 DOI: 10.3892/br.2016.829] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022] Open
Abstract
Among the human kinomes, protein kinase CK2 (formerly termed casein kinase II) is considered to be essential, as it is implicated in the regulation of various cellular processes. Experiments with pharmacological inhibitors of the kinase activity of CK2 provide evidence that CK2 is essential for development and differentiation. Therefore, the present review addresses the role of CK2 during embryogenesis, neuronal, adipogenic, osteogenic and myogenic differentiation in established model cell lines, and in embryonic, neural and mesenchymal stem cells. CK2 kinase activity appears to be essential in the early stages of differentiation, as CK2 inhibition at early time points generally prevents differentiation. In addition, the present review reports on target proteins of CK2 in embryogenesis and differentiation.
Collapse
Affiliation(s)
- Claudia Götz
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| | - Mathias Montenarh
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| |
Collapse
|
22
|
Shi J, Liu N, Xiao Y, Takei Y, Yasue M, Suzuki Y, Hou Z, Ohno H, Yamada M, Fuchi N, Oshida K, Miyamoto Y, Tsujimoto G, Hirasawa A. The Effects of a Selective CK2 Inhibitor on Anti-glomerular Basement Membrane Glomerulonephritis in Rats. Biol Pharm Bull 2016; 38:1345-51. [PMID: 26328489 DOI: 10.1248/bpb.b15-00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase CK2 ("casein kinase II") is a protein serine/threonine kinase that plays critical roles in biological processes such as cell growth, cell cycle progression, and apoptosis. So far, we have identified that one catalytic isozyme of CK2, CK2α, is over-expressed in the kidney during the progression of glomerulonephritis (GN). Moreover, we have shown that in vivo inhibition of CK2 by administration of CK2 inhibitors was effective in the treatment of experimental GN. Hence the development of potent CK2 inhibitors should be considered in therapeutic strategies for GN. In the present study we identified compound 13, a pyrazine derivative, as a potent CK2 inhibitor. By performing enzyme kinetics analysis in vitro, we characterized the inhibition of compound 13 toward each CK2 catalytic isozyme. Furthermore, in vivo, we demonstrated that compound 13 is effective in attenuating proteinuria, decreasing the enhanced level of blood urea nitrogen and serum creatinine, and ameliorating glomerular crescent formation in an experimental GN rat model. On the other hand, cellular apoptosis was detected in the rat testis following administration of compound 13. This study provides clues for new strategies for developing applicable compounds into CK2-targeted GN treatments.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Amso Z, Cornish J, Brimble MA. Short Anabolic Peptides for Bone Growth. Med Res Rev 2016; 36:579-640. [DOI: 10.1002/med.21388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/24/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
| | - Jillian Cornish
- Department of Medicine; The University of Auckland; Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
24
|
Protein kinase CK2 is necessary for the adipogenic differentiation of human mesenchymal stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2207-16. [DOI: 10.1016/j.bbamcr.2015.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 11/17/2022]
|
25
|
Akkiraju H, Bonor J, Olli K, Bowen C, Bragdon B, Coombs H, Donahue LR, Duncan R, Nohe A. Systemic injection of CK2.3, a novel peptide acting downstream of bone morphogenetic protein receptor BMPRIa, leads to increased trabecular bone mass. J Orthop Res 2015; 33:208-15. [PMID: 25331517 PMCID: PMC4304894 DOI: 10.1002/jor.22752] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/19/2014] [Indexed: 02/04/2023]
Abstract
Bone Morphogenetic Protein 2 (BMP2) regulates bone integrity by driving both osteogenesis and osteoclastogenesis. However, BMP2 as a therapeutic has significant drawbacks. We have designed a novel peptide CK2.3 that blocks the interaction of Casein Kinase 2 (CK2) with Bone Morphogenetic Protein Receptor type Ia (BMPRIa), thereby activating BMP signaling pathways in the absence of ligand. Here, we show that CK2.3 induced mineralization in primary osteoblast cultures isolated from calvaria and bone marrow stromal cells (BMSCs) of 8 week old mice. Further, systemic tail vein injections of CK2.3 in 8 week old mice resulted in increased bone mineral density (BMD) and mineral apposition rate (MAR). In situ immunohistochemistry of the femur found that CK2.3 injection induced phosphorylation of extracellular signal-related kinase (ERK), but not Smad in osteocytes and osteoblasts, suggesting that CK2.3 signaling occurred through Smad independent pathway. Finally mice injected with CK2.3 exhibited decreased osteoclast differentiation and osteoclast activity. These data indicate that the novel mimetic peptide CK2.3 activated BMPRIa downstream signaling to enhance bone formation without the increase in osteoclast activity that accompanies BMP 2 stimulation.
