1
|
Young EP, Marinoff AE, Lopez-Fuentes E, Sweet-Cordero EA. Osteosarcoma through the Lens of Bone Development, Signaling, and Microenvironment. Cold Spring Harb Perspect Med 2024; 14:a041635. [PMID: 38565264 PMCID: PMC11444254 DOI: 10.1101/cshperspect.a041635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we review the multifaceted connections between osteosarcoma (OS) biology and normal bone development. We summarize and critically analyze existing research, highlighting key areas that merit further exploration. The review addresses several topics in OS biology and their interplay with normal bone development processes, including OS cell of origin, genomics, tumor microenvironment, and metastasis. We examine the potential cellular origins of OS and how their roles in normal bone growth may contribute to OS pathogenesis. We survey the genomic landscape of OS, highlighting the developmental roles of genes frequently altered in OS. We then discuss the OS microenvironment, emphasizing the transformation of the bone niche in OS to facilitate tumor growth and metastasis. The role of stromal and immune cells is examined, including their impact on tumor progression and therapeutic response. We further provide insights into potential development-informed opportunities for novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Amanda E Marinoff
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Eunice Lopez-Fuentes
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
2
|
Lozano D, Gortazar AR, Portal-Núñez S. Osteostatin, a peptide for the future treatment of musculoskeletal diseases. Biochem Pharmacol 2024; 223:116177. [PMID: 38552853 DOI: 10.1016/j.bcp.2024.116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Nowadays, the treatment of musculoskeletal diseases represents a major challenge in the developed world. Diseases such as osteoporosis, osteoarthritis and arthritis have a high incidence and prevalence as a consequence of population aging, and they are also associated with a socioeconomic burden. Many efforts have been made to find a treatment for these diseases with various levels of success, but new approaches are still needed to deal with these pathologies. In this context, one peptide derived for the C-terminal extreme of the Parathormone related Peptide (PTHrP) called Osteostatin can be useful to treat musculoskeletal diseases. This pentapeptide (TRSAW) has demonstrated both in different in vitro and in vivo models, its role as a molecule with anti-resorptive, anabolic, anti-inflammatory, and anti-antioxidant properties. Our aim with this work is to review the Osteostatin main features, the knowledge of its mechanisms of action as well as its possible use for the treatment of osteoporosis, bone regeneration and fractures and against arthritis given its anti-inflammatory properties.
Collapse
Affiliation(s)
- Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Arancha R Gortazar
- Grupo de Fisiopatología Ósea, Departamento de Ciencias Médicas Básicas, Instituto de Medicina Aplicada de la Universidad San Pablo-CEU, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Urbanización Montepríncipe s/n, 28925 Madrid, Spain
| | - Sergio Portal-Núñez
- Grupo de Fisiopatología Ósea, Departamento de Ciencias Médicas Básicas, Instituto de Medicina Aplicada de la Universidad San Pablo-CEU, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Urbanización Montepríncipe s/n, 28925 Madrid, Spain.
| |
Collapse
|
3
|
Zhang W, Shao Z. Research trends and hotspots in the immune microenvironment related to osteosarcoma and tumor cell aging: a bibliometric and visualization study. Front Endocrinol (Lausanne) 2023; 14:1289319. [PMID: 38027171 PMCID: PMC10663373 DOI: 10.3389/fendo.2023.1289319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background It is well known that cancers have a common feature that even if the environment is extremely poor in nutrients, they can still make good use of them to maintain viability as well as to produce new biomass, which is one of the reasons why tumor cells are powerfully less susceptible to senescence and death. The microenvironment has a profound impact on the senescence as well as the growth and development of tumor cells, and it is also the focus of scientists' research because it may even affect the discovery of the treatment and pathogenesis of cancer. And so the study of the microenvironment in the tumor cells is of great significance to the analysis of the tumor cells as well as to the impact of their senescence. Similarly, the microenvironment of osteosarcoma is also crucial for its impact, but to our knowledge, there is no bibliometric study that systematically analyzes and describes the trends and future hotspots in this field of research as we do, and we are going to fill this gap in this study. Methods We searched the Web Science Core Collection 2010-2023 in WOS on August 1, 2023. Based on the criteria needed for the search, we retained articles that matched the topic, excluded studies other than articles and reviews, and selected only studies whose language was English. We performed an intuitive visualization and bibliometric approach to analyze the research content in this field and a systematic visualization of global trends and hotspots in the research of osteosarcoma and the microenvironment, for which we used multiple specialized For this purpose, we used several specialized software packages, such as VOSviewer and the Bibliometrix package for R software. Because research in this area of osteosarcoma and the microenvironment has begun to gain popularity in the last 10 years or so, and is a very novel piece of research, there were almost no studies in this area prior to 2010 and they were not very informative, and in the end, we chose to look at studies from after 2010. Results Based on the criteria needed for the search, resulting in a final selection of 821 articles. In the research area related to osteosarcoma and microenvironment, we found that China in Asia and the United States in North America and Italy in Europe were the three countries or regions with the highest number of published articles. In addition, the institution that published the most research in this area was Shanghai Jiao Tong University. In terms of publications in the field of osteosarcoma and microenvironmental research, Baldini, Heymann, and Avnet are among the top 3 authors. The terms "cancer", "cells" and "expression" are found to be more commonly employed. Conclusion Using a variety of highly specialized software, we have undertaken a visual and bibliometric study of the current state of research and potential future hotspots in the field of osteosarcoma and microenvironment research. The microenvironment has a profound impact on the senescence and growth and development of cells in tumors, including osteosarcoma, and may even influence the discovery of cancer treatment and pathogenesis, and is also a hotspot and focus that scientists have begun to gradually study in recent years. This analysis and visualization will help guide future research in the field.
Collapse
Affiliation(s)
- Wenlong Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuce Shao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Vaghjiani VG, Cochrane CR, Jayasekara WSN, Chong WC, Szczepny A, Kumar B, Martelotto LG, McCaw A, Carey K, Kansara M, Thomas DM, Walkley C, Mudge S, Gough DJ, Downie PA, Peacock CD, Matsui W, Watkins DN, Cain JE. Ligand-dependent hedgehog signaling maintains an undifferentiated, malignant osteosarcoma phenotype. Oncogene 2023; 42:3529-3541. [PMID: 37845394 PMCID: PMC10656285 DOI: 10.1038/s41388-023-02864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
TP53 and RB1 loss-of-function mutations are common in osteosarcoma. During development, combined loss of TP53 and RB1 function leads to downregulation of autophagy and the aberrant formation of primary cilia, cellular organelles essential for the transmission of canonical Hedgehog (Hh) signaling. Excess cilia formation then leads to hypersensitivity to Hedgehog (Hh) ligand signaling. In mouse and human models, we now show that osteosarcomas with mutations in TP53 and RB1 exhibit enhanced ligand-dependent Hh pathway activation through Smoothened (SMO), a transmembrane signaling molecule required for activation of the canonical Hh pathway. This dependence is mediated by hypersensitivity to Hh ligand and is accompanied by impaired autophagy and increased primary cilia formation and expression of Hh ligand in vivo. Using a conditional genetic mouse model of Trp53 and Rb1 inactivation in osteoblast progenitors, we further show that deletion of Smo converts the highly malignant osteosarcoma phenotype to benign, well differentiated bone tumors. Conversely, conditional overexpression of SHH ligand, or a gain-of-function SMO mutant in committed osteoblast progenitors during development blocks terminal bone differentiation. Finally, we demonstrate that the SMO antagonist sonidegib (LDE225) induces growth arrest and terminal differentiation in vivo in osteosarcomas that express primary cilia and Hh ligand combined with mutations in TP53. These results provide a mechanistic framework for aberrant Hh signaling in osteosarcoma based on defining mutations in the tumor suppressor, TP53.
Collapse
Affiliation(s)
| | - Catherine R Cochrane
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | | | - Wai Chin Chong
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Anette Szczepny
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Beena Kumar
- Department of Pathology, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Luciano G Martelotto
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew McCaw
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Kirstyn Carey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Maya Kansara
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St.Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 1466, Australia
| | - Carl Walkley
- St. Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Stuart Mudge
- Mayne Pharma International Pty Ltd, Salisbury Sth, SA, 5106, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Peter A Downie
- Monash Children's Cancer Centre, Monash Children's Hospital, Monash Health, Clayton, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - Craig D Peacock
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - William Matsui
- Department of Oncology and Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, R3E-0V9, Canada.
- Department of Internal Medicine, Rady Faculty of Heath Sciences, University of Manitoba, Winnipeg, MB, R3A-1R9, Canada.
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
5
|
Mendez Ruiz S, Chalk AM, Goradia A, Heraud-Farlow J, Walkley C. Over-expression of ADAR1 in mice does not initiate or accelerate cancer formation in vivo. NAR Cancer 2023; 5:zcad023. [PMID: 37275274 PMCID: PMC10233902 DOI: 10.1093/narcan/zcad023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Adenosine to inosine editing (A-to-I) in regions of double stranded RNA (dsRNA) is mediated by adenosine deaminase acting on RNA 1 (ADAR1) or ADAR2. ADAR1 and A-to-I editing levels are increased in many human cancers. Inhibition of ADAR1 has emerged as a high priority oncology target, however, whether ADAR1 overexpression enables cancer initiation or progression has not been directly tested. We established a series of in vivo models to allow overexpression of full-length ADAR1, or its individual isoforms, to test if increased ADAR1 expression was oncogenic. Widespread over-expression of ADAR1 or the p110 or p150 isoforms individually as sole lesions was well tolerated and did not result in cancer initiation. Therefore, ADAR1 overexpression alone is not sufficient to initiate cancer. We demonstrate that endogenous ADAR1 and A-to-I editing increased upon immortalization in murine cells, consistent with the observations from human cancers. We tested if ADAR1 over-expression could co-operate with cancer initiated by loss of tumour suppressors using a model of osteosarcoma. We did not see a disease potentiating or modifying effect of overexpressing ADAR1 or its isoforms in the models assessed. We conclude that increased ADAR1 expression and A-to-I editing in cancers is most likely a consequence of tumor formation.
Collapse
Affiliation(s)
- Shannon Mendez Ruiz
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Alistair M Chalk
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Ankita Goradia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | | - Carl R Walkley
- To whom correspondence should be addressed. Tel: +61 3 9231 2480;
| |
Collapse
|
6
|
Otani S, Ohnuma M, Ito K, Matsushita Y. Cellular dynamics of distinct skeletal cells and the development of osteosarcoma. Front Endocrinol (Lausanne) 2023; 14:1181204. [PMID: 37229448 PMCID: PMC10203529 DOI: 10.3389/fendo.2023.1181204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Bone contributes to the maintenance of vital biological activities. At the cellular level, multiple types of skeletal cells, including skeletal stem and progenitor cells (SSPCs), osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, orchestrate skeletal events such as development, aging, regeneration, and tumorigenesis. Osteosarcoma (OS) is a primary malignant tumor and the main form of bone cancer. Although it has been proposed that the cellular origins of OS are in osteogenesis-related skeletal lineage cells with cancer suppressor gene mutations, its origins have not yet been fully elucidated because of a poor understanding of whole skeletal cell diversity and dynamics. Over the past decade, the advent and development of single-cell RNA sequencing analyses and mouse lineage-tracing approaches have revealed the diversity of skeletal stem and its lineage cells. Skeletal stem cells (SSCs) in the bone marrow endoskeletal region have now been found to efficiently generate OS and to be robust cells of origin under p53 deletion conditions. The identification of SSCs may lead to a more limited redefinition of bone marrow mesenchymal stem/stromal cells (BM-MSCs), and this population has been thought to contain cells from which OS originates. In this mini-review, we discuss the cellular diversity and dynamics of multiple skeletal cell types and the origin of OS in the native in vivo environment in mice. We also discuss future challenges in the study of skeletal cells and OS.
Collapse
Affiliation(s)
- Shohei Otani
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mizuho Ohnuma
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuki Matsushita
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
Zhao Y, Su S, Li X. Parathyroid Hormone-Related Protein/Parathyroid Hormone Receptor 1 Signaling in Cancer and Metastasis. Cancers (Basel) 2023; 15:cancers15071982. [PMID: 37046642 PMCID: PMC10093484 DOI: 10.3390/cancers15071982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
PTHrP exerts its effects by binding to its receptor, PTH1R, a G protein-coupled receptor (GPCR), activating the downstream cAMP signaling pathway. As an autocrine, paracrine, or intracrine factor, PTHrP has been found to stimulate cancer cell proliferation, inhibit apoptosis, and promote tumor-induced osteolysis of bone. Despite these findings, attempts to develop PTHrP and PTH1R as drug targets have not produced successful results in the clinic. Nevertheless, the efficacy of blocking PTHrP and PTH1R has been shown in various types of cancer, suggesting its potential for therapeutic applications. In light of these conflicting data, we conducted a comprehensive review of the studies of PTHrP/PTH1R in cancer progression and metastasis and highlighted the strengths and limitations of targeting PTHrP or PTH1R in cancer therapy. This review also offers our perspectives for future research in this field.
Collapse
|
8
|
Tarone L, Mareschi K, Tirtei E, Giacobino D, Camerino M, Buracco P, Morello E, Cavallo F, Riccardo F. Improving Osteosarcoma Treatment: Comparative Oncology in Action. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122099. [PMID: 36556464 PMCID: PMC9783386 DOI: 10.3390/life12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OSA) is the most common pediatric malignant bone tumor. Although surgery together with neoadjuvant/adjuvant chemotherapy has improved survival for localized OSA, most patients develop recurrent/metastatic disease with a dismally poor outcome. Therapeutic options have not improved for these OSA patients in recent decades. As OSA is a rare and "orphan" tumor, with no distinct targetable driver antigens, the development of new efficient therapies is still an unmet and challenging clinical need. Appropriate animal models are therefore critical for advancement in the field. Despite the undoubted relevance of pre-clinical mouse models in cancer research, they present some intrinsic limitations that may be responsible for the low translational success of novel therapies from the pre-clinical setting to the clinic. From this context emerges the concept of comparative oncology, which has spurred the study of pet dogs as a uniquely valuable model of spontaneous OSA that develops in an immune-competent system with high biological and clinical similarities to corresponding human tumors, including in its metastatic behavior and resistance to conventional therapies. For these reasons, the translational power of studies conducted on OSA-bearing dogs has seen increasing recognition. The most recent and relevant veterinary investigations of novel combinatorial approaches, with a focus on immune-based strategies, that can most likely benefit both canine and human OSA patients have been summarized in this commentary.
Collapse
Affiliation(s)
- Lidia Tarone
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Katia Mareschi
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Elisa Tirtei
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Mariateresa Camerino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| | - Federica Riccardo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| |
Collapse
|
9
|
Beck J, Ren L, Huang S, Berger E, Bardales K, Mannheimer J, Mazcko C, LeBlanc A. Canine and murine models of osteosarcoma. Vet Pathol 2022; 59:399-414. [PMID: 35341404 PMCID: PMC9290378 DOI: 10.1177/03009858221083038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children. Despite efforts to develop and implement new therapies, patient outcomes have not measurably improved since the 1980s. Metastasis continues to be the main source of patient mortality, with 30% of cases developing metastatic disease within 5 years of diagnosis. Research models are critical in the advancement of cancer research and include a variety of species. For example, xenograft and patient-derived xenograft (PDX) mouse models provide opportunities to study human tumor cells in vivo while transgenic models have offered significant insight into the molecular mechanisms underlying OS development. A growing recognition of naturally occurring cancers in companion species has led to new insights into how veterinary patients can contribute to studies of cancer biology and drug development. The study of canine cases, including the use of diagnostic tissue archives and clinical trials, offers a potential mechanism to further canine and human cancer research. Advancement in the field of OS research requires continued development and appropriate use of animal models. In this review, animal models of OS are described with a focus on the mouse and tumor-bearing pet dog as parallel and complementary models of human OS.
Collapse
Affiliation(s)
| | - Ling Ren
- National Cancer Institute, Bethesda, MD
| | | | | | - Kathleen Bardales
- National Cancer Institute, Bethesda, MD
- University of Pennsylvania, Philadelphia, PA
| | | | | | | |
Collapse
|
10
|
Mohammadi E, Alemi F, Maleki M, Malakoti F, Farsad-Akhtar N, Yousefi B. Quercetin and Methotrexate in Combination have Anticancer Activity in Osteosarcoma Cells and Repress Oncogenic MicroRNA-223. Drug Res (Stuttg) 2022; 72:226-233. [PMID: 35385884 DOI: 10.1055/a-1709-0658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Osteosarcoma (OS) is one of the most common bone neoplasms in adolescents. Notable short- and long-term toxic effects of OS chemotherapy regimens have been reported. Hence, new chemotherapeutic agents with the ability to potentiate OS chemotherapy drugs and protect non-tumorous tissues are required. METHODS Saos-2 cells were treated with Methotrexate (MTX) and Quercetin (Que) (a polyphenolic flavonoid with anti-tumor effects) alone and in combination. MTT assay was performed to investigate the cytotoxicity of the drugs. Moreover, apoptosis-involved genes, including miR-223, p53, BCL-2, CBX7, and CYLD expression were analyzed via qRT-PCR. Annexin V-FITC/PI kit was employed to assess the apoptosis rate. RESULTS The MTT results showed that Que increases MTX cytotoxicity on OS cells. The measured IC50s are 142.3 µM for QUE and 13.7 ng/ml for MTX. A decline in MTX IC50 value was observed from 13.7 ng/ml to 8.45 ng/ml in the presence of Que. Moreover, the mRNA expression outcomes indicated that the combination therapy significantly up-regulates the tumor suppressor genes, such as p53, CBX7, and CYLD, and declines anti-apoptotic genes BCL-2 and miR-223, which can lead to proliferation inhibition and apoptosis inducement. Furthermore, the apoptosis rate increased significantly from 6.03% in the control group to 38.35% in Saos-2 cells that were treated with the combination of MTX and Que. CONCLUSION Que, with the potential to boost the anticancer activity of MTX on Saos-2 cancer cells through proliferation inhibition and apoptosis induction, is a good candidate for combination therapy.
Collapse
Affiliation(s)
- Erfan Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhtar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Brozovich AA, Lenna S, Paradiso F, Serpelloni S, McCulloch P, Weiner B, Yustein JT, Taraballi F. Osteogenesis in the presence of chemotherapy: A biomimetic approach. J Tissue Eng 2022; 13:20417314221138945. [PMID: 36451687 PMCID: PMC9703557 DOI: 10.1177/20417314221138945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/29/2022] [Indexed: 07/13/2024] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in pediatrics. After resection, allografts or metal endoprostheses reconstruct bone voids, and systemic chemotherapy is used to prevent recurrence. This urges the development of novel treatment options for the regeneration of bone after excision. We utilized a previously developed biomimetic, biodegradable magnesium-doped hydroxyapatite/type I collagen composite material (MHA/Coll) to promote bone regeneration in the presence of chemotherapy. We also performed experiments to determine if human mesenchymal stem cells (hMSCs) seeded on MHA/Coll scaffold migrate less toward OS cells, suggesting that hMSCs will not contribute to tumor growth and therefore the potential of oncologic safety in vitro. Also, hMSCs seeded on MHA/Coll had increased expression of osteogenic genes (BGLAP, SPP1, ALP) compared to hMSCs in the 2D condition, even when exposed to chemotherapeutics. This is the first study to demonstrate that a highly osteogenic scaffold can potentially be oncologically safe because hMSCs on MHA/Coll tend to differentiate and lose the ability to migrate toward tumor cells. Therefore, hMSCs on MHA/Coll could potentially be utilized for bone regeneration after OS excision.
Collapse
Affiliation(s)
- Ava A Brozovich
- Texas A&M College of Medicine, Bryan, TX, USA
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Stefano Serpelloni
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Politecnico di Milano, Department of Electronics, Informatics, and Bioengineering (DEIB), Milan, Italy
| | - Patrick McCulloch
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Bradley Weiner
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Jason T Yustein
- Texas Children’s Cancer and Hematology Center and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
12
|
Martin TJ, Sims NA, Seeman E. Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocr Rev 2021; 42:383-406. [PMID: 33564837 DOI: 10.1210/endrev/bnab005] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone (PTH) and the paracrine factor, PTH-related protein (PTHrP), have preserved in evolution sufficient identities in their amino-terminal domains to share equivalent actions upon a common G protein-coupled receptor, PTH1R, that predominantly uses the cyclic adenosine monophosphate-protein kinase A signaling pathway. Such a relationship between a hormone and local factor poses questions about how their common receptor mediates pharmacological and physiological actions of the two. Mouse genetic studies show that PTHrP is essential for endochondral bone lengthening in the fetus and is essential for bone remodeling. In contrast, the main postnatal function of PTH is hormonal control of calcium homeostasis, with no evidence that PTHrP contributes. Pharmacologically, amino-terminal PTH and PTHrP peptides (teriparatide and abaloparatide) promote bone formation when administered by intermittent (daily) injection. This anabolic effect is remodeling-based with a lesser contribution from modeling. The apparent lesser potency of PTHrP than PTH peptides as skeletal anabolic agents could be explained by lesser bioavailability to PTH1R. By contrast, prolongation of PTH1R stimulation by excessive dosing or infusion, converts the response to a predominantly resorptive one by stimulating osteoclast formation. Physiologically, locally generated PTHrP is better equipped than the circulating hormone to regulate bone remodeling, which occurs asynchronously at widely distributed sites throughout the skeleton where it is needed to replace old or damaged bone. While it remains possible that PTH, circulating within a narrow concentration range, could contribute in some way to remodeling and modeling, its main physiological role is in regulating calcium homeostasis.
Collapse
Affiliation(s)
- T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Ego Seeman
- The University of Melbourne, Department of Medicine at Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
13
|
Damerell V, Pepper MS, Prince S. Molecular mechanisms underpinning sarcomas and implications for current and future therapy. Signal Transduct Target Ther 2021; 6:246. [PMID: 34188019 PMCID: PMC8241855 DOI: 10.1038/s41392-021-00647-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/18/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.
Collapse
Affiliation(s)
- Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
14
|
Chang X, Ma Z, Zhu G, Lu Y, Yang J. New perspective into mesenchymal stem cells: Molecular mechanisms regulating osteosarcoma. J Bone Oncol 2021; 29:100372. [PMID: 34258182 PMCID: PMC8254115 DOI: 10.1016/j.jbo.2021.100372] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
The origin of osteosarcoma cells from osteoblasts and mesenchymal stem cells remains controversial. Mesenchymal stem cells regulate the development of osteosarcoma by influencing the tumor microenvironment and mediating cell communication. Mesenchymal stem cells and exosomes secreted by them can be used as good genes and drug carriers for the treatment of osteosarcoma. Mesenchymal stem cells from different tissue sources have different regulatory effects on the development of osteosarcoma.
Mesenchymal stem cells (MSCs) are multipotent stem cells with significant potential for regenerative medicine. The tumorigenesis of osteosarcoma is an intricate system and MSCs act as an indispensable part of this, interacting with the tumor microenvironment (TME) during the process. MSCs link to cells by acting on each component in the TME via autocrine or paracrine extracellular vesicles for cellular communication. Because of their unique characteristics, MSCs can be modified and processed into good biological carriers, loaded with drugs, and transfected with anticancer genes for the targeted treatment of osteosarcoma. Previous high-quality reviews have described the biological characteristics of MSCs; this review will discuss the effects of MSCs on the components of the TME and cellular communication and the prospects for clinical applications of MSCs.
Collapse
Key Words
- 3TSR, Three type 1 repeats
- 5 FC, 5-fluorocytosine
- AD-MSCs, Adipose-derived MSCs
- AQP1, Aquaporin-1
- BMSC-derived exosomes, BMSC-Exos
- BMSCs, Bone marrow mesenchymal stem cells
- CAFs, Carcinoma-associated-fibroblasts
- CRC, Colorectal cancer
- CSF, Colony-stimulating factor
- Cellular communication
- Clinical application
- DOX, Doxorubicin
- DP-MSCs, Dental pulp-derived MSCs, hUC-MSCs, Human umbilical cord MSCs
- ECM, Extracellular matrix
- ESCs, embryonic stem cells
- EVs, Extracellular vesicles
- GBM, Glioblastoma
- HCC, hepatocellular carcinoma
- LINE-1, Long interspersing element 1
- MCP-1, Monocyte chemoattractant protein-1
- MSC-Exos, MSC-derived exosomes
- MSC-MVs, MSC microvesicles
- MSCs
- MSCs, Mesenchymal stem cells
- OPG, osteoprotegerin
- OS, osteosarcoma
- Osteosarcoma
- PDGFRα, Platelet derived growth factor receptor α
- PDGFRβ, Platelet derived growth factor receptor β
- PDGFα, Platelet derived growth factor α
- S TRAIL, Secretable variant of the TNF-related apoptosis-inducing ligand
- SD-MSCs, stressed MSCs
- SDF-1, Stromal cell-derived factor 1
- TGF, Transforming growth factor
- TME
- TME, Tumor microenvironment
- TNF, Tumor necrosis factor
- TRA2B, Transformer 2β
- VEGF, Vascular endothelial growth factor
- hASCs, human adipose stem cells
- iPSCs, induced pluripotent stem cells
- yCD::UPRT, Yeast cytosine deaminase::uracil phosphoribosyl transferase
Collapse
Affiliation(s)
- Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
15
|
Yu X, Yustein JT, Xu J. Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell Biosci 2021; 11:94. [PMID: 34022967 PMCID: PMC8141200 DOI: 10.1186/s13578-021-00600-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Most osteosarcomas (OSs) develop from mesenchymal cells at the bone with abnormal growth in young patients. OS has an annual incidence of 3.4 per million people and a 60-70% 5-year surviving rate. About 20% of OS patients have metastasis at diagnosis, and only 27% of patients with metastatic OS survive longer than 5 years. Mutation of tumor suppressors RB1, TP53, REQL4 and INK4a and/or deregulation of PI3K/mTOR, TGFβ, RANKL/NF-κB and IGF pathways have been linked to OS development. However, the agents targeting these pathways have yielded disappointing clinical outcomes. Surgery and chemotherapy remain the main treatments of OS. Recurrent and metastatic OSs are commonly resistant to these therapies. Spontaneous canine models, carcinogen-induced rodent models, transgenic mouse models, human patient-derived xenograft models, and cell lines from animal and human OSs have been developed for studying the initiation, growth and progression of OS and testing candidate drugs of OS. The cell plasticity regulated by epithelial-to-mesenchymal transition transcription factors (EMT-TFs) such as TWIST1, SNAIL, SLUG, ZEB1 and ZEB2 plays an important role in maintenance of the mesenchymal status and promotion of cell invasion and metastasis of OS cells. Multiple microRNAs including miR-30/9/23b/29c/194/200, proteins including SYT-SSX1/2 fusion proteins and OVOL2, and other factors that inhibit AMF/PGI and LRP5 can suppress either the expression or activity of EMT-TFs to increase epithelial features and inhibit OS metastasis. Further understanding of the molecular mechanisms that regulate OS cell plasticity should provide potential targets and therapeutic strategies for improving OS treatment.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jason T Yustein
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Preclinical In Vivo Modeling of Pediatric Sarcoma-Promises and Limitations. J Clin Med 2021; 10:jcm10081578. [PMID: 33918045 PMCID: PMC8069549 DOI: 10.3390/jcm10081578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pediatric sarcomas are an extremely heterogeneous group of genetically distinct diseases. Despite the increasing knowledge on their molecular makeup in recent years, true therapeutic advancements are largely lacking and prognosis often remains dim, particularly for relapsed and metastasized patients. Since this is largely due to the lack of suitable model systems as a prerequisite to develop and assess novel therapeutics, we here review the available approaches to model sarcoma in vivo. We focused on genetically engineered and patient-derived mouse models, compared strengths and weaknesses, and finally explored possibilities and limitations to utilize these models to advance both biological understanding as well as clinical diagnosis and therapy.
Collapse
|
17
|
Niu G, Bak A, Nusselt M, Zhang Y, Pausch H, Flisikowska T, Schnieke AE, Flisikowski K. Allelic Expression Imbalance Analysis Identified YAP1 Amplification in p53- Dependent Osteosarcoma. Cancers (Basel) 2021; 13:cancers13061364. [PMID: 33803512 PMCID: PMC8002920 DOI: 10.3390/cancers13061364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Osteosarcoma (OS) is a highly heterogenous cancer, making the identification of genetic driving factors difficult. Genetic factors, such as heritable mutations of Rb1 and TP53, are associated with an increased risk of OS. We previously generated pigs carrying a mutated TP53 gene, which develop OS at high frequency. RNA sequencing and allelic expression imbalance analysis identified an amplification of YAP1 involved in p53- dependent OS progression. The inactivation of YAP1 inhibits proliferation, migration, and invasion, and leads to the silencing of TP63 and reconstruction of p16 expression in p53-deficient porcine OS cells. This study confirms the importance of p53/YAP1 network in cancer. Abstract Osteosarcoma (OS) is a primary bone malignancy that mainly occurs during adolescent growth, suggesting that bone growth plays an important role in the aetiology of the disease. Genetic factors, such as heritable mutations of Rb1 and TP53, are associated with an increased risk of OS. Identifying driver mutations for OS has been challenging due to the complexity of bone growth-related pathways and the extensive intra-tumoral heterogeneity of this cancer. We previously generated pigs carrying a mutated TP53 gene, which develop OS at high frequency. RNA sequencing and allele expression imbalance (AEI) analysis of OS and matched healthy control samples revealed a highly significant AEI (p = 2.14 × 10−39) for SNPs in the BIRC3-YAP1 locus on pig chromosome 9. Analysis of copy number variation showed that YAP1 amplification is associated with the AEI and the progression of OS. Accordingly, the inactivation of YAP1 inhibits proliferation, migration, and invasion, and leads to the silencing of TP63 and reconstruction of p16 expression in p53-deficient porcine OS cells. Increased p16 mRNA expression correlated with lower methylation of its promoter. Altogether, our study provides molecular evidence for the role of YAP1 amplification in the progression of p53-dependent OS.
Collapse
Affiliation(s)
- Guanglin Niu
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Agnieszka Bak
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Melanie Nusselt
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Yue Zhang
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Hubert Pausch
- Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland;
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Angelika E. Schnieke
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
- Correspondence:
| |
Collapse
|
18
|
Al-Khan AA, Al Balushi NR, Richardson SJ, Danks JA. Roles of Parathyroid Hormone-Related Protein (PTHrP) and Its Receptor (PTHR1) in Normal and Tumor Tissues: Focus on Their Roles in Osteosarcoma. Front Vet Sci 2021; 8:637614. [PMID: 33796580 PMCID: PMC8008073 DOI: 10.3389/fvets.2021.637614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor and originates from bone forming mesenchymal cells and primarily affects children and adolescents. The 5-year survival rate for OS is 60 to 65%, with little improvement in prognosis during the last four decades. Studies have demonstrated the evolving roles of parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) in bone formation, bone remodeling, regulation of calcium transport from blood to milk, regulation of maternal calcium transport to the fetus and reabsorption of calcium in kidneys. These two molecules also play critical roles in the development, progression and metastasis of several tumors such as breast cancer, lung carcinoma, chondrosarcoma, squamous cell carcinoma, melanoma and OS. The protein expression of both PTHrP and PTHR1 have been demonstrated in OS, and their functions and proposed signaling pathways have been investigated yet their roles in OS have not been fully elucidated. This review aims to discuss the latest research with PTHrP and PTHR1 in OS tumorigenesis and possible mechanistic pathways. This review is dedicated to Professor Michael Day who died in May 2020 and was a very generous collaborator.
Collapse
Affiliation(s)
- Awf A Al-Khan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Department of Pathology, Sohar Hospital, Sohar, Oman
| | - Noora R Al Balushi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Samantha J Richardson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,School of Science, RMIT University, Bundoora, VIC, Australia
| | - Janine A Danks
- School of Science, RMIT University, Bundoora, VIC, Australia.,The University of Melbourne, Department of Medicine, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
19
|
Roessner A, Lohmann C, Jechorek D. Translational cell biology of highly malignant osteosarcoma. Pathol Int 2021; 71:291-303. [PMID: 33631032 DOI: 10.1111/pin.13080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Highly malignant osteosarcoma (HMO) is the most frequent malignant bone tumor preferentially occurring in adolescents and children with a second more flat peak in patients over the age of 60. The younger patients benefit from combined neoadjuvant chemotherapy with 65-70% 5-year survival rate. In patients with metastatic HMO the 5-year survival rate is consistently poor with approximately 30%. In the last several years strategies for target therapies have been developed by using next generation sequencing (NGS) for defining targetable molecular factors. However, it has so far been challenging to establish an effective target therapy for so-called 'orphan tumors' without recognizable driver mutations, including HMO. The molecular genetic studies using NGS have shown that HMOs are genomically unstable tumors with highly complex chaotic karyotypes. Before the background of this genetic complexity more investigations should be performed in the future for defining targetable biological factors. As the prognosis could not be improved for 40 years one may expect improvements for patients only by gaining a deeper understanding of the cell and molecular biology of HMO. The cell of origin of HMO is being clarified now. The majority of studies indicate that an osteoblastic progenitor cell is probably the cell of origin of HMO and not an undifferentiated mesenchymal stem cell. This means that the established histopathological definition of HMO through verification of osteoid production by the osteoblastic cells is well justified and will probably be the cornerstone for a precise differential diagnosis of HMO also in the years to come.
Collapse
Affiliation(s)
- Albert Roessner
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph Lohmann
- Department of Orthopedics, Otto-von-Guericke University, Magdeburg, Germany
| | - Doerthe Jechorek
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
20
|
Patient Derived Xenografts for Genome-Driven Therapy of Osteosarcoma. Cells 2021; 10:cells10020416. [PMID: 33671173 PMCID: PMC7922432 DOI: 10.3390/cells10020416] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a rare malignant primary tumor of mesenchymal origin affecting bone. It is characterized by a complex genotype, mainly due to the high frequency of chromothripsis, which leads to multiple somatic copy number alterations and structural rearrangements. Any effort to design genome-driven therapies must therefore consider such high inter- and intra-tumor heterogeneity. Therefore, many laboratories and international networks are developing and sharing OS patient-derived xenografts (OS PDX) to broaden the availability of models that reproduce OS complex clinical heterogeneity. OS PDXs, and new cell lines derived from PDXs, faithfully preserve tumor heterogeneity, genetic, and epigenetic features and are thus valuable tools for predicting drug responses. Here, we review recent achievements concerning OS PDXs, summarizing the methods used to obtain ectopic and orthotopic xenografts and to fully characterize these models. The availability of OS PDXs across the many international PDX platforms and their possible use in PDX clinical trials are also described. We recommend the coupling of next-generation sequencing (NGS) data analysis with functional studies in OS PDXs, as well as the setup of OS PDX clinical trials and co-clinical trials, to enhance the predictive power of experimental evidence and to accelerate the clinical translation of effective genome-guided therapies for this aggressive disease.
Collapse
|
21
|
Chow T, Wutami I, Lucarelli E, Choong PF, Duchi S, Di Bella C. Creating In Vitro Three-Dimensional Tumor Models: A Guide for the Biofabrication of a Primary Osteosarcoma Model. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:514-529. [PMID: 33138724 DOI: 10.1089/ten.teb.2020.0254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OS) is a highly aggressive primary bone tumor. The mainstay for its treatment is multiagent chemotherapy and surgical resection, with a 50-70% 5-year survival rate. Despite the huge effort made by clinicians and researchers in the past 30 years, limited progress has been made to improve patient outcomes. As novel therapeutic approaches for OS become available, such as monoclonal antibodies, small molecules, and immunotherapies, the need for OS preclinical model development becomes equally pressing. Three-dimensional (3D) OS models represent an alternative system to study this tumor: In contrast to two-dimensional monolayers, 3D matrices can recapitulate key elements of the tumor microenvironment (TME), such as the cellular interaction with the bone mineralized matrix. The advancement of tissue engineering and biofabrication techniques enables the incorporation of specific TME aspects into 3D models, to investigate the contribution of individual components to tumor progression and enhance understanding of basic OS biology. The use of biomaterials that mimic the extracellular matrix could also facilitate the testing of drugs targeting the TME itself, allowing a larger range of therapeutics to be tested, while averting the ethical implications and high cost associated with in vivo preclinical models. This review aims at serving as a practical guide by delineating the OS TME ("what it is like") and, in turn, propose various biofabrication strategies to create a 3D model ("how to recreate it"), to improve the in vitro representation of the OS tumor and ultimately generate more accurate drug response profiles.
Collapse
Affiliation(s)
- Thomas Chow
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia.,BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Ilycia Wutami
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia.,BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Peter F Choong
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Serena Duchi
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Claudia Di Bella
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, Australia
| |
Collapse
|
22
|
Bone Microenvironment and Osteosarcoma Metastasis. Int J Mol Sci 2020; 21:ijms21196985. [PMID: 32977425 PMCID: PMC7582690 DOI: 10.3390/ijms21196985] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
The bone microenvironment is an ideal fertile soil for both primary and secondary tumors to seed. The occurrence and development of osteosarcoma, as a primary bone tumor, is closely related to the bone microenvironment. Especially, the metastasis of osteosarcoma is the remaining challenge of therapy and poor prognosis. Increasing evidence focuses on the relationship between the bone microenvironment and osteosarcoma metastasis. Many elements exist in the bone microenvironment, such as acids, hypoxia, and chemokines, which have been verified to affect the progression and malignance of osteosarcoma through various signaling pathways. We thoroughly summarized all these regulators in the bone microenvironment and the transmission cascades, accordingly, attempting to furnish hints for inhibiting osteosarcoma metastasis via the amelioration of the bone microenvironment. In addition, analysis of the cross-talk between the bone microenvironment and osteosarcoma will help us to deeply understand the development of osteosarcoma. The cellular and molecular protagonists presented in the bone microenvironment promoting osteosarcoma metastasis will accelerate the exploration of novel therapeutic strategies towards osteosarcoma.
Collapse
|
23
|
Kalla D, Kind A, Schnieke A. Genetically Engineered Pigs to Study Cancer. Int J Mol Sci 2020; 21:E488. [PMID: 31940967 PMCID: PMC7013672 DOI: 10.3390/ijms21020488] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Recent decades have seen groundbreaking advances in cancer research. Genetically engineered animal models, mainly in mice, have contributed to a better understanding of the underlying mechanisms involved in cancer. However, mice are not ideal for translating basic research into studies closer to the clinic. There is a need for complementary information provided by non-rodent species. Pigs are well suited for translational biomedical research as they share many similarities with humans such as body and organ size, aspects of anatomy, physiology and pathophysiology and can provide valuable means of developing and testing novel diagnostic and therapeutic procedures. Porcine oncology is a new field, but it is clear that replication of key oncogenic mutation in pigs can usefully mimic several human cancers. This review briefly outlines the technology used to generate genetically modified pigs, provides an overview of existing cancer models, their applications and how the field may develop in the near future.
Collapse
Affiliation(s)
| | | | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany; (D.K.); (A.K.)
| |
Collapse
|
24
|
Castillo-Tandazo W, Mutsaers AJ, Walkley CR. Osteosarcoma in the Post Genome Era: Preclinical Models and Approaches to Identify Tractable Therapeutic Targets. Curr Osteoporos Rep 2019; 17:343-352. [PMID: 31529263 DOI: 10.1007/s11914-019-00534-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Osteosarcoma (OS) is the most common cancer of bone, yet is classified as a rare cancer. Treatment and outcomes for OS have not substantively changed in several decades. While the decoding of the OS genome greatly advanced the understanding of the mutational landscape of OS, immediately actionable therapeutic targets were not apparent. Here we describe recent preclinical models that can be leveraged to identify, test, and prioritize therapeutic candidates. RECENT FINDINGS The generation of multiple high fidelity murine models of OS, the spontaneous disease that arises in pet dogs, and the establishment of a diverse collection of patient-derived OS xenografts provide a robust preclinical platform for OS. These models enable evidence to be accumulated across multiple stages of preclinical evaluation. Chemical and genetic screening has identified therapeutic targets, often demonstrating cross species activity. Clinical trials in both PDX models and in canine OS have effectively tested new therapies for prioritization. Improving clinical outcomes in OS has proven elusive. The integrated target discovery and testing possible through a cross species platform provides validation of a putative target and may enable the rigorous evaluation of new therapies in models where endpoints can be rapidly assessed.
Collapse
Affiliation(s)
- Wilson Castillo-Tandazo
- St. Vincent's Institute, 9 Princes St, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anthony J Mutsaers
- Department of Biomedical Sciences, Ontario Veterinary College, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada.
| | - Carl R Walkley
- St. Vincent's Institute, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
25
|
Ho PWM, Chan AS, Pavlos NJ, Sims NA, Martin TJ. Brief exposure to full length parathyroid hormone-related protein (PTHrP) causes persistent generation of cyclic AMP through an endocytosis-dependent mechanism. Biochem Pharmacol 2019; 169:113627. [PMID: 31476292 DOI: 10.1016/j.bcp.2019.113627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone (PTH)-related protein (PTHrP) (gene name Pthlh) was discovered as the factor responsible for the humoral hypercalcemia of malignancy. It shares such sequence similarity with PTH in the amino-terminal region that the two are equally able to act through a single G protein-coupled receptor, PTH1R. A number of biological activities are ascribed to domains of PTHrP beyond the amino-terminal domain. PTH functions as a circulating hormone, but PTHrP is generated locally in many tissues including bone, where it acts as a paracrine factor on osteoblasts and osteocytes. The present study compares how PTH and PTHrP influence cyclic AMP (cAMP) formation through adenylyl cyclase, the first event in cell activation through PTH1R. Brief exposure to full length PTHrP(1-141) in several osteoblastic cell culture systems was followed by sustained adenylyl cyclase activity for more than an hour after ligand washout. This effect was dose-dependent and was not found with shorter PTHrP or PTH peptides even though they were fully able to activate adenylyl cyclase with acute treatment. The persistent activation response to PTHrP(1-141) was seen also with later events in the cAMP/PKA pathway, including persistent activation of CRE-luciferase and sustained regulation of several CREB-responsive mRNAs, up to 24 h after the initial exposure. Pharmacologic blockade of endocytosis prevented the persistent activation of cAMP and gene responses. We conclude that full length PTHrP, the likely local physiological effector in bone, differs in intracellular action to PTH by undergoing endosomal translocation to induce a prolonged adenylyl cyclase activation in its target cells.
Collapse
Affiliation(s)
- Patricia W M Ho
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia
| | - Audrey S Chan
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Nathan J Pavlos
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Natalie A Sims
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia.
| |
Collapse
|
26
|
Bertin H, Guilho R, Brion R, Amiaud J, Battaglia S, Moreau A, Brouchet-Gomez A, Longis J, Piot B, Heymann D, Corre P, Rédini F. Jaw osteosarcoma models in mice: first description. J Transl Med 2019; 17:56. [PMID: 30813941 PMCID: PMC6391788 DOI: 10.1186/s12967-019-1807-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common cancer of bone. Jaw osteosarcoma (JOS) is rare and it differs from other OS in terms of the time of occurrence (two decades later) and better survival. The aim of our work was to develop and characterize specific mouse models of JOS. METHODS Syngenic and xenogenic models of JOS were developed in mice using mouse (MOS-J) and human (HOS1544) osteosarcoma cell lines, respectively. An orthotopic patient-derived xenograft model (PDX) was also developed from a mandibular biopsy. These models were characterized at the histological and micro-CT imaging levels, as well as in terms of tumor growth and metastatic spread. RESULTS Homogeneous tumor growth was observed in both the HOS1544 and the MOS-J JOS models by injection of 0.25 × 106 and 0.50 × 106 tumor cells, respectively, at perimandibular sites. Histological characterization of the tumors revealed features consistent with high grade conventional osteosarcoma, and the micro-CT analysis revealed both osteogenic and osteolytic lesions. Early metastasis was encountered at day 14 in the xenogenic model, while there were no metastatic lesions in the syngenic model and in the PDX models. CONCLUSION We describe the first animal model of JOS and its potential use for therapeutic applications. This model needs to be compared with the usual long-bone osteosarcoma models to investigate potential differences in the bone microenvironment.
Collapse
Affiliation(s)
- Hélios Bertin
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France. .,Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France.
| | - Romain Guilho
- Faculty of Population Health Sciences, UCL Institute of Child Health, 30 Guilford Street, London, England, WC1N 1EH, UK
| | - Régis Brion
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| | - Jérôme Amiaud
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| | - Séverine Battaglia
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| | - Anne Moreau
- Service d'anatomie et cytologie pathologique, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France
| | - Anne Brouchet-Gomez
- Service d'anatomie et cytologie pathologique, Institut Universitaire du Cancer Toulouse Oncopôle, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France.,Centre de ressources biologiques - Cancer, Institut Universitaire du Cancer Toulouse Oncopôle, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France
| | - Julie Longis
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France
| | - Benoit Piot
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France
| | - Dominique Heymann
- Laboratoire Hétérogénéité Tumorale et Médecine de Précision, Institut de Cancérologie de l'Ouest, Boulevard Jacques Monod, 44805, Saint Herblain, France.,Service d'Histologie-Embryologie, Faculté de médecine de Nantes, 1 Rue Gaston Veil, 44035, Nantes, France
| | - Pierre Corre
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, 44093, Nantes Cedex 1, France.,Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire (LIOAD), Faculté de Chirurgie Dentaire, 1 Place Alexis Ricordeau, 44042, Nantes, France
| | - Françoise Rédini
- Laboratoire des sarcomes osseux et remodelage des tissus calcifiés (Phy.OS), UMR 1238, Faculté de médecine, 1 rue Gaston Veil, 44035, Nantes Cedex, France
| |
Collapse
|
27
|
Han Y, Feng H, Sun J, Liang X, Wang Z, Xing W, Dai Q, Yang Y, Han A, Wei Z, Bi Q, Ji H, Kang T, Zou W. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest 2019; 129:1895-1909. [PMID: 30830877 PMCID: PMC6486357 DOI: 10.1172/jci124590] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bone osteogenic sarcoma has a poor prognosis as the exact cell of origin and the signaling pathways underling tumor formation remain undefined. Here, we report an osteogenic tumor mouse model based on the conditional knockout of liver kinase b1 (Lkb1; also known as Stk11) in Cathepsin K (Ctsk)-Cre expressing cells. Lineage tracing studies demonstrated that Ctsk-Cre could label a population of periosteal cells. The cells functioned as mesenchymal progenitors with regard to markers and functional properties. LKB1 deficiency increased proliferation and osteoblast differentiation of Ctsk+ periosteal cells, while downregulation of mTORC1 activity, using Raptor genetic mouse model or mTORC1 inhibitor treatment, ameliorated tumor progression of Ctsk-Cre Lkb1fllfl mice. Xenograft mouse models, using human osteosarcoma cell lines, also demonstrated that LKB1 deficiency promoted tumor formation, while mTOR inhibition suppressed xenograft tumor growth. In summary, we identified periosteum-derived Ctsk-Cre expressing cells as a cell of origin for osteogenic tumor and suggested the LKB1-mTORC1 pathway as a promising target for treatment of osteogenic tumor.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jun Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoting Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Qinggang Dai
- The Second Dental Center, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhanying Wei
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qing Bi
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Wang S, Gao H, Zuo J, Gao Z. Cyclooxygenase-2 expression correlates with development, progression, metastasis, and prognosis of osteosarcoma: a meta-analysis and trial sequential analysis. FEBS Open Bio 2019; 9:226-240. [PMID: 30761249 PMCID: PMC6356183 DOI: 10.1002/2211-5463.12560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 11/12/2022] Open
Abstract
Cyclooxygenase‐2 (COX‐2), a key enzyme in arachidonic acid metabolism, is involved in several cancers, including osteosarcoma. The prognostic significance of COX‐2 in osteosarcoma remains controversial. This study was to analyze the potential clinical and prognostic effects of COX‐2 protein expression in patients with osteosarcoma. Eligible articles were searched via online databases. The combined odds ratios (ORs) or hazard ratios (HRs) with their 95% confidence intervals (95% CIs) were calculated using the random‐effects model. Trial sequential analysis (TSA) was applied to analyze the required information size and determine the reliability of the evidence. Twenty‐three studies on COX‐2 expression were identified, which included a total of 1084 patients with malignant osteosarcoma and 247 patients with benign osteochondroma. COX‐2 protein expression in osteosarcoma was higher than in benign osteochondroma (OR = 7.66, P < 0.001). COX‐2 expression was not correlated with age, gender, tumor location, cancer histology, or necrosis (P > 0.1), but was significantly associated with tumor grade (high grade vs. low grade: OR = 4.81, P < 0.001), clinical stage (stage 3–4 vs. stage 1–2: OR = 4.89, P < 0.001), and metastasis (yes vs. no: OR = 3.53, P < 0.001). Based on TSA results, we suggest that additional studies are not required to examine osteosarcoma vs. benign osteochondroma, tumor grade, clinical stage, or metastasis. No heterogeneity was observed in these analyses. COX‐2 expression is linked to poor prognosis in metastasis‐free survival, overall survival, and relapse‐free survival, as indicated by multivariate analysis. Therefore, the expression of COX‐2 may correlate with the development, progression, metastasis, and poor prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Shengqun Wang
- Orthopaedics China-Japan Union Hospital of Jilin University China
| | - Hongwei Gao
- Orthopaedics The Affiliated Hospital to Changchun University of Chinese Medicine Jilin China
| | - Jianlin Zuo
- Orthopaedics China-Japan Union Hospital of Jilin University China
| | - Zhongli Gao
- Orthopaedics China-Japan Union Hospital of Jilin University China
| |
Collapse
|
29
|
Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53. Cell Death Dis 2018; 9:844. [PMID: 30154459 PMCID: PMC6113249 DOI: 10.1038/s41419-018-0944-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
Abstract
The loss of p53 function is a central event in the genesis of osteosarcoma (OS). How mutation of p53 enables OS development from osteoblastic lineage cells is poorly understood. We and others have reported a key role for elevated and persistent activation of the cAMP/PKA/Creb1 pathway in maintenance of OS. In view of the osteoblast lineage being the cell of origin of OS, we sought to determine how these pathways interact within the context of the normal osteoblast. Normal osteoblasts (p53 WT) rapidly underwent apoptosis in response to acute elevation of cAMP levels or activity, whereas p53-deficient osteoblasts tolerated this aberrant cAMP/Creb level and activity. Using the p53 activating small-molecule Nutlin-3a and cAMP/Creb1 activator forskolin, we addressed the question of how p53 responds to the activation of cAMP. We observed that p53 acts dominantly to protect cells from excessive cAMP accumulation. We identify a Creb1-Cbp complex that functions together with and interacts with p53. Finally, translating these results we find that a selective small-molecule inhibitor of the Creb1-Cbp interaction demonstrates selective toxicity to OS cells where this pathway is constitutively active. This highlights the cAMP/Creb axis as a potentially actionable therapeutic vulnerability in p53-deficient tumors such as OS. These results define a mechanism through which p53 protects normal osteoblasts from excessive or abnormal cAMP accumulation, which becomes fundamentally compromised in OS.
Collapse
|
30
|
Walia MK, Castillo-Tandazo W, Mutsaers AJ, Martin TJ, Walkley CR. Murine models of osteosarcoma: A piece of the translational puzzle. J Cell Biochem 2018; 119:4241-4250. [PMID: 29236321 DOI: 10.1002/jcb.26601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is the most common cancer of bone in children and young adults. Despite extensive research efforts, there has been no significant improvement in patient outcome for many years. An improved understanding of the biology of this cancer and how genes frequently mutated contribute to OS may help improve outcomes for patients. While our knowledge of the mutational burden of OS is approaching saturation, our understanding of how these mutations contribute to OS initiation and maintenance is less clear. Murine models of OS have now been demonstrated to be highly valid recapitulations of human OS. These models were originally based on the frequent disruption of p53 and Rb in familial OS syndromes, which are also common mutations in sporadic OS. They have been applied to significantly improve our understanding about the functions of recurrently mutated genes in disease. The murine models can be used as a platform for preclinical testing and identifying new therapeutic targets, in addition to testing the role of additional mutations in vivo. Most recently these models have begun to be used for discovery based approaches and screens, which hold significant promise in furthering our understanding of the genetic and therapeutic sensitivities of OS. In this review, we discuss the mouse models of OS that have been reported in the last 3-5 years and newly identified pathways from these studies. Finally, we discuss the preclinical utilization of the mouse models of OS for identifying and validating actionable targets to improve patient outcome.
Collapse
Affiliation(s)
| | - Wilson Castillo-Tandazo
- St. Vincent's Institute, Fitzroy, Vic, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic, Australia
| | - Anthony J Mutsaers
- Departments of Biomedical Sciences and Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Thomas John Martin
- St. Vincent's Institute, Fitzroy, Vic, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic, Australia
| | - Carl R Walkley
- St. Vincent's Institute, Fitzroy, Vic, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic, Australia
| |
Collapse
|
31
|
Jacques C, Renema N, Lezot F, Ory B, Walkley CR, Grigoriadis AE, Heymann D. Small animal models for the study of bone sarcoma pathogenesis:characteristics, therapeutic interests and limitations. J Bone Oncol 2018; 12:7-13. [PMID: 29850398 PMCID: PMC5966525 DOI: 10.1016/j.jbo.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are the three main entities of bone sarcoma which collectively encompass more than 50 heterogeneous entities of rare malignancies. In contrast to osteosarcoma and Ewing sarcoma which mainly affect adolescents and young adults and exhibit a high propensity to metastasise to the lungs, chondrosarcoma is more frequently observed after 40 years of age and is characterised by a high frequency of local recurrence. The combination of chemotherapy, surgical resection and radiotherapy has contributed to an improved outcome for these patients. However, a large number of patients still suffer significant therapy related toxicities or die of refractory and metastatic disease. To better delineate the pathogenesis of bone sarcomas and to identify and test new therapeutic options, major efforts have been invested over the past decades in the development of relevant pre-clinical animal models. Nowadays, in vivo models aspire to mimic all the steps and the clinical features of the human disease as accurately as possible and should ideally be manipulable. Considering these features and given their small size, their conduciveness to experiments, their affordability as well as their human-like bone-microenvironment and immunity, murine pre-clinical models are interesting in the context of these pathologies. This chapter will provide an overview of the murine models of bone sarcomas, paying specific attention for the models induced by inoculation of tumour cells. The genetically-engineered mouse models of bone sarcoma will also be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Department of Medicine, St. Vincent's Hospital, University of Melbourne, Australia
| | - Agi E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London Guy's Hospital, London, UK
| | - Dominique Heymann
- University of Sheffield, Medical School, Dept of Oncology and Metabolism. INSERM, European Associated laboratory «Sarcoma Research Unit», Beech Hill Road, S10 2RX Sheffield, UK.,Institut de Cancérologie de l'Ouest, INSERM, U1232, University of Nantes, «Tumour Heterogeneity and Precision Medicine», Bld Jacques Monod, 44805 Saint-Herblain cedex, France
| |
Collapse
|
32
|
Ren T, Piperdi S, Koirala P, Park A, Zhang W, Ivenitsky D, Zhang Y, Villanueva-Siles E, Hawkins DS, Roth M, Gorlick R. CD49b inhibits osteogenic differentiation and plays an important role in osteosarcoma progression. Oncotarget 2017; 8:87848-87859. [PMID: 29152125 PMCID: PMC5675677 DOI: 10.18632/oncotarget.21254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/23/2017] [Indexed: 02/03/2023] Open
Abstract
Osteosarcoma is a cancer whose cell of origin lies in the differentiation pathway between the mesenchymal stem cell (MSC) and the osteoblast (OB). In this study, we sought to determine if surface markers associated with osteoblastic differentiation are involved in osteosarcoma progression. cDNA expression arrays were performed on MSCs and osteoblasts to identify differentially expressed genes. The specificity of candidate genes for osteoblast differentiation was assessed through time course experiments in differentiation media with confirmation utilizing CD49b transfected MSCs. In addition, CD49b was transfected into osteosarcoma cell lines to determine its impact on cell proliferation, motility, and invasion. Finally, the expression of CD49b was assessed in osteosarcoma patient samples and correlated with survival outcomes. cDNA expression arrays identified a list of genes differentially expressed between MSCs and osteoblasts with a subset of those genes encoding cell surface proteins. Three genes were selected for further analysis, based on qPCR validation, but only CD49b was selective for osteoblastic differentiation. Forced expression of CD49b in MSCs led to delayed osteoblastic differentiation. Down-regulation of CD49b expression in osteosarcoma cell lines resulted in inhibition of their migration and invasion capacity. CD49b expression in osteosarcoma patients was associated with presence of metastases and inferior 5 year overall survival (31.4% vs. 57.4%, p=0.03). Surface proteins involved in osteosarcoma cell differentiation, such as CD49b, have the potential to serve as prognostic biomarkers, and may lead to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Tingting Ren
- Department of Orthopedics, Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Department of Pediatrics, Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sajida Piperdi
- Department of Pediatrics, Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pratistha Koirala
- Department of Pediatrics, Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amy Park
- Department of Pediatrics, Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wendong Zhang
- Department of Pediatrics, Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daria Ivenitsky
- Department of Pediatrics, Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yidan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Department of Pediatrics, Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Douglas S Hawkins
- Department of Pediatrics, Division of Hematology/Oncology, Seattle Children's Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Michael Roth
- Department of Pediatrics, Division of Hematology/Oncology, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Gorlick
- Department of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Abstract
Osteosarcoma is the predominant form of bone cancer, affecting mostly adolescents. Recent progress made in molecular genetic studies of osteosarcoma has changed our view on the cause of the disease and ongoing therapeutic approaches for patients. As we draw closer to gaining more complete catalogs of candidate cancer driver genes in common forms of cancer, the landscape of somatic mutations in osteosarcoma is emerging from its first phase. In this review, we summarize recent whole genome and/or whole exome genomic studies, and then put these findings in the context of genetic hallmarks of somatic mutations and mutational processes in human osteosarcoma. One of the lessons learned here is that the extent of somatic mutations and complexity of the osteosarcoma genome are similar to that of common forms of adult cancer. Thus, a much higher number of samples than those currently obtained are needed to complete the catalog of driver mutations in human osteosarcoma. In parallel, genetic studies in other species have revealed candidate driver genes and their roles in the genesis of osteosarcoma. This review also summarizes newly identified drivers in genetically engineered mouse models (GEMMs) and discusses our understanding of the impact of nature and number of drivers on tumor latency, subtypes, and metastatic potentials of osteosarcoma. It is becoming apparent that a synergistic team composed of three drivers (one 'first driver' and two 'synergistic drivers') may be required to generate an animal model that recapitulates aggressive osteosarcoma with a short latency. Finally, new cancer therapies are urgently needed to improve survival rate and quality of life for osteosarcoma patients. Several vulnerabilities in osteosarcoma are illustrated in this review to exemplify the opportunities for next generation molecularly targeted therapies. However, much work remains in order to complete our understanding of the somatic mutation basis of osteosarcoma, to develop reliable animal models of human disease, and to apply this information to guide new therapeutic approaches for reducing morbidity and mortality of this rare disease.
Collapse
Affiliation(s)
- Kirby Rickel
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Fang Fang
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jianning Tao
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
34
|
Davis LE, Jeng S, Svalina MN, Huang E, Pittsenbarger J, Cantor EL, Berlow N, Seguin B, Mansoor A, McWeeney SK, Keller C. Integration of genomic, transcriptomic and functional profiles of aggressive osteosarcomas across multiple species. Oncotarget 2017; 8:76241-76256. [PMID: 29100308 PMCID: PMC5652702 DOI: 10.18632/oncotarget.19532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/11/2017] [Indexed: 01/14/2023] Open
Abstract
In complex, highly unstable genomes such as in osteosarcoma, targeting aberrant checkpoint processes (metabolic, cell cycle or immune) may prove more successful than targeting specific kinase or growth factor signaling pathways. Here, we establish a comparative oncology approach characterizing the most lethal osteosarcomas identified in a biorepository of tumors from three different species: human, mouse and canine. We describe the development of a genetically-engineered mouse model of osteosarcoma, establishment of primary cell cultures from fatal human tumors, and a biorepository of osteosarcoma surgical specimens from pet dogs. We analyzed the DNA mutations, differential RNA expression and in vitro drug sensitivity from two phenotypically-distinct cohorts: tumors with a highly aggressive biology resulting in death from rapidly progressive, refractory metastatic disease, and tumors with a non-aggressive, curable phenotype. We identified ARK5 (AMPK-Related Protein Kinase 5, also referred to as NUAK Family Kinase 1) as a novel metabolic target present in all species, and independent analyses confirmed glucose metabolism as the most significantly aberrant cellular signaling pathway in a model system for highly metastatic tumors. Pathway integration analysis identified Polo Like Kinase 1 (PLK1)-mediated checkpoint adaptation as critical to the survival of a distinctly aggressive osteosarcoma. The tumor-associated macrophage cytokine CCL18 (C-C Motif Chemokine Ligand 18) was significantly over-expressed in aggressive human osteosarcomas, and a clustering of mutations in the BAGE (B Melanoma Antigen) tumor antigen gene family was found. The theme of these features of high risk osteosarcoma is checkpoint adaptations, which may prove both prognostic and targetable.
Collapse
Affiliation(s)
- Lara E Davis
- Knight Cancer Institute, Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health and Sciences University, Portland, Oregon, USA.,Department of Pediatrics, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Matthew N Svalina
- Department of Pediatrics, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Elaine Huang
- Department of Pediatrics, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Janét Pittsenbarger
- Knight Cancer Institute, Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Emma L Cantor
- Department of Pediatrics, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Noah Berlow
- Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Bernard Seguin
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Atiya Mansoor
- Department of Pathology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| |
Collapse
|
35
|
Heymann MF, Brown HK, Heymann D. Drugs in early clinical development for the treatment of osteosarcoma. Expert Opin Investig Drugs 2016; 25:1265-1280. [DOI: 10.1080/13543784.2016.1237503] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marie-Françoise Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, University of Nantes, Nantes, France
- Nantes University Hospital, Nantes, France
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| | - Hannah K. Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| | - Dominique Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, University of Nantes, Nantes, France
- Nantes University Hospital, Nantes, France
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| |
Collapse
|
36
|
Wang J, Wu P, Chen PC, Lee C, Chen W, Hung S. Generation of Osteosarcomas from a Combination of Rb Silencing and c-Myc Overexpression in Human Mesenchymal Stem Cells. Stem Cells Transl Med 2016; 6:512-526. [PMID: 28191765 PMCID: PMC5442803 DOI: 10.5966/sctm.2015-0226] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 07/15/2016] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c-Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c-Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum-free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS-like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient-derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c-Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS-like cells by Rb knockdown and c-Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS. Stem Cells Translational Medicine 2017;6:512-526.
Collapse
Affiliation(s)
- Jir‐You Wang
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Traditional Medicine, School of Medicine, National Yang‐Ming University, Taipei, Taiwan, Republic of China
| | - Po‐Kuei Wu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Paul Chih‐Hsueh Chen
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Chia‐Wen Lee
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Wei‐Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Shih‐Chieh Hung
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Traditional Medicine, School of Medicine, National Yang‐Ming University, Taipei, Taiwan, Republic of China
- Institute of Clinical Medicine, School of Medicine, National Yang‐Ming University, Taipei, Taiwan, Republic of China
- Department of Pharmacology, School of Medicine, National Yang‐Ming University, Taipei, Taiwan, Republic of China
- Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan, Republic of China
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
37
|
Nikitovic D, Kavasi RM, Berdiaki A, Papachristou DJ, Tsiaoussis J, Spandidos DA, Tsatsakis AM, Tzanakakis GN. Parathyroid hormone/parathyroid hormone-related peptide regulate osteosarcoma cell functions: Focus on the extracellular matrix (Review). Oncol Rep 2016; 36:1787-92. [PMID: 27499459 PMCID: PMC5022866 DOI: 10.3892/or.2016.4986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone tumor of mesenchymal origin mostly affecting children and adolescents. The OS extracellular matrix (ECM) is extensively altered as compared to physiological bone tissue. Indeed, the main characteristic of the most common osteoblastic subtype of OS is non-mineralized osteoid production. Parathyroid hormone (PTH) is a polypeptide hormone secreted by the chief cells of the parathyroid glands. The PTH-related peptide (PTHrP) may be comprised of 139, 141 or 173 amino acids and exhibits considerate N-terminal amino acid sequence homology with PTH. The function of PTH/PTHrP is executed through the activation of the PTH receptor 1 (PTHR1) and respective downstream intracellular pathways which regulate skeletal development, bone turnover and mineral ion homeostasis. Both PTHR1 and its PTH/PTHrP ligands have been shown to be expressed in OS and to affect the functions of these tumor cells. This review aims to highlight the less well known aspects of PTH/PTHrP functions in the progression of OS by focusing on ECM-dependent signaling.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Rafaela-Maria Kavasi
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aikaterini Berdiaki
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Dionysios J Papachristou
- Department of Anatomy‑Histology‑Embryology, Unit of Bone and Soft Tissue Studies, School of Medicine, University of Patras, Patras 26504, Greece
| | - John Tsiaoussis
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George N Tzanakakis
- Department of Anatomy‑Histology‑Embryology, School of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
38
|
Martin TJ. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases. Physiol Rev 2016; 96:831-71. [DOI: 10.1152/physrev.00031.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects.
Collapse
Affiliation(s)
- T. John Martin
- St Vincent's Institute of Medical Research, Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
39
|
Shekhar TM, Miles MA, Gupte A, Taylor S, Tascone B, Walkley CR, Hawkins CJ. IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget 2016; 7:33866-86. [PMID: 27129149 PMCID: PMC5085125 DOI: 10.18632/oncotarget.8980] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/16/2016] [Indexed: 12/20/2022] Open
Abstract
Outcomes for patients diagnosed with the bone cancer osteosarcoma have not improved significantly in the last four decades. Only around 60% of patients and about a quarter of those with metastatic disease survive for more than five years. Although DNA-damaging chemotherapy drugs can be effective, they can provoke serious or fatal adverse effects including cardiotoxicity and therapy-related cancers. Better and safer treatments are therefore needed. We investigated the anti-osteosarcoma activity of IAP antagonists (also known as Smac mimetics) using cells from primary and metastatic osteosarcomas that arose spontaneously in mice engineered to lack p53 and Rb expression in osteoblast-derived cells. The IAP antagonists SM-164, GDC-0152 and LCL161, which efficiently target XIAP and cIAPs, sensitized cells from most osteosarcomas to killing by low levels of TNFα but not TRAIL. RIPK1 expression levels and activity correlated with sensitivity. RIPK3 levels varied considerably between tumors and RIPK3 was not required for IAP antagonism to sensitize osteosarcoma cells to TNFα. IAP antagonists, including SM-164, lacked mutagenic activity. These data suggest that drugs targeting XIAP and cIAP1/2 may be effective for osteosarcoma patients whose tumors express abundant RIPK1 and contain high levels of TNFα, and would be unlikely to provoke therapy-induced cancers in osteosarcoma survivors.
Collapse
Affiliation(s)
- Tanmay M. Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ankita Gupte
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Brianna Tascone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Carl R. Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
40
|
Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem Cells Int 2016; 2016:3631764. [PMID: 27366153 PMCID: PMC4913005 DOI: 10.1155/2016/3631764] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs.
Collapse
|
41
|
Walia MK, Ho PM, Taylor S, Ng AJ, Gupte A, Chalk AM, Zannettino AC, Martin TJ, Walkley CR. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. eLife 2016; 5. [PMID: 27070462 PMCID: PMC4854515 DOI: 10.7554/elife.13446] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/08/2016] [Indexed: 12/17/2022] Open
Abstract
Mutations in the P53 pathway are a hallmark of human cancer. The identification of pathways upon which p53-deficient cells depend could reveal therapeutic targets that may spare normal cells with intact p53. In contrast to P53 point mutations in other cancer, complete loss of P53 is a frequent event in osteosarcoma (OS), the most common cancer of bone. The consequences of p53 loss for osteoblastic cells and OS development are poorly understood. Here we use murine OS models to demonstrate that elevated Pthlh (Pthrp), cAMP levels and signalling via CREB1 are characteristic of both p53-deficient osteoblasts and OS. Normal osteoblasts survive depletion of both PTHrP and CREB1. In contrast, p53-deficient osteoblasts and OS depend upon continuous activation of this pathway and undergo proliferation arrest and apoptosis in the absence of PTHrP or CREB1. Our results identify the PTHrP-cAMP-CREB1 axis as an attractive pathway for therapeutic inhibition in OS. DOI:http://dx.doi.org/10.7554/eLife.13446.001 Bone cancer (osteosarcoma) is caused by mutations in certain genes, which results in cells growing and dividing uncontrollably. In particular, a gene that produces a protein called P53 in humans is lost in all bone cancers. However, we don’t understand what happens to the bone cells when they lose P53. Although a number of studies have identified several molecular pathways that are changed in bone cancers – such as the cyclic AMP (cAMP) pathway – how these interact to cause a cancer is not well understood. Walia et al. compared bone-forming cells from normal mice with cells from mutant mice from which the gene that produces the mouse p53 protein could be removed. This revealed that the loss of p53 causes these cells to grow faster. The activity of the cAMP pathway also increases in p53-deficient cells. Further investigation revealed that the cells grow faster only if they are able to activate the cAMP pathway, and that this pathway needs to stay active for bone cancer cells to grow and survive. This suggests that inhibiting this pathway could present a new way to treat bone cancer. Walia et al. confirmed several of their findings in human cells. Future studies will now investigate how the loss of the P53 protein in humans activates the cAMP pathway, which will be important for understanding how this cancer forms. It will also be worthwhile to begin testing ways to block this pathway to determine whether it is a useful target for therapies. DOI:http://dx.doi.org/10.7554/eLife.13446.002
Collapse
Affiliation(s)
- Mannu K Walia
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Patricia Mw Ho
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alvin Jm Ng
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Ankita Gupte
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Andrew Cw Zannettino
- Myeloma Research Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia.,ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| |
Collapse
|
42
|
Bhattacharya S, Chalk AM, Ng AJM, Martin TJ, Zannettino AC, Purton LE, Lu J, Baker EK, Walkley CR. Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene 2016; 35:5282-5294. [PMID: 27041566 DOI: 10.1038/onc.2016.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 01/03/2016] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is the most common cancer of bone and the 5th leading cause of cancer-related death in young adults. Currently, 5-year survival rates have plateaued at ~70% for patients with localized disease. Those with disseminated disease have an ~20% 5-year survival. An improved understanding of the molecular genetics of OS may yield new approaches to improve outcomes for OS patients. To this end, we applied murine models that replicate human OS to identify and understand dysregulated microRNAs (miRNAs) in OS. miRNA expression patterns were profiled in murine primary osteoblasts, osteoblast cultures and primary OS cell cultures (from primary and paired metastatic locations) isolated from two genetically engineered murine models of OS. The differentially expressed miRNA were further assessed by a cross-species comparison with human osteoblasts and OS cultures. We identified miR-155-5p and miR-148a-3p as deregulated in OS. miR-155-5p suppression or miR-148a-3p overexpression potently reduced proliferation and induced apoptosis in OS cells, yet strikingly, did not impact normal osteoblasts. To define how these miRNAs regulated OS cell fate, we used an integrated computational approach to identify putative candidate targets and then correlated these with the cell biological impact. Although we could not resolve the mechanism through which miR-148a-3p impacts OS, we identified that miR-155-5p overexpression suppressed its target Ripk1 (receptor (TNFRSF)-interacting serine-threonine kinase 1) expression, and miR-155-5p inhibition elevated Ripk1 levels. Ripk1 is directly involved in apoptosis/necroptosis. In OS cells, small interfering RNA against Ripk1 prevented cell death induced by the sequestration of miR-155-5p. Collectively, we show that miR-148a-3p and miR-155-5p are species-conserved deregulated miRNA in OS. Modulation of these miRNAs was specifically toxic to tumor cells but not normal osteoblasts, raising the possibility that these may be tractable targets for miRNA-based therapies for OS.
Collapse
Affiliation(s)
- S Bhattacharya
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - A M Chalk
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - A J M Ng
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - T J Martin
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - A C Zannettino
- Myeloma Research Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - L E Purton
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,ACRF Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - J Lu
- Department of Genetics and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - E K Baker
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - C R Walkley
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,ACRF Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
43
|
Velletri T, Xie N, Wang Y, Huang Y, Yang Q, Chen X, Chen Q, Shou P, Gan Y, Cao G, Melino G, Shi Y. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death Dis 2016; 7:e2015. [PMID: 26775693 PMCID: PMC4816167 DOI: 10.1038/cddis.2015.367] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS.
Collapse
Affiliation(s)
- T Velletri
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - N Xie
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, Rome 00133, Italy
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Y Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Q Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - X Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Q Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - P Shou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Y Gan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - G Cao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - G Melino
- Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Y Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Soochow Institutes for Translational Medicine, Soochow University, Suzhou, China
| |
Collapse
|
44
|
CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep 2015; 5:12799. [PMID: 26242611 PMCID: PMC4525291 DOI: 10.1038/srep12799] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/10/2015] [Indexed: 11/08/2022] Open
Abstract
Knockdown mouse models, where gene dosages can be modulated, provide valuable insights into gene function. Typically, such models are generated by embryonic stem (ES) cell-based targeted insertion, or pronuclear injection, of the knockdown expression cassette. However, these methods are associated with laborious and time-consuming steps, such as the generation of large constructs with elements needed for expression of a functional RNAi-cassette, ES-cell handling, or screening for mice with the desired knockdown effect. Here, we demonstrate that reliable knockdown models can be generated by targeted insertion of artificial microRNA (amiRNA) sequences into a specific locus in the genome [such as intronic regions of endogenous eukaryotic translation elongation factor 2 (eEF-2) gene] using the Clustered Regularly Interspaced Short Palindromic Repeats/Crispr associated 9 (CRISPR/Cas9) system. We used in vitro synthesized single-stranded DNAs (about 0.5-kb long) that code for amiRNA sequences as repair templates in CRISPR/Cas9 mutagenesis. Using this approach we demonstrate that amiRNA cassettes against exogenous (eGFP) or endogenous [orthodenticle homeobox 2 (Otx2)] genes can be efficiently targeted to a predetermined locus in the genome and result in knockdown of gene expression. We also provide a strategy to establish conditional knockdown models with this method.
Collapse
|
45
|
BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Sci Rep 2015; 5:10120. [PMID: 25944566 PMCID: PMC4421868 DOI: 10.1038/srep10120] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/27/2015] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest. In further contrast, JQ1 activity in OS was mediated independently of MYC downregulation. We identified that JQ1 suppresses the transcription factor FOSL1 by displacement of BRD4 from its locus. Loss of FOSL1 phenocopied the antiproliferative effects of JQ1, identifying FOSL1 suppression as a potential novel therapeutic approach for OS. As a monotherapy JQ1 demonstrated significant anti-tumour activity in vivo in an OS graft model. Further, combinatorial treatment approaches showed that JQ1 increased the sensitivity of OS cells to doxorubicin and induced potent synergistic activity when rationally combined with CDK inhibitors. The greater level of activity achieved with the combination of BETi with CDK inhibitors demonstrates the efficacy of this combination therapy. Taken together, our studies show that BET inhibitors are a promising new therapeutic for OS.
Collapse
|
46
|
Uluçkan Ö, Segaliny A, Botter S, Santiago JM, Mutsaers AJ. Preclinical mouse models of osteosarcoma. BONEKEY REPORTS 2015; 4:670. [PMID: 25987985 DOI: 10.1038/bonekey.2015.37] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/18/2015] [Indexed: 01/02/2023]
Abstract
Osteosarcoma is the most common form of primary bone tumors with high prevalence in children. Survival rates of osteosarcoma are low, especially in the case of metastases. Mouse models of this disease have been very valuable in investigation of mechanisms of tumorigenesis, metastasis, as well as testing possible therapeutic options. In this chapter, we summarize currently available mouse models for osteosarcoma and provide detailed methodology for the isolation of cell lines from genetically engineered mouse models (GEMMs), gene modification and tumor cell injection methods, as well as imaging techniques.
Collapse
Affiliation(s)
- Özge Uluçkan
- BBVA Foundation-CNIO Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO) , Madrid, Spain
| | - Aude Segaliny
- INSERM, UMR957, Equipe LIGUE 2012, Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine , Nantes, France
| | - Sander Botter
- Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital , Zürich, Switzerland
| | - Janice M Santiago
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Anthony J Mutsaers
- Department of Clinical Studies, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph , Guelph, Ontario, Canada
| |
Collapse
|
47
|
Ng AJM, Walia MK, Smeets MF, Mutsaers AJ, Sims NA, Purton LE, Walsh NC, Martin TJ, Walkley CR. The DNA helicase recql4 is required for normal osteoblast expansion and osteosarcoma formation. PLoS Genet 2015; 11:e1005160. [PMID: 25859855 PMCID: PMC4393104 DOI: 10.1371/journal.pgen.1005160] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/19/2015] [Indexed: 12/04/2022] Open
Abstract
RECQL4 mutations are associated with Rothmund Thomson Syndrome (RTS), RAPADILINO Syndrome and Baller-Gerold Syndrome. These patients display a range of benign skeletal abnormalities such as low bone mass. In addition, RTS patients have a highly increased incidence of osteosarcoma (OS). The role of RECQL4 in normal adult bone development and homeostasis is largely uncharacterized and how mutation of RECQL4 contributes to OS susceptibility is not known. We hypothesised that Recql4 was required for normal skeletal development and both benign and malignant osteoblast function, which we have tested in the mouse. Recql4 deletion in vivo at the osteoblastic progenitor stage of differentiation resulted in mice with shorter bones and reduced bone volume, assessed at 9 weeks of age. This was associated with an osteoblast intrinsic decrease in mineral apposition rate and bone formation rate in the Recql4-deficient cohorts. Deletion of Recql4 in mature osteoblasts/osteocytes in vivo, however, did not cause a detectable phenotype. Acute deletion of Recql4 in primary osteoblasts or shRNA knockdown in an osteoblastic cell line caused failed proliferation, accompanied by cell cycle arrest, induction of apoptosis and impaired differentiation. When cohorts of animals were aged long term, the loss of Recql4 alone was not sufficient to initiate OS. We then crossed the Recql4fl/fl allele to a fully penetrant OS model (Osx-Cre p53fl/fl). Unexpectedly, the Osx-Cre p53fl/flRecql4fl/fl (dKO) animals had a significantly increased OS-free survival compared to Osx-Cre p53fl/fl or Osx-Cre p53fl/flRecql4fl/+ (het) animals. The extended survival was explained when the Recql4 status in the tumors that arose was assessed, and in no case was there complete deletion of Recql4 in the dKO OS. These data provide a mechanism for the benign skeletal phenotypes of RECQL4 mutation syndromes. We propose that tumor suppression and osteosarcoma susceptibility are most likely a function of mutant, not null, alleles of RECQL4. Rothmund Thomson Syndrome (RTS), RAPADILINO Syndrome and Baller-Gerold Syndrome are very rare human syndromes associated with mutations in RECQL4. RECQL4 is important for controlling how cells divide and for preventing genