1
|
Dicks AR, Maksaev GI, Harissa Z, Savadipour A, Tang R, Steward N, Liedtke W, Nichols CG, Wu CL, Guilak F. Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes. eLife 2023; 12:e71154. [PMID: 36810131 PMCID: PMC9949800 DOI: 10.7554/elife.71154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Mutations in the TRPV4 ion channel can lead to a range of skeletal dysplasias. However, the mechanisms by which TRPV4 mutations lead to distinct disease severity remain unknown. Here, we use CRISPR-Cas9-edited human-induced pluripotent stem cells (hiPSCs) harboring either the mild V620I or lethal T89I mutations to elucidate the differential effects on channel function and chondrogenic differentiation. We found that hiPSC-derived chondrocytes with the V620I mutation exhibited increased basal currents through TRPV4. However, both mutations showed more rapid calcium signaling with a reduced overall magnitude in response to TRPV4 agonist GSK1016790A compared to wildtype (WT). There were no differences in overall cartilaginous matrix production, but the V620I mutation resulted in reduced mechanical properties of cartilage matrix later in chondrogenesis. mRNA sequencing revealed that both mutations up-regulated several anterior HOX genes and down-regulated antioxidant genes CAT and GSTA1 throughout chondrogenesis. BMP4 treatment up-regulated several essential hypertrophic genes in WT chondrocytes; however, this hypertrophic maturation response was inhibited in mutant chondrocytes. These results indicate that the TRPV4 mutations alter BMP signaling in chondrocytes and prevent proper chondrocyte hypertrophy, as a potential mechanism for dysfunctional skeletal development. Our findings provide potential therapeutic targets for developing treatments for TRPV4-mediated skeletal dysplasias.
Collapse
Affiliation(s)
- Amanda R Dicks
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Grigory I Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. LouisSt LouisUnited States
| | - Zainab Harissa
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Alireza Savadipour
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
- Department of Mechanical Engineering and Material Science, Washington University in St. LouisSt. LouisUnited States
| | - Ruhang Tang
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Nancy Steward
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Wolfgang Liedtke
- Department of Neurology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Pathobiology - NYU College of DentistryNew YorkUnited States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. LouisSt LouisUnited States
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| |
Collapse
|
2
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
3
|
Rowe PS, McCarthy EM, Yu AL, Stubbs JR. Correction of Vascular Calcification and Hyperphosphatemia in CKD Rats Treated with ASARM Peptide. KIDNEY360 2022; 3:1683-1698. [PMID: 36514737 PMCID: PMC9717652 DOI: 10.34067/kid.0002782022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Background Abnormalities in calcium, phosphorus, PTH, vitamin D metabolism, bone, and vascular calcification occur in chronic kidney disease mineral bone disorder (CKD-MBD). Calciphylaxis, involving painful, ulcerative skin lesions, is also a major problem associated with CKD-MBD. There are no quality medical interventions to address these clinical issues. Bone ASARM peptides are strong inhibitors of mineralization and induce hypophosphatemia by inhibiting phosphate uptake from the gut. We hypothesize treatment of CKD-MBD rats with ASARM peptides will reverse hyperphosphatemia, reduce soft-tissue calcification, and prevent calciphylaxis. Methods To test our hypothesis, we assessed the effects of synthetic ASARM peptide in rats that had undergone a subtotal 5/6th nephrectomy (56NEPHREX), a rodent model of CKD-MBD. All rats were fed a high phosphate diet (2% Pi) to worsen mineral metabolism defects. Changes in serum potassium, phosphate, BUN, creatinine, PTH, FGF23, and calcium were assessed in response to 28 days of ASARM peptide infusion. Also, changes in bone quality, soft-tissue calcification, and expression of gut Npt2b (Slc34a2) were studied following ASARM peptide treatment. Results Rats that had undergone 56NEPHREX treated with ASARM peptide showed major improvements in hyperphosphatemia, blood urea nitrogen (BUN), and bone quality compared with vehicle controls. Also, ASARM-infused 56NEPHREX rats displayed improved renal, brain, and cardiovascular calcification. Notably, ASARM peptide infusion prevented the genesis of subdermal medial blood vessel calcification and calciphylaxis-like lesions in 56NEPHREX rats compared with vehicle controls. Conclusions ASARM peptide infusion corrects hyperphosphatemia and improves vascular calcification, renal calcification, brain calcification, bone quality, renal function, and skin mineralization abnormalities in 56NEPHREX rats. These findings confirm our hypothesis and support the utility of ASARM peptide treatment in patients with CKD-MBD.
Collapse
Affiliation(s)
- Peter S. Rowe
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ellen M. McCarthy
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan L. Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R. Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
4
|
Eller OC, Stair RN, Neal C, Rowe PS, Nelson-Brantley J, Young EE, Baumbauer KM. Comprehensive phenotyping of cutaneous afferents reveals early-onset alterations in nociceptor response properties, release of CGRP, and hindpaw edema following spinal cord injury. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100097. [PMID: 35756343 PMCID: PMC9218836 DOI: 10.1016/j.ynpai.2022.100097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a complex syndrome that has profound effects on patient well-being, including the development of medically-resistant chronic pain. The mechanisms underlying SCI pain have been the subject of thorough investigation but remain poorly understood. While the majority of the research has focused on changes occurring within and surrounding the site of injury in the spinal cord, there is now a consensus that alterations within the peripheral nervous system, namely sensitization of nociceptors, contribute to the development and maintenance of chronic SCI pain. Using an ex vivo skin/nerve/DRG/spinal cord preparation to characterize afferent response properties following SCI, we found that SCI increased mechanical and thermal responding, as well as the incidence of spontaneous activity (SA) and afterdischarge (AD), in below-level C-fiber nociceptors 24 hr following injury relative to naïve controls. Interestingly, the distribution of nociceptors that exhibit SA and AD are not identical, and the development of SA was observed more frequently in nociceptors with low heat thresholds, while AD was found more frequently in nociceptors with high heat thresholds. We also found that SCI resulted in hindpaw edema and elevated cutaneous calcitonin gene-related peptide (CGRP) concentration that were not observed in naïve mice. These results suggest that SCI causes a rapidly developing nociceptor sensitization and peripheral inflammation that may contribute to the early emergence and persistence of chronic SCI pain.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rena N. Stair
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher Neal
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Peter S.N. Rowe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- The Kidney Institute & Division of Nephrology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer Nelson-Brantley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Kyle M. Baumbauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| |
Collapse
|
5
|
Ozanne J, Shek B, Stephen LA, Novak A, Milne E, Mclachlan G, Midwood KS, Farquharson C. Tenascin-C is a driver of inflammation in the DSS model of colitis. Matrix Biol Plus 2022; 14:100112. [PMID: 35669358 PMCID: PMC9166467 DOI: 10.1016/j.mbplus.2022.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Increased tenascin-C staining appeared to predominantly occur in damaged ulcerated areas. Tenascin-C knock-out mice were partly protected from DSS induced colitis. Mice deficient in tenascin-C had areas of + ve EpCAM staining indicating that crypt and epithelial integrity was maintained.
Inflammatory Bowel Disease (IBD) is a grouping of chronic inflammatory disorders of the gut. Tenascin-C is a pro-inflammatory, extracellular matrix protein found upregulated in IBD patients and whilst a pathological driver of chronic inflammation, its precise role in the etiology of IBD is unknown. To study tenascin-C’s role in colitis pathology we investigated its expression in a murine model of IBD. Wild-type (WT) or tenascin-C knockout (KO) male mice were left untreated or treated with dextran sodium sulphate (DSS) in their drinking water. Tenascin-C was upregulated at the mRNA level in the colitic distal colon of day eight DSS treated mice, coinciding with significant increases in gross and histological pathology. Immunohistochemistry localized this increase in tenascin-C to areas of inflammation and ulceration in the mucosa. Tenascin-C KO mice exhibited reduced gross pathology in comparison. These differences also extended to the histopathological level where reduced colonic inflammation and tissue damage were found in KO compared to WT mice. Furthermore, the severity of the distal colon lesions were less in the KO mice after 17 days of recovery from DSS treatment. This study demonstrates a role for tenascin-C as a driver of inflammatory pathology in a murine model of IBD and thus suggests neutralizing its pro-inflammatory activity could be explored as a therapeutic strategy for treating IBD.
Collapse
|
6
|
Fuente R, García-Bengoa M, Fernández-Iglesias Á, Gil-Peña H, Santos F, López JM. Cellular and Molecular Alterations Underlying Abnormal Bone Growth in X-Linked Hypophosphatemia. Int J Mol Sci 2022; 23:ijms23020934. [PMID: 35055123 PMCID: PMC8778463 DOI: 10.3390/ijms23020934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.
Collapse
Affiliation(s)
- Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Physiology, Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - María García-Bengoa
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Ángela Fernández-Iglesias
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Fernando Santos
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain; (R.F.); (M.G.-B.); (Á.F.-I.); (H.G.-P.); (F.S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - José Manuel López
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Correspondence:
| |
Collapse
|
7
|
Minamizaki T, Sakurai K, Hayashi I, Toshishige M, Yoshioka H, Kozai K, Yoshiko Y. Active sites of human MEPE-ASARM regulating bone matrix mineralization. Mol Cell Endocrinol 2020; 517:110931. [PMID: 32712387 DOI: 10.1016/j.mce.2020.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/25/2022]
Abstract
The proteolytic fragment ASARM (acidic serine- and aspartate-rich motif) of MEPE (matrix extracellular phosphoglycoprotein) (MEPE-ASARM) may act as an endogenous anti-mineralization factor involved in X-linked hypophosphatemic rickets/osteomalacia (XLH). We synthesized MEPE-ASARM peptides and relevant peptide fragments with or without phosphorylated Ser residues (pSer) to determine the active site(s) of MEPE-ASARM in a rat calvaria cell culture model. None of the synthetic peptides elicited changes in cell death, proliferation or differentiation, but the peptide (pASARM) with three pSer residues inhibited mineralization without causing changes in gene expression of osteoblast markers tested. The anti-mineralization effect was maintained in peptides in which any one of three pSer residues was deleted. Polyclonal antibodies recognizing pASARM but not ASARM abolished the pASARM effect. Deletion of six N-terminal residues but leaving the recognition sites for PHEX (phosphate regulating endopeptidase homolog, X-linked), a membrane endopeptidase responsible for XLH, intact and two C-terminal amino acid residues did not alter the anti-mineralization activity of pASARM. Our results strengthen understanding of the active sites of MEPE-pASARM and allowed us to identify a shorter more stable sequence with fewer pSer residues still exhibiting hypomineralization activity, reducing peptide synthesis cost and increasing reliability for exploring biological and potential therapeutic effects.
Collapse
Affiliation(s)
- Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kaoru Sakurai
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ikue Hayashi
- Research Facility, Hiroshima University School of Dentistry, Hiroshima, Japan
| | - Masaaki Toshishige
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirotaka Yoshioka
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
8
|
Eltan M, Alavanda C, Yavas Abali Z, Ergenekon P, Yalındag Ozturk N, Sakar M, Dagcinar A, Kirkgoz T, Kaygusuz SB, Gokdemir Y, Elcioglu HN, Guran T, Bereket A, Ata P, Turan S. A Rare Cause of Hypophosphatemia: Raine Syndrome Changing Clinical Features with Age. Calcif Tissue Int 2020; 107:96-103. [PMID: 32337609 PMCID: PMC7222149 DOI: 10.1007/s00223-020-00694-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/11/2020] [Indexed: 11/29/2022]
Abstract
Raine Syndrome (RS) is caused by biallelic loss-of-function mutations in FAM20C gene and characterized by hypophosphatemia, typical facial and skeletal features. Subperiosteal bone formation and generalized osteosclerosis are the most common radiological findings. Here we present a new case with RS. A 9-month-old male patient on a home-type ventilator was referred for hypophosphatemia. He was born with a weight of 3800 g to non-consanguineous parents. Prenatal ultrasound had demonstrated nasal bone agenesis. A large anterior fontanel, frontal bossing, exophthalmos, hypoplastic nose, high arched palate, low set ears, triangular mouth, and corneal opacification were detected on physical examination. Serial skeletal X-rays revealed diffuse osteosclerosis at birth which was gradually decreased by the age of 5 months with subperiosteal undermineralized bone formation and medullary space of long bone could be distinguishable with bone-within-a-bone appearance. At 9 months of age, hand X-ray revealed cupping of the ulna with loose radial bone margin with minimal fraying and osteopenia. Cranial computed tomography scan showed bilateral periventricular calcification and hydrocephalus in progress. The clinical, laboratory, and radiological examinations were consistent with RS. Molecular analyses revealed a compound heterozygous mutation in FAM20C gene (a known pathogenic mutation, c.1645C > T, p.Arg549Trp; and a novel c.863 + 5 G > C variant). The patient died due to respiratory failure at 17 months of age. This case allowed us to demonstrate natural progression of skeletal features in RS. Furthermore, we have described a novel FAM20C variant causing RS. Previous literature on RS is also reviewed.
Collapse
Affiliation(s)
- Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Ceren Alavanda
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Zehra Yavas Abali
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Pinar Ergenekon
- Department of Pediatric Chest Disease, Marmara University School of Medicine, Istanbul, Turkey
| | - Nilufer Yalındag Ozturk
- Department of Pediatric Intensive Care Unit, Marmara University School of Medicine, Istanbul, Turkey
| | - Mustafa Sakar
- Department of Pediatric Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Adnan Dagcinar
- Department of Pediatric Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Tarik Kirkgoz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Sare Betul Kaygusuz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Yasemin Gokdemir
- Department of Pediatric Chest Disease, Marmara University School of Medicine, Istanbul, Turkey
| | - Huriye Nursel Elcioglu
- Department of Pediatric Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Pinar Ata
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
9
|
Ozsen A, Furman A, Guran T, Bereket A, Turan S. Fibroblast Growth Factor-23 and Matrix Extracellular Phosphoglycoprotein Levels in Healthy Children and, Pregnant and Puerperal Women. Horm Res Paediatr 2020; 92:302-310. [PMID: 32187608 DOI: 10.1159/000506477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/12/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Fibroblast growth factor (FGF-23) and matrix extracellular phosphoglycoprotein (MEPE) are bone-related factors and their role in physiologic conditions and in different life stages are unknown. We aimed to evaluate age- and pregnancy-related changes in MEPE and FGF-23 levels and their correlations with calcium (Ca)-phosphate (PO4) metabolism. METHODS The study population included 96 healthy children (50 females) and 31 women (11 healthy, 10 pregnant, and 10 lactating). Intact FGF-23 (iFGF-23), MEPE, ferritin, parathyroid hormone (PTH), 25-OH vitamin D, alkaline phosphatase (ALP), IGF-I, IGFBP-3 and, Ca, PO4 and creatine (Cre) in serum (S) and urine (U) samples were determined. The renal phosphate threshold (TmPO4/GFR) and z-scores for the parameters that show age-related changes were calculated. RESULTS Serum iFGF-23 concentrations showed nonsignificant changes with age; however, MEPE decreased with age, reaching the lowest levels after 7 years. Additionally, higher serum MEPE concentrations were observed during pregnancy. Other than ALP, all other examined parameters demonstrated age-related changes. ALP, BUN, S-Cre, and U-Ca/Cre showed puerperal and pregnancy related changes together with MEPE. iFGF-23 was positively correlated with S-PO4 and TmPO4/GFR. MEPE was positively correlated with S-Ca, S-PO4 and TmPO4/GFR and negatively correlated with PTH, IGF-1, and IGFBP-3. CONCLUSION Not iFGF-23 but MEPE showed age-dependent changes and was affected by pregnancy. Although, MEPE and iFGF-23 did not correlate with each other, they seem to affect serum and urinary phosphate in the same direction. Additionally, we found evidence that ferritin and growth factors might have a role in serum calcium and phosphate regulation.
Collapse
Affiliation(s)
- Ahu Ozsen
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Andrzej Furman
- Institute of Environmental Sciences, Bogazici University, Istanbul, Turkey
| | - Tulay Guran
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey,
| |
Collapse
|
10
|
Abstract
The ex vivo organ culture of bone provides many of the advantages of both the whole organism and isolated cell strategies and can deliver valuable insight into the network of processes and activities that are fundamental to bone and cartilage biology. Through maintaining the bone and/or cartilage cells in their native environment, this model system provides the investigator with a powerful experimental protocol to address specific facets of skeletal growth and development. In this chapter, we outline the basic protocols and possible readouts of organ culture models to replicate; (a) linear bone growth (murine metatarsal culture model), (b) bone and cartilage metabolism (murine femoral head culture model), (c) bone response to mechanical stimulation (bovine trabecular core culture model), and (d) bone resorption and formation (murine calvaria culture model).
Collapse
|
11
|
Staines K, Poulet B, Wentworth D, Pitsillides A. The STR/ort mouse model of spontaneous osteoarthritis - an update. Osteoarthritis Cartilage 2017; 25:802-808. [PMID: 27965138 PMCID: PMC5446355 DOI: 10.1016/j.joca.2016.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 02/02/2023]
Abstract
Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes.
Collapse
Affiliation(s)
- K.A. Staines
- Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK,School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK,Address correspondence and reprint requests to: K.A. Staines, School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK.Edinburgh Napier UniversitySchool of Applied SciencesSighthill CampusEdinburghEH11 4BNUK
| | - B. Poulet
- Institute of Ageing and Chronic Diseases, Musculoskeletal Biology 1, University of Liverpool, Room 286, Second Floor, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - D.N. Wentworth
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - A.A. Pitsillides
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
12
|
Houston DA, Staines KA, MacRae VE, Farquharson C. Culture of Murine Embryonic Metatarsals: A Physiological Model of Endochondral Ossification. J Vis Exp 2016. [PMID: 28060328 PMCID: PMC5226350 DOI: 10.3791/54978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The fundamental process of endochondral ossification is under tight regulation in the healthy individual so as to prevent disturbed development and/or longitudinal bone growth. As such, it is imperative that we further our understanding of the underpinning molecular mechanisms involved in such disorders so as to provide advances towards human and animal patient benefit. The mouse metatarsal organ explant culture is a highly physiological ex vivo model for studying endochondral ossification and bone growth as the growth rate of the bones in culture mimic that observed in vivo. Uniquely, the metatarsal organ culture allows the examination of chondrocytes in different phases of chondrogenesis and maintains cell-cell and cell-matrix interactions, therefore providing conditions closer to the in vivo situation than cells in monolayer or 3D culture. This protocol describes in detail the intricate dissection of embryonic metatarsals from the hind limb of E15 murine embryos and the subsequent analyses that can be performed in order to examine endochondral ossification and longitudinal bone growth.
Collapse
Affiliation(s)
- Dean A Houston
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh;
| | - Katherine A Staines
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh
| | - Vicky E MacRae
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh
| | - Colin Farquharson
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh
| |
Collapse
|
13
|
Marino S, Staines KA, Brown G, Howard-Jones RA, Adamczyk M. Models of ex vivo explant cultures: applications in bone research. BONEKEY REPORTS 2016; 5:818. [PMID: 27408711 PMCID: PMC4926536 DOI: 10.1038/bonekey.2016.49] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023]
Abstract
Ex vivo explant culture models are powerful tools in bone research. They allow investigation of bone and cartilage responses to specific stimuli in a controlled manner that closely mimics the in vivo processes. Because of limitations in obtaining healthy human bone samples the explant growth of animal tissue serves as a platform to study the complex physico-chemical properties of the bone. Moreover, these models enable preserving important cell-cell and cell-matrix interactions in order to better understand the behaviour of cells in their natural three-dimensional environment. Thus, the use of bone ex vivo explant cultures can frequently be of more physiological relevance than the use of two-dimensional primary cells grown in vitro. Here, we describe isolation and ex vivo growth of different animal bone explant models including metatarsals, femoral heads, calvaria, mandibular slices and trabecular cores. We also describe how these explants are utilised to study bone development, cartilage and bone metabolism, cancer-induced bone diseases, stem cell-driven bone repair and mechanoadaptation. These techniques can be directly used to understand mechanisms linked with bone physiology or bone-associated diseases.
Collapse
Affiliation(s)
- Silvia Marino
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre for Bone Research, Medical School, The University of Sheffield, Sheffield, UK
| | | | - Genevieve Brown
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Rachel Anne Howard-Jones
- Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Magdalena Adamczyk
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre for Bone Research, Medical School, The University of Sheffield, Sheffield, UK
- Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
14
|
Cui L, Houston DA, Farquharson C, MacRae VE. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 2016; 87:147-58. [PMID: 27072517 DOI: 10.1016/j.bone.2016.04.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
The importance of matrix vesicles (MVs) has been repeatedly highlighted in the formation of cartilage, bone, and dentin since their discovery in 1967. These nano-vesicular structures, which are found in the extracellular matrix, are believed to be one of the sites of mineral nucleation that occurs in the organic matrix of the skeletal tissues. In the more recent years, there have been numerous reports on the observation of MV-like particles in calcified vascular tissues that could be playing a similar role. Therefore, here, we review the characteristics MVs possess that enable them to participate in mineral deposition. Additionally, we outline the content of skeletal tissue- and soft tissue-derived MVs, and discuss their key mineralisation mediators that could be targeted for future therapeutic use.
Collapse
Affiliation(s)
- L Cui
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK.
| | - D A Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - C Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - V E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
15
|
Staines KA, Madi K, Mirczuk SM, Parker S, Burleigh A, Poulet B, Hopkinson M, Bodey AJ, Fowkes RC, Farquharson C, Lee PD, Pitsillides AA. Endochondral Growth Defect and Deployment of Transient Chondrocyte Behaviors Underlie Osteoarthritis Onset in a Natural Murine Model. Arthritis Rheumatol 2016; 68:880-91. [PMID: 26605758 PMCID: PMC4832379 DOI: 10.1002/art.39508] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/05/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To explore whether aberrant transient chondrocyte behaviors occur in the joints of STR/Ort mice (which spontaneously develop osteoarthritis [OA]) and whether they are attributable to an endochondral growth defect. METHODS Knee joints from STR/Ort mice with advanced OA and age-matched CBA (control) mice were examined by Affymetrix microarray profiling, multiplex polymerase chain reaction (PCR) analysis, and immunohistochemical labeling of endochondral markers, including sclerostin and MEPE. The endochondral phenotype of STR/Ort mice was analyzed by histologic examination, micro-computed tomography, and ex vivo organ culture. A novel protocol for quantifying bony bridges across the murine epiphysis (growth plate fusion) using synchrotron x-ray computed microtomography was developed and applied. RESULTS Meta-analysis of transcription profiles showed significant elevation in functions linked with endochondral ossification in STR/Ort mice (compared to CBA mice; P < 0.05). Consistent with this, immunolabeling revealed increased matrix metalloproteinase 13 (MMP-13) and type X collagen expression in STR/Ort mouse joints, and multiplex quantitative reverse transcriptase-PCR showed differential expression of known mineralization regulators, suggesting an inherent chondrocyte defect. Support for the notion of an endochondral defect included accelerated growth, increased zone of growth plate proliferative chondrocytes (P < 0.05), and widespread type X collagen/MMP-13 labeling beyond the expected hypertrophic zone distribution. OA development involved concomitant focal suppression of sclerostin/MEPE in STR/Ort mice. Our novel synchrotron radiation microtomography method showed increased numbers (P < 0.001) and mean areal growth plate bridge densities (P < 0.01) in young and aged STR/Ort mice compared to age-matched CBA mice. CONCLUSION Taken together, our data support the notion of an inherent endochondral defect that is linked to growth dynamics and subject to regulation by the MEPE/sclerostin axis and may represent an underlying mechanism of pathologic ossification in OA.
Collapse
Affiliation(s)
- K. A. Staines
- Royal Veterinary College, University of London, London, UK, and Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter Bush, UK
| | - K. Madi
- Manchester X‐Ray Imaging Facility, University of Manchester, Manchester, UK
| | - S. M. Mirczuk
- Royal Veterinary College, University of London, London, UK;
| | - S. Parker
- Royal Veterinary College, University of London, London, UK;
| | - A. Burleigh
- Royal Veterinary College, University of London, London, UK;
| | - B. Poulet
- University College London Medical School, London, UK
| | - M. Hopkinson
- Royal Veterinary College, University of London, London, UK;
| | - A. J. Bodey
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - R. C. Fowkes
- Royal Veterinary College, University of London, London, UK;
| | - C. Farquharson
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, UK
| | - P. D. Lee
- Manchester X‐Ray Imaging Facility, University of Manchester, Manchester, UK
| | | |
Collapse
|
16
|
Gullard A, Gluhak-Heinrich J, Papagerakis S, Sohn P, Unterbrink A, Chen S, MacDougall M. MEPE Localization in the Craniofacial Complex and Function in Tooth Dentin Formation. J Histochem Cytochem 2016; 64:224-36. [PMID: 26927967 DOI: 10.1369/0022155416635569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 01/05/2023] Open
Abstract
Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein found in dental and skeletal tissues. Although information regarding the role of MEPE in bone and disorders of phosphate metabolism is emerging, the role of MEPE in dental tissues remains unclear. We performed RNA in situ hybridization and immunohistochemistry analyses to delineate the expression pattern of MEPE during embryonic and postnatal development in craniofacial mineralizing tissues. Mepe RNA expression was seen within teeth from cap through root formation in association with odontoblasts and cellular cementoblasts. More intense expression was seen in the alveolar bone within the osteoblasts and osteocytes. MEPE immunohistochemistry showed biphasic dentin staining in incisors and more intense staining in alveolar bone matrix and in forming cartilage. Analysis of Mepe null mouse molars showed overall mineralized tooth volume and density of enamel and dentin comparable with that of wild-type samples. However, Mepe(-/-) molars exhibited increased thickness of predentin, dentin, and enamel over controls and decreased gene expression of Enam, Bsp, Dmp1, Dspp, and Opnby RT-PCR. In vitro Mepe overexpression in odontoblasts led to significant reductions in Dspp reporter activity. These data suggest MEPE may be instrumental in craniofacial and dental matrix maturation, potentially functioning in the maintenance of non-mineralized matrix.
Collapse
Affiliation(s)
- Angela Gullard
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM),Pathology Graduate Program, University of Alabama at Birmingham, Birmingham, Alabama (AG)
| | - Jelica Gluhak-Heinrich
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX (JGH)
| | - Silvana Papagerakis
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, Michigan (SP)
| | - Philip Sohn
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM)
| | - Aaron Unterbrink
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX (AU)
| | - Shuo Chen
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX (SC)
| | - Mary MacDougall
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM)
| |
Collapse
|
17
|
Staines KA, Prideaux M, Allen S, Buttle DJ, Pitsillides AA, Farquharson C. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models. J Cell Physiol 2015; 231:1392-404. [PMID: 26639105 PMCID: PMC4832367 DOI: 10.1002/jcp.25282] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/04/2015] [Indexed: 11/08/2022]
Abstract
The transmembrane glycoprotein E11 is considered critical in early osteoblast-osteocyte transitions (osteocytogenesis), however its function and regulatory mechanisms are still unknown. Using the late osteoblast MLO-A5 cell line we reveal increased E11 protein/mRNA expression (P < 0.001) concomitant with extensive osteocyte dendrite formation and matrix mineralization (P < 0.001). Transfection with E11 significantly increased mRNA levels (P < 0.001), but immunoblotting failed to detect any correlative increases in E11 protein levels, suggestive of post-translational degradation. We found that exogenous treatment of MLO-A5 and osteocytic IDG-SW3 cells with 10 μM ALLN (calpain and proteasome inhibitor) stabilized E11 protein levels and induced a profound increase in osteocytic dendrite formation (P < 0.001). Treatment with other calpain inhibitors failed to promote similar osteocytogenic changes, suggesting that these effects of ALLN rely upon its proteasome inhibitor actions. Accordingly we found that proteasome-selective inhibitors (MG132/lactacystin/ Bortezomib/Withaferin-A) produced similar dose-dependent increases in E11 protein levels in MLO-A5 and primary osteoblast cells. This proteasomal targeting was confirmed by immunoprecipitation of ubiquitinylated proteins, which included E11, and by increased levels of ubiquitinylated E11 protein upon addition of the proteasome inhibitors MG132/Bortezomib. Activation of RhoA, the small GTPase, was found to be increased concomitant with the peak in E11 levels and its downstream signaling was also observed to promote MLO-A5 cell dendrite formation. Our data indicate that a mechanism reliant upon blockade of proteasome-mediated E11 destabilization contributes to osteocytogenesis and that this may involve downstream targeting of RhoA. This work adds to our mechanistic understanding of the factors regulating bone homeostasis, which may lead to future therapeutic approaches.
Collapse
Affiliation(s)
- Katherine A Staines
- Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Matt Prideaux
- The University of Adelaide, North Terrace, Adelaide, Australia
| | - Steve Allen
- Royal Veterinary College, Royal College Street, London, United Kingdom
| | - David J Buttle
- Department of Infection and Immunity, The University of Sheffield Medical School, Beech Hill Road, Sheffield, United Kingdom
| | | | - Colin Farquharson
- Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
18
|
Huesa C, Houston D, Kiffer-Moreira T, Yadav MC, Luis Millan J, Farquharson C. The Functional co-operativity of Tissue-Nonspecific Alkaline Phosphatase (TNAP) and PHOSPHO1 during initiation of Skeletal Mineralization. Biochem Biophys Rep 2015; 4:196-201. [PMID: 26457330 PMCID: PMC4594806 DOI: 10.1016/j.bbrep.2015.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/31/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022] Open
Abstract
Phosphatases are recognised to have important functions in the initiation of skeletal mineralization. Tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 are indispensable for bone and cartilage mineralization but their functional relationship in the mineralization process remains unclear. In this study, we have used osteoblast and ex-vivo metatarsal cultures to obtain biochemical evidence for co-operativity and cross-talk between PHOSPHO1 and TNAP in the initiation of mineralization. Clones 14 and 24 of the MC3T3-E1 cell line were used in the initial studies. Clone 14 cells expressed high levels of PHOSPHO1 and low levels of TNAP and in the presence of β-glycerol phosphate (BGP) or phosphocholine (P-Cho) as substrates and they mineralized their matrix strongly. In contrast clone 24 cells expressed high levels of TNAP and low levels of PHOSPHO1 and mineralized their matrix poorly. Lentiviral Phospho1 overexpression in clone 24 cells resulted in higher PHOSPHO1 and TNAP protein expression and increased levels of matrix mineralization. To uncouple the roles of PHOSPHO1 and TNAP in promoting matrix mineralization we used PHOSPHO1 (MLS-0263839) and TNAP (MLS-0038949) specific inhibitors, which individually reduced mineralization levels of Phospho1 overexpressing C24 cells, whereas the simultaneous addition of both inhibitors essentially abolished matrix mineralization (85 %; P<0.001). Using metatarsals from E15 mice as a physiological ex vivo model of mineralization, the response to both TNAP and PHOSPHO1 inhibitors appeared to be substrate dependent. Nevertheless, in the presence of BGP, mineralization was reduced by the TNAP inhibitor alone and almost completely eliminated by the co-incubation of both inhibitors. These data suggest critical non-redundant roles for PHOSPHO1 and TNAP during the initiation of osteoblast and chondrocyte mineralization.
Collapse
Affiliation(s)
- Carmen Huesa
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Dean Houston
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Tina Kiffer-Moreira
- Sanford Children's Health Research Center, Sanford‐Burnham Medical Research Institute, La Jolla, CA, USA
| | - Manisha C. Yadav
- Sanford Children's Health Research Center, Sanford‐Burnham Medical Research Institute, La Jolla, CA, USA
| | - Jose Luis Millan
- Sanford Children's Health Research Center, Sanford‐Burnham Medical Research Institute, La Jolla, CA, USA
| | - Colin Farquharson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
19
|
Expression of Sulf1 and Sulf2 in cartilage, bone and endochondral fracture healing. Histochem Cell Biol 2015; 145:67-79. [PMID: 26464246 DOI: 10.1007/s00418-015-1365-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 10/22/2022]
Abstract
SULF1/SULF2 enzymes regulate cell signalling that impacts the growth and differentiation of many tissues. To determine their possible role in cartilage and bone growth or repair, their expression was examined during development and bone fracture healing using RT-PCR and immunochemical analyses. Examination of epiphyseal growth plates revealed differential, inverse patterns of SULF1 and SULF2 expressions, with the former enriched in quiescent and the latter in hypertrophic chondrocyte zones. Markedly higher levels of both SULFs, however, were expressed in osteoblasts actively forming bone when compared with proliferating pre-osteoblasts in the periosteum or the entombed osteocytes which express the lowest levels. The increased expression of Sulf1 and Sulf2 in differentiating osteoblasts was further confirmed by RT-PCR analysis of mRNA levels in rat calvarial osteoblast cultures. SULF1 and SULF2 were expressed in most foetal articular chondrocytes but down-regulated in a larger subset of cells in the post-natal articular cartilage. Unlike adult articular chondrocytes, SULF1/SULF2 expression varied markedly in post-natal hypertrophic chondrocytes in the growth plate, with very high SULF2 expression compared with SULF1 apparent during neonatal growth in both primary and secondary centres of ossification. Similarly, hypertrophic chondrocytes expressed greatly higher levels of SULF2 but not SULF1 during bone fracture healing. SULF2 expression unlike SULF1 also spread to the calcifying matrix around the hypertrophic chondrocytes indicating its possible ligand inhibiting role through HSPG desulphation. Higher levels of SULF2 in both developing and healing bone closely correlated with parallel increases in hedgehog signalling analysed by ptc1 receptor expression.
Collapse
|
20
|
Dobie R, Ahmed SF, Staines KA, Pass C, Jasim S, MacRae VE, Farquharson C. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1. J Cell Physiol 2015; 230:2796-806. [PMID: 25833299 PMCID: PMC4949688 DOI: 10.1002/jcp.25006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/30/2015] [Indexed: 11/12/2022]
Abstract
Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like‐growth factor‐1 (IGF‐1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling‐2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF‐1 levels. Wild‐type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P < 0.01). In the absence of SOCS2, GH treatment enhanced metatarsal linear growth over a 12 day period. Despite this increase, IGF‐1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF‐1 levels were unchanged in GH‐challenged postnatal Socs2‐/‐ conditioned medium despite metatarsals showing enhanced linear growth. Growth‐plate Igf1 mRNA levels were not elevated in juvenile Socs2‐/‐ mice. GH did however elevate IGF‐binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2‐/‐ metatarsals. GH did not enhance the growth of Socs2‐/‐ metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF‐2 may be responsible as IGF‐2 promoted metatarsal growth and Igf2 expression was elevated in Socs2‐/‐ (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2‐/‐ mice, promoting growth via a mechanism that is independent of IGF‐1. J. Cell. Physiol. 9999: 2796–2806, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ross Dobie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Syed F Ahmed
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Yorkhill, Glasgow, Scotland, UK
| | - Katherine A Staines
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Chloe Pass
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Seema Jasim
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Vicky E MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Colin Farquharson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
21
|
Zelenchuk LV, Hedge AM, Rowe PSN. Age dependent regulation of bone-mass and renal function by the MEPE ASARM-motif. Bone 2015; 79:131-42. [PMID: 26051469 PMCID: PMC4501877 DOI: 10.1016/j.bone.2015.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 11/28/2022]
Abstract
CONTEXT Mice with null mutations in matrix extracellular phosphoglycoprotein (MEPE) have increased bone mass, increased trabecular density and abnormal cancellous bone (MN-mice). These defects worsen with age and MEPE overexpression induces opposite effects. Also, genome wide association studies show that MEPE plays a major role in bone mass. We hypothesized that the conserved C-terminal MEPE ASARM-motif is chiefly responsible for regulating bone mass and trabecular structure. DESIGN To test our theory we overexpressed C-terminal ASARM-peptide in MN-mice using the Col1α1 promoter (MNAt-mice). We then compared the bone and renal phenotypes of the MNAt-mouse with the MN-mouse and the X-linked hypophosphatemic rickets mouse (HYP). The HYP mouse overexpresses ASARM-peptides and is defective for the PHEX gene. RESULTS The MN-mouse developed increased bone mass, bone strength and trabecular abnormalities that worsened markedly with age. Defects in bone formation were chiefly responsible with suppressed sclerostin and increased active β-catenin. Increased uric acid levels also suggested that abnormalities in purine-metabolism and a reduced fractional excretion of uric acid signaled additional renal transport changes. The MN mouse developed a worsening hyperphosphatemia and reduced FGF23 with age. An increase in the fractional excretion of phosphate (FEP) despite the hyperphosphatemia confirms an imbalance in kidney-intestinal phosphate regulation. Also, the MN mice showed an increased creatinine clearance suggesting hyperfiltration. A reversal of the MN bone-renal phenotype changes occurred with the MNAt mice including the apparent hyperfiltration. The MNAt mice also developed localized hypomineralization, hypophosphatemia and increased FGF23. CONCLUSIONS The C-terminal ASARM-motif plays a major role in regulating bone-mass and cancellous structure as mice age. In healthy mice, the processing and release of free ASARM-peptide are chiefly responsible for preserving normal bone and renal function. Free ASARM-peptide also affects renal mineral phosphate handling by influencing FGF23 expression. These findings have implications for understanding age-dependent osteoporosis, unraveling drug-targets and developing treatments.
Collapse
Affiliation(s)
- Lesya V Zelenchuk
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Anne-Marie Hedge
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Peter S N Rowe
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA.
| |
Collapse
|
22
|
Fujikawa K, Yokohama-Tamaki T, Morita T, Baba O, Qin C, Shibata S. An in situ hybridization study of perlecan, DMP1, and MEPE in developing condylar cartilage of the fetal mouse mandible and limb bud cartilage. Eur J Histochem 2015; 59:2553. [PMID: 26428891 PMCID: PMC4598603 DOI: 10.4081/ejh.2015.2553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 11/23/2022] Open
Abstract
The main purpose of this in situ hybridization study was to investigate mRNA expression of three bone/cartilage matrix components (perlecan, DMP1, and MEPE) in developing primary (tibial) and secondary (condylar) cartilage. Perlecan mRNA expression was first detected in newly formed chondrocytes in tibial cartilage at E13.0, but this expression decreased in hypertrophic chondrocytes at E14.0. In contrast, at E15.0, perlecan mRNA was first detected in the newly formed chondrocytes of condylar cartilage; these chondrocytes had characteristics of hypertrophic chondrocytes, which confirmed the previous observation that progenitor cells of developing secondary cartilage rapidly differentiate into hypertrophic chondrocytes. DMP1 mRNA was detected in many chondrocytes within the lower hypertrophic cell zone in tibial cartilage at E14.0. In contrast, DMP1 mRNA expression was only transiently detected in a few chondrocytes of condylar cartilage at E15.0. Thus, DMP1 may be less important in the developing condylar cartilage than in the tibial cartilage. Another purpose of this study was to test the hypothesis that MEPE may be a useful marker molecule for cartilage. MEPE mRNA was not detected in any chondrocytes in either tibial or condylar cartilage; however, MEPE immunoreactivity was detected throughout the cartilage matrix. Western immunoblot analysis demonstrated that MEPE antibody recognized two bands, one of 67 kDa and another of 59 kDa, in cartilage-derived samples. Thus MEPE protein may gradually accumulate in the cartilage, even though mRNA expression levels were below the limits of detection of in situ hybridization. Ultimately, we could not designate MEPE as a marker molecule for cartilage, and would modify our original hypothesis.
Collapse
|
23
|
Foster BL, Ao M, Willoughby C, Soenjaya Y, Holm E, Lukashova L, Tran AB, Wimer HF, Zerfas PM, Nociti FH, Kantovitz KR, Quan BD, Sone ED, Goldberg HA, Somerman MJ. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 2015; 78:150-64. [PMID: 25963390 PMCID: PMC4466207 DOI: 10.1016/j.bone.2015.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Accepted: 05/02/2015] [Indexed: 01/15/2023]
Abstract
Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in endochondral ossification in the cranial base, and craniofacial morphology was unaffected in Bsp(-/-) mice. These analyses confirm a critical role for BSP in processes of cementogenesis and intramembranous ossification of craniofacial bone, whereas endochondral ossification in the cranial base was minimally affected and dentinogenesis was normal in Bsp(-/-) molar teeth. Dissimilar effects of loss of BSP on mineralization of dental and craniofacial tissues suggest local differences in the role of BSP and/or yet to be defined interactions with site-specific factors.
Collapse
Affiliation(s)
- B L Foster
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - M Ao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - C Willoughby
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - Y Soenjaya
- Biomedical Engineering Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - E Holm
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - L Lukashova
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA.
| | - A B Tran
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - H F Wimer
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - P M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health (NIH), 9000 Rockville Pike, 112 Building 28A, MSC 5230, Bethesda, MD 20892, USA.
| | - F H Nociti
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA; Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry, Campinas State University, Piracicaba, SP 13414-903, Brazil.
| | - K R Kantovitz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA; Department of Pediatric Dentistry, School of Dentistry, Campinas State University, Piracicaba, SP 13414-903, Brazil.
| | - B D Quan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 320A Mining Building, Toronto, ON M5S 3G9, Canada.
| | - E D Sone
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 320A Mining Building, Toronto, ON M5S 3G9, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| | - H A Goldberg
- Biomedical Engineering Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Abstract
INTRODUCTION Osteoarthritis (OA) is the most prevailing form of joint disease, with symptoms affecting 10 - 12% of the adult population with a projection of a 50% increase in prevalence in the next two decades. The disease characteristics are defined by articular cartilage damage, low-grade synovial inflammation and hypertrophic bone changes, leading to pain and functional deterioration. To date, available pain treatments are limited in their efficacy and have associated toxicities. No structural disease modification agents have been approved by regulatory agencies for this indication. AREAS COVERED We reviewed drugs in Phase II - III for OA pain and joint structure modification. Different aspects of structure modification are divided into targets of inflammatory pathway, cartilage catabolism and anabolism, and subchondral bone remodeling. EXPERT OPINION Further insight into the pathophysiology of the disease will allow for development of novel target classes focusing on the link between symptomatology and structural changes. Given the complexity of OA, one single therapy is unlikely to be universally and uniformly effective. Promising therapies are under development, but there are obstacles in the translation of treatment from preclinical models and trial designs need to be cognizant of the complex reasons for previous trial failures.
Collapse
Affiliation(s)
- Shirley Pei-Chun Yu
- a 1 Royal North Shore Hospital, Department of Rheumatology , St. Leonards, NSW 2065, Sydney, Australia
| | | |
Collapse
|
25
|
Mobley CG, Kuzynski M, Zhang H, Jani P, Qin C, Napierala D. Dspp-independent Effects of Transgenic Trps1 Overexpression on Dentin Formation. J Dent Res 2015; 94:1128-34. [PMID: 25999324 DOI: 10.1177/0022034515586709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Trps1 transcription factor is highly expressed in dental mesenchyme and preodontoblasts, while in mature, secretory odontoblasts, it is expressed at low levels. Previously, we have shown that high Trps1 levels in mature odontoblasts impair their function in vitro and in vivo. Col1a1-Trps1 transgenic (Trps1-Tg) mice demonstrate defective dentin secretion and mineralization, which are associated with significantly decreased Dspp expression due to direct repression of the Dspp gene by Trps1. Here, by crossing Trps1-Tg and Col1a1-Dspp transgenic (Dspp-Tg) mice, we generated Col1a1-Trps1;Col1a1-Dspp double transgenic (double-Tg) mice in which Dspp was restored in odontoblasts overexpressing Trps1. Comparative micro-computed tomography analyses revealed partial correction of the dentin volume and no improvement of dentin mineralization in double transgenic mice in comparison with Trps1-Tg and wild-type (WT) mice. In addition, dentin of double-Tg mice has an irregular mineralization pattern characteristic for dentin in hypophosphatemic rickets. Consistent with this phenotype, decreased levels of Phex, Vdr, and Fam20c proteins are detected in both Trps1-Tg and double-Tg odontoblasts in comparison with WT and Dspp-Tg odontoblasts. This suggests that the Dspp-independent dentin mineralization defects in Trps1-Tg mice are a result of downregulation of a group of proteins critical for mineral deposition within the dentin matrix. In summary, by demonstrating that Trps1 functions as a repressor of later stages of dentinogenesis, we provide functional significance of the dynamic Trps1 expression pattern during dentinogenesis.
Collapse
Affiliation(s)
- C G Mobley
- Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Kuzynski
- Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - H Zhang
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - P Jani
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - C Qin
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - D Napierala
- Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Prideaux M, Staines KA, Jones ER, Riley GP, Pitsillides AA, Farquharson C. MMP and TIMP temporal gene expression during osteocytogenesis. Gene Expr Patterns 2015; 18:29-36. [PMID: 25982959 DOI: 10.1016/j.gep.2015.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/01/2023]
Abstract
Osteocytes within bone differentiate from osteoblast precursors which reside in a mineralised extracellular matrix (ECM). Fully differentiated osteocytes are critical for bone development and function but the factors that regulate this differentiation process are unknown. The enzymes primarily responsible for ECM remodelling are matrix metalloproteinases (MMP); however, the expression and role of MMPs during osteocytogenesis is undefined. Here we used MLO-A5 cells to determine the temporal gene expressions of the MMP family and their endogenous inhibitors--tissue inhibitors of metalloproteinases (TIMPs) during osteocytogenesis. RT-qPCR revealed expression of 14 Mmps and 3 Timps in MLO-A5 cells. Mmp2, Mmp23 and Mmp28 were decreased concurrent with mineralisation onset (P < 0.05*). Mmp14 and Mmp19 mRNAs were also significantly increased at day 3 (P < 0.05*) before returning to baseline levels at day 6. Decreased expressions of Timp1, Timp2 and Timp3 mRNA were observed by day 6 compared to day 0 (P < 0.05*). To examine whether these changes are linked to osteocytogenesis, we determined Mmp/Timp mRNA expressions in mineralisation-limited conditions. RT-qPCR revealed that the previously observed decreases in Mmp2, Mmp23 and Mmp28 were not observed in these mineralisation-limited cultures, therefore closely linking these MMPs with osteocyte differentiation. Similarly, we found differential expression of Timp1, Timp2 and Timp3 mRNA in mineralisation-restricted cultures (P < 0.05*). In conclusion, we have identified several members of the MMP/TIMP families as regulators of ECM remodelling necessary for the acquisition of the osteocyte phenotype.
Collapse
Affiliation(s)
- M Prideaux
- The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - K A Staines
- Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG.
| | - E R Jones
- University of East Anglia, Norwich NR4 7TJ, UK
| | - G P Riley
- University of East Anglia, Norwich NR4 7TJ, UK
| | - A A Pitsillides
- Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - C Farquharson
- Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG
| |
Collapse
|
27
|
A unified model for bone-renal mineral and energy metabolism. Curr Opin Pharmacol 2015; 22:64-71. [PMID: 25880364 DOI: 10.1016/j.coph.2015.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 01/09/2023]
Abstract
The beginning of the millennium saw the discovery of a new bone-matrix protein, Matrix Extracellular PhosphoglycoprotEin (MEPE) and an associated C-terminal motif called ASARM. This motif and other distinguishing features occur in a group of proteins called SIBLINGs. These proteins include dentin matrix protein 1 (DMP1), osteopontin, dentin-sialophosphoprotein (DSPP), statherin, bone sialoprotein (BSP) and MEPE. MEPE, DMP1 and ASARM-motifs regulate expression of a phosphate regulating cytokine FGF23. Further, a trimeric interaction between phosphate regulating endopeptidase homolog X-linked (PHEX), DMP1, and α5β3-integrin that occurs on the plasma-membrane of the osteocyte mediates FGF23 regulation (FAP pathway). ASARM-peptides competitively inhibit the trimeric complex and increase FGF23. A second pathway involves specialized structures, matrix vesicles pathway (MVP). This review will discuss the FAP and MVP pathways and present a unified model for mineral and energy metabolism.
Collapse
|
28
|
Zelenchuk LV, Hedge AM, Rowe PSN. SPR4-peptide alters bone metabolism of normal and HYP mice. Bone 2015; 72:23-33. [PMID: 25460577 PMCID: PMC4342984 DOI: 10.1016/j.bone.2014.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 11/13/2022]
Abstract
CONTEXT ASARM-peptides are substrates and ligands for PHEX, the gene responsible for X-linked hypophosphatemic rickets (HYP). PHEX binds to the DMP1-ASARM-motif to form a trimeric-complex with α5β3-integrin on the osteocyte surface and this suppresses FGF23 expression. ASARM-peptide disruption of this complex increases FGF23 expression. We used a 4.2kDa peptide (SPR4) that binds to ASARM-peptide and ASARM-motif to study DMP1-PHEX interactions and to assess SPR4 for treating inherited hypophosphatemic rickets. DESIGN Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle into wild-type mice (WT) and HYP-mice for 4 weeks. RESULTS Asymmetrically distributed mineralization defects occurred with WT-SPR4 femurs. Specifically, SPR4 induced negative effects on trabecular bone and increased bone volume and mineralization in cortical-bone. Markedly increased sclerostin and reduced active β-catenin occurred with HYP mice. SPR4-infusion suppressed sclerostin and increased active β-catenin in WT and HYP mice and improved HYP-mice trabecular mineralization defects but not cortical mineralization defects. CONCLUSIONS SPR4-peptide has bimodal activity and acts by: (1) preventing DMP1 binding to PHEX and (2) sequestering an inhibitor of DMP1-PHEX binding, ASARM-peptide. In PHEX defective HYP-mice the second pathway predominates. Although SPR4-peptide improved trabecular calcification defects, decreased sclerostin and increased active β-catenin it did not correct HYP-mice cortical mineralization defects on a normal phosphate diet. Thus, for inherited hypophosphatemic rickets patients on a normal phosphate diet, SPR4-peptide is not a useful therapeutic.
Collapse
Affiliation(s)
- Lesya V Zelenchuk
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Anne-Marie Hedge
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Peter S N Rowe
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA.
| |
Collapse
|
29
|
Zelenchuk LV, Hedge AM, Rowe PSN. PHEX mimetic (SPR4-peptide) corrects and improves HYP and wild type mice energy-metabolism. PLoS One 2014; 9:e97326. [PMID: 24839967 PMCID: PMC4026222 DOI: 10.1371/journal.pone.0097326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/17/2014] [Indexed: 12/19/2022] Open
Abstract
CONTEXT PHEX or DMP1 mutations cause hypophosphatemic-rickets and altered energy metabolism. PHEX binds to DMP1-ASARM-motif to form a complex with α5β3 integrin that suppresses FGF23 expression. ASARM-peptides increase FGF23 by disrupting the PHEX-DMP1-Integrin complex. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide/motif to study the DMP1-PHEX interaction and to assess SPR4 for the treatment of energy metabolism defects in HYP and potentially other bone-mineral disorders. DESIGN Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle (VE) into wild-type mice (WT) and HYP-mice (PHEX mutation) for 4 weeks. RESULTS SPR4 partially corrected HYP mice hypophosphatemia and increased serum 1.25(OH)2D3. Serum FGF23 remained high and PTH was unaffected. WT-SPR4 mice developed hypophosphatemia and hypercalcemia with increased PTH, FGF23 and 1.25(OH)2D3. SPR4 increased GAPDH HYP-bone expression 60× and corrected HYP-mice hyperglycemia and hypoinsulinemia. HYP-VE serum uric-acid (UA) levels were reduced and SPR4 infusion suppressed UA levels in WT-mice but not HYP-mice. SPR4 altered leptin, adiponectin, and sympathetic-tone and increased the fat mass/weight ratio for HYP and WT mice. Expression of perlipin-2 a gene involved in obesity was reduced in HYP-VE and WT-SPR4 mice but increased in HYP-SPR4 mice. Also, increased expression of two genes that inhibit insulin-signaling, ENPP1 and ESP, occurred with HYP-VE mice. In contrast, SPR4 reduced expression of both ENPP1 and ESP in WT mice and suppressed ENPP1 in HYP mice. Increased expression of FAM20C and sclerostin occurred with HYP-VE mice. SPR4 suppressed expression of FAM20C and sclerostin in HYP and WT mice. CONCLUSIONS ASARM peptides and motifs are physiological substrates for PHEX and modulate osteocyte PHEX-DMP1-α5β3-integrin interactions and thereby FGF23 expression. These interactions also provide a nexus that regulates bone and energy metabolism. SPR4 suppression of sclerostin and/or sequestration of ASARM-peptides improves energy metabolism and may have utility for treating familial rickets, osteoporosis, obesity and diabetes.
Collapse
Affiliation(s)
- Lesya V. Zelenchuk
- Internal Medicine, The Kidney Institute, Kansas University Medical Center (KUMC), Kansas City, Kansas, United States of America
| | - Anne-Marie Hedge
- Internal Medicine, The Kidney Institute, Kansas University Medical Center (KUMC), Kansas City, Kansas, United States of America
| | - Peter S. N. Rowe
- Internal Medicine, The Kidney Institute, Kansas University Medical Center (KUMC), Kansas City, Kansas, United States of America
| |
Collapse
|
30
|
Bouleftour W, Boudiffa M, Wade-Gueye NM, Bouët G, Cardelli M, Laroche N, Vanden-Bossche A, Thomas M, Bonnelye E, Aubin JE, Vico L, Lafage-Proust MH, Malaval L. Skeletal development of mice lacking bone sialoprotein (BSP)--impairment of long bone growth and progressive establishment of high trabecular bone mass. PLoS One 2014; 9:e95144. [PMID: 24816232 PMCID: PMC4015893 DOI: 10.1371/journal.pone.0095144] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/24/2014] [Indexed: 01/28/2023] Open
Abstract
Adult Ibsp-knockout mice (BSP−/−) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP−/− mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP−/− newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP−/− mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP−/− than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP−/− mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP−/− mice, while impairing primary mineralization.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Laboratoire de Biologie du Tissu Osseux and Institut National de la Santé et de la Recherche Médicale - U1059, Université de Lyon - Université Jean Monnet, Saint-Etienne, France
| | - Maya Boudiffa
- Laboratoire de Biologie du Tissu Osseux and Institut National de la Santé et de la Recherche Médicale - U1059, Université de Lyon - Université Jean Monnet, Saint-Etienne, France
| | - Ndeye Marième Wade-Gueye
- Laboratoire de Biologie du Tissu Osseux and Institut National de la Santé et de la Recherche Médicale - U1059, Université de Lyon - Université Jean Monnet, Saint-Etienne, France
| | - Guénaëlle Bouët
- Laboratoire de Biologie du Tissu Osseux and Institut National de la Santé et de la Recherche Médicale - U1059, Université de Lyon - Université Jean Monnet, Saint-Etienne, France
| | - Marco Cardelli
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Norbert Laroche
- Laboratoire de Biologie du Tissu Osseux and Institut National de la Santé et de la Recherche Médicale - U1059, Université de Lyon - Université Jean Monnet, Saint-Etienne, France
| | - Arnaud Vanden-Bossche
- Laboratoire de Biologie du Tissu Osseux and Institut National de la Santé et de la Recherche Médicale - U1059, Université de Lyon - Université Jean Monnet, Saint-Etienne, France
| | - Mireille Thomas
- Laboratoire de Biologie du Tissu Osseux and Institut National de la Santé et de la Recherche Médicale - U1059, Université de Lyon - Université Jean Monnet, Saint-Etienne, France
| | - Edith Bonnelye
- Institut National de la Santé et de la Recherche Médicale - U1033, Université de Lyon - Université Claude Bernard, Lyon, France
| | - Jane E. Aubin
- Dept. of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Laurence Vico
- Laboratoire de Biologie du Tissu Osseux and Institut National de la Santé et de la Recherche Médicale - U1059, Université de Lyon - Université Jean Monnet, Saint-Etienne, France
| | - Marie Hélène Lafage-Proust
- Laboratoire de Biologie du Tissu Osseux and Institut National de la Santé et de la Recherche Médicale - U1059, Université de Lyon - Université Jean Monnet, Saint-Etienne, France
| | - Luc Malaval
- Laboratoire de Biologie du Tissu Osseux and Institut National de la Santé et de la Recherche Médicale - U1059, Université de Lyon - Université Jean Monnet, Saint-Etienne, France
- * E-mail:
| |
Collapse
|
31
|
Staines KA, Zhu D, Farquharson C, MacRae VE. Identification of novel regulators of osteoblast matrix mineralization by time series transcriptional profiling. J Bone Miner Metab 2014; 32:240-51. [PMID: 23925391 DOI: 10.1007/s00774-013-0493-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
Abstract
Bone mineralization is a carefully orchestrated process, regulated by a number of promoters and inhibitors that function to ensure effective hydroxyapatite formation. Here we sought to identify new regulators of this process through a time series microarray analysis of mineralising primary osteoblast cultures over a 27 day culture period. To our knowledge this is the first microarray study investigating murine calvarial osteoblasts cultured under conditions that permit both physiological extracellular matrix mineralization through the formation of discrete nodules and the terminal differentiation of osteoblasts into osteocytes. RT-qPCR was used to validate and expand the microarray findings. We demonstrate the significant up-regulation of >6,000 genes during the osteoblast mineralization process, the highest-ranked differentially expressed genes of which were those dominated by members of the PPAR-γ signalling pathway, namely Adipoq, Cd36 and Fabp4. Furthermore, we show that the inhibition of this signalling pathway promotes matrix mineralisation in these primary osteoblast cultures. We also identify Cilp, Phex, Trb3, Sox11, and Psat1 as novel regulators of matrix mineralization. Further studies examining the precise function of the identified genes and their interactions will advance our understanding of the mechanisms underpinning biomineralization.
Collapse
Affiliation(s)
- Katherine Ann Staines
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK,
| | | | | | | |
Collapse
|
32
|
Abstract
Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed.
Collapse
Affiliation(s)
- Brian L Foster
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
33
|
Mackenzie NCW, Staines KA, Zhu D, Genever P, Macrae VE. miRNA-221 and miRNA-222 synergistically function to promote vascular calcification. Cell Biochem Funct 2013; 32:209-16. [PMID: 24604335 PMCID: PMC4158883 DOI: 10.1002/cbf.3005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/30/2013] [Accepted: 08/28/2013] [Indexed: 01/28/2023]
Abstract
Vascular calcification shares many similarities with skeletal mineralisation and involves the phenotypic trans-differentiation of vascular smooth muscle cells (VSMCs) to osteoblastic cells within a calcified environment. Various microRNAs (miRs) are known to regulate cell differentiation; however, their role in mediating VSMC calcification is not fully understood. miR-microarray analysis revealed the significant down-regulation of a range of miRs following nine days in culture, including miR-199b, miR-29a, miR-221, miR-222 and miR-31 (p < 0.05). Subsequent studies investigated the specific role of the miR-221/222 family in VSMC calcification. Real-time quantitative polymerase chain reaction data confirmed the down-regulation of miR-221 (32.4%; p < 0.01) and miR-222 (15.7%; p < 0.05). VSMCs were transfected with mimics of miR-221 and miR-222, individually and in combination. Increased calcium deposition was observed in the combined treatment (two-fold; p < 0.05) but not in individual treatments. Runx2 and Msx2 expression was increased during calcification, but no difference in expression was observed following transfection with miR mimics. Interestingly, miR-221 and miR-222 mimics induced significant changes in ectonucleotide phosphodiesterase 1 (Enpp1) and Pit-1 expression, suggesting that these miRs may modulate VSMC calcification through cellular inorganic phosphate and pyrophosphate levels. © 2013 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- N C W Mackenzie
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
34
|
Mann K, Mann M. The proteome of the calcified layer organic matrix of turkey (Meleagris gallopavo) eggshell. Proteome Sci 2013; 11:40. [PMID: 23981693 PMCID: PMC3766105 DOI: 10.1186/1477-5956-11-40] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022] Open
Abstract
Background Chicken eggshell mineralization is a prominent model for biomineralization not only because of its importance for avian reproduction but also because of the commercial interest associated with eggshell quality. An analysis and comparison of the protein constituents of eggshells of several species would contribute to a better understanding of the shell mineralization process. The recent publication of the turkey genome sequence now provides a basis for the in-depth analysis of the turkey eggshell proteome. Results Proteomic analysis of turkey acid-soluble and acid-insoluble organic eggshell matrix yielded 697 identified proteins/protein groups. However, intensity-based absolute quantification (iBAQ) results indicated that the 47 most abundant identified proteins already constituted 95% of the total turkey eggshell matrix proteome. Forty-four of these proteins were also identified in chicken eggshell matrix previously. Despite these similarities there were important and unexpected differences. While ovocleidin-116 and ovocalyxin-36 were major proteins constituting approximately 37% of the identified proteome, other members of the group of so-called eggshell-specific proteins were not identified. Thus ovocalyxin-21 and ovocalyxin-32 were missing among matrix proteins. Conversely, major turkey eggshell proteins were not detected in chicken, such as the bone protein periostin, the mammalian counterpart of which is involved in many aspects of bone metabolism and which represented 10-11% of the total identified proteome. Conclusions Even members of the same avian family show important differences in eggshell matrix composition and more studies on the proteome and the transcriptome level will be necessary to identify a common toolkit of eggshell mineralization and to work out species differences among functional eggshell protein sets and their role in eggshell production.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152, Martinsried, Am Klopferspitz 18, Germany.
| | | |
Collapse
|
35
|
Grogan SP, Duffy SF, Pauli C, Koziol JA, Su AI, D'Lima DD, Lotz MK. Zone-specific gene expression patterns in articular cartilage. ACTA ACUST UNITED AC 2013; 65:418-28. [PMID: 23124445 DOI: 10.1002/art.37760] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/16/2012] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To identify novel genes and pathways specific to the superficial zone (SZ), middle zone (MZ), and deep zone (DZ) of normal articular cartilage. METHODS Articular cartilage was obtained from the knees of 4 normal human donors. The cartilage zones were dissected on a microtome. RNA was analyzed on human genome arrays. The zone-specific DNA array data obtained from human tissue were compared to array data obtained from bovine cartilage. Genes differentially expressed between zones were evaluated using direct annotation for structural or functional features, and by enrichment analysis for integrated pathways or functions. RESULTS The greatest differences in genome-wide RNA expression data were between the SZ and DZ in both human and bovine cartilage. The MZ, being a transitional zone between the SZ and DZ, thereby shared some of the same pathways as well as structural/functional features of the adjacent zones. Cellular functions and biologic processes that were enriched in the SZ relative to the DZ included, most prominently, extracellular matrix-receptor interactions, cell adhesion molecule functions, regulation of actin cytoskeleton, ribosome-related functions, and signaling aspects such as the IFN, IL4, Cdc42/Rac, and JAK/STAT signaling pathways. Two pathways were enriched in the DZ relative to the SZ, including PPARG and EGFR/SMRTE. CONCLUSION These differences in cartilage zonal gene expression identify new markers and pathways that govern the unique differentiation status of chondrocyte subpopulations.
Collapse
Affiliation(s)
- Shawn P Grogan
- The Scripps Research Institute and Shiley Center for Orthopaedic Research and Education, Scripps Clinic, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Cox RF, Morgan MP. Microcalcifications in breast cancer: Lessons from physiological mineralization. Bone 2013; 53:437-50. [PMID: 23334083 DOI: 10.1016/j.bone.2013.01.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 02/02/2023]
Abstract
Mammographic mammary microcalcifications are routinely used for the early detection of breast cancer, however the mechanisms by which they form remain unclear. Two species of mammary microcalcifications have been identified; calcium oxalate and hydroxyapatite. Calcium oxalate is mostly associated with benign lesions of the breast, whereas hydroxyapatite is associated with both benign and malignant tumors. The way in which hydroxyapatite forms within mammary tissue remains largely unexplored, however lessons can be learned from the process of physiological mineralization. Normal physiological mineralization by osteoblasts results in hydroxyapatite deposition in bone. This review brings together existing knowledge from the field of physiological mineralization and juxtaposes it with our current understanding of the genesis of mammary microcalcifications. As an increasing number of breast cancers are being detected in their non-palpable stage through mammographic microcalcifications, it is important that future studies investigate the underlying mechanisms of their formation in order to fully understand the significance of this unique early marker of breast cancer.
Collapse
Affiliation(s)
- Rachel F Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
37
|
Salmon B, Bardet C, Khaddam M, Naji J, Coyac BR, Baroukh B, Letourneur F, Lesieur J, Decup F, Le Denmat D, Nicoletti A, Poliard A, Rowe PS, Huet E, Vital SO, Linglart A, McKee MD, Chaussain C. MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia. PLoS One 2013; 8:e56749. [PMID: 23451077 PMCID: PMC3579870 DOI: 10.1371/journal.pone.0056749] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/13/2013] [Indexed: 01/09/2023] Open
Abstract
Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome) cause X-linked familial hypophosphatemic rickets (XLH), a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif) peptide − a substrate for PHEX and a strong inhibitor of mineralization − derived from MEPE (matrix extracellular phosphoglycoprotein) and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated) derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential therapeutic target.
Collapse
Affiliation(s)
- Benjamin Salmon
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
- AP-HP Odontology Department Bretonneau – Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Paris France
- Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium, AP-HP, Kremlin Bicêtre, France
| | - Claire Bardet
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
| | - Mayssam Khaddam
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
| | - Jiar Naji
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
| | - Benjamin R. Coyac
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
- AP-HP Odontology Department Bretonneau – Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Paris France
- Faculty of Dentistry, and Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Brigitte Baroukh
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
| | - Franck Letourneur
- Institut Cochin, University Paris Descartes PRES Sorbonne Paris Cité, Paris, France
| | - Julie Lesieur
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
| | - Franck Decup
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
- AP-HP Odontology Department Charles Foix, Ivry Sur Seine, France
| | - Dominique Le Denmat
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
| | - Antonino Nicoletti
- Inserm UMRS698, Paris, France
- Denis Diderot University, UMRS698, Paris, France
| | - Anne Poliard
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
| | - Peter S. Rowe
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Eric Huet
- Université Paris-Est, Laboratoire CRRET, CNRS, Créteil, France
| | - Sibylle Opsahl Vital
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
- AP-HP Odontology Department Bretonneau – Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Paris France
- Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium, AP-HP, Kremlin Bicêtre, France
| | - Agnès Linglart
- Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium, AP-HP, Kremlin Bicêtre, France
- APHP Endocrinology and Diabetology for Children, Bicêtre Paris Sud Hospital, Kremlin Bicêtre, France
- Université Paris-Sud, Kremlin Bicêtre, France
| | - Marc D. McKee
- Faculty of Dentistry, and Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Catherine Chaussain
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité, Montrouge, France
- AP-HP Odontology Department Bretonneau – Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Paris France
- Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium, AP-HP, Kremlin Bicêtre, France
- * E-mail:
| |
Collapse
|
38
|
Silvent J, Sire JY, Delgado S. The dentin matrix acidic phosphoprotein 1 (DMP1) in the light of mammalian evolution. J Mol Evol 2013; 76:59-70. [PMID: 23361408 DOI: 10.1007/s00239-013-9539-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/06/2013] [Indexed: 12/17/2022]
Abstract
Dentin matrix acidic phosphoprotein 1 (DMP1) is an acidic, highly phosphorylated, noncollagenous protein secreted during dentin and bone formation. Previous functional studies of DMP1 have revealed various motifs playing a role in either mineralization or cell differentiation. We performed an evolutionary analysis of DMP1 to identify residues and motifs that were conserved during 220 millions years (Ma) of mammalian evolution, and hence have an important function. In silico search provided us with 41 sequences that were aligned and analyzed using the Hyphy program. We showed that DMP1 contains 55 positions that were kept unchanged for 220 Ma. We also defined in a more precise manner some motifs that were already known (i.e., cleavage sites, RGD motif, ASARM peptide, glycosaminoglycan chain attachment site, nuclear localization signal sites, and dentin sialophosphoprotein-binding site), and we found five, highly conserved, new functional motifs. In the near future, functional studies could be performed to understand the role played by them.
Collapse
|