Collapse
Affiliation(s)
- Hemanth Akkiraju
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Jeremy Bonor
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Kristine Olli
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Chris Bowen
- Department of Biological Sciences, University of Delaware, Newark, DE
| | | | | | | | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE,to whom should be corresponded.
| |
Collapse
|
26
|
Abdallah BM, Jafari A, Zaher W, Qiu W, Kassem M. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation. Bone 2015; 70:28-36. [PMID: 25138551 DOI: 10.1016/j.bone.2014.07.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/06/2023]
Abstract
Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for identifying druggable targets for enhancing bone formation. This review will discuss the functions and the molecular mechanisms of action on osteoblast differentiation and bone formation; of a number of recently identified regulatory molecules: the non-canonical Notch signaling molecule Delta-like 1/preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone.
Collapse
Affiliation(s)
- Basem M Abdallah
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Abbas Jafari
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Walid Zaher
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Saudi Arabia
| | - Weimin Qiu
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Saudi Arabia.
| |
Collapse
|
27
|
Halcsik E, Forni MF, Fujita A, Verano-Braga T, Jensen ON, Sogayar MC. New insights in osteogenic differentiation revealed by mass spectrometric assessment of phosphorylated substrates in murine skin mesenchymal cells. BMC Cell Biol 2013; 14:47. [PMID: 24148232 PMCID: PMC3819743 DOI: 10.1186/1471-2121-14-47] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/09/2013] [Indexed: 01/15/2023] Open
Abstract
Background Bone fractures and loss represent significant costs for the public health system and often affect the patients quality of life, therefore, understanding the molecular basis for bone regeneration is essential. Cytokines, such as IL-6, IL-10 and TNFα, secreted by inflammatory cells at the lesion site, at the very beginning of the repair process, act as chemotactic factors for mesenchymal stem cells, which proliferate and differentiate into osteoblasts through the autocrine and paracrine action of bone morphogenetic proteins (BMPs), mainly BMP-2. Although it is known that BMP-2 binds to ActRI/BMPR and activates the SMAD 1/5/8 downstream effectors, little is known about the intracellular mechanisms participating in osteoblastic differentiation. We assessed differences in the phosphorylation status of different cellular proteins upon BMP-2 osteogenic induction of isolated murine skin mesenchymal stem cells using Triplex Stable Isotope Dimethyl Labeling coupled with LC/MS. Results From 150 μg of starting material, 2,264 proteins were identified and quantified at five different time points, 235 of which are differentially phosphorylated. Kinase motif analysis showed that several substrates display phosphorylation sites for Casein Kinase, p38, CDK and JNK. Gene ontology analysis showed an increase in biological processes related with signaling and differentiation at early time points after BMP2 induction. Moreover, proteins involved in cytoskeleton rearrangement, Wnt and Ras pathways were found to be differentially phosphorylated during all timepoints studied. Conclusions Taken together, these data, allow new insights on the intracellular substrates which are phosphorylated early on during differentiation to BMP2-driven osteoblastic differentiation of skin-derived mesenchymal stem cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Mari Cleide Sogayar
- Chemistry Institute, Department of Biochemistry, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo 05508-000, SP, Brazil.
| |
Collapse
|
28
|
Inhibition of CK2 binding to BMPRIa induces C2C12 differentiation into osteoblasts and adipocytes. J Cell Commun Signal 2013; 7:265-78. [PMID: 23637019 DOI: 10.1007/s12079-013-0199-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/12/2013] [Indexed: 01/01/2023] Open
Abstract
BMP2 is a growth factor that regulates the cell fate of mesenchymal stem cells into osteoblast and adipocytes. However, the detailed signaling pathways and mechanism are unknown. We previously reported a new interaction of Casein kinase II (CK2) with the BMP receptor type-Ia (BMPRIa) and demonstrated using mimetic peptides CK2.1, CK2.2 and CK2.3 that the release of CK2 from BMPRIa activates Smad signaling and osteogenesis. Previously, we showed that mutation of these CK2 sites on BMPRIa (MCK2.1 (476S-A), MCK2.2 (324S-A) and MCK2.3 (214S-A)) induced osteogenesis. However, one mutant MCK2.1 induced osteogenesis similar to overexpression of wild type BMPRIa, suggesting that the effect of this mutant on mineralization was due to overexpression. In this paper we investigated the signaling pathways involved in the CK2-BMPRIa mediated osteogenesis and identified a new signaling pathway activating adipogenesis dependent on the BMPRIa and CK2 association. Further the mechanism for adipogenesis and osteogenesis is specific to the CK2 interaction site on BMPRIa. In detail our data show that overexpression of MCK2.2 induced osteogenesis was dependent on Caveolin-1 (Cav1) and the activation of the Smad and mTor pathways, while overexpression of MCK2.3 induced osteogenesis was independent of Caveolin-1 without activation of Smad pathway. However, MCK2.3 induced osteogenesis via the MEK pathway. The adipogenesis induced by the overexpression of MCK2.2 in C2C12 cells was dependent on the p38 and ERK pathways as well as Caveolin-1. These data suggest that signaling through BMPRIa used two different signaling pathways to induce osteogenesis dependent on CK2. Additionally the data supports a signaling pathway initiated in caveolae and one outside of caveolae to induce mineralization. Moreover, they reveal the signaling pathway of BMPRIa mediated adipogenesis.
Collapse
|
29
|
Protein kinase CK2 is implicated in early steps of the differentiation of pre-adipocytes into adipocytes. Mol Cell Biochem 2012; 365:37-45. [DOI: 10.1007/s11010-012-1241-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/14/2012] [Indexed: 12/13/2022]
|
30
|
Devarajan-Ketha H, Craig TA, Madden BJ, Robert Bergen H, Kumar R. The sclerostin-bone protein interactome. Biochem Biophys Res Commun 2011; 417:830-5. [PMID: 22206666 DOI: 10.1016/j.bbrc.2011.12.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 01/25/2023]
Abstract
The secreted glycoprotein, sclerostin alters bone formation. To gain insights into the mechanism of action of sclerostin, we examined the interactions of sclerostin with bone proteins using a sclerostin affinity capture technique. Proteins from decalcified rat bone were captured on a sclerostin-maltose binding protein (MBP) amylose column, or on a MBP amylose column. The columns were extensively washed with low ionic strength buffer, and bound proteins were eluted with buffer containing 1M sodium chloride. Eluted proteins were separated by denaturing sodium-dodecyl sulfate gel electrophoresis and were identified by mass spectrometry. Several previously unidentified full-length sclerostin-interacting proteins such as alkaline phosphatase, carbonic anhydrase, gremlin-1, fetuin A, midkine, annexin A1 and A2, and collagen α1, which have established roles in bone formation or resorption processes, were bound to the sclerostin-MBP amylose resin but not to the MBP amylose resin. Other full-length sclerostin-interacting proteins such as casein kinase II and secreted frizzled related protein 4 that modulate Wnt signaling were identified. Several peptides derived from proteins such as Phex, asporin and follistatin that regulate bone metabolism also bound sclerostin. Sclerostin interacts with multiple proteins that alter bone formation and resorption and is likely to function by altering several biologically relevant pathways in bone.
Collapse
Affiliation(s)
- Hemamalini Devarajan-Ketha
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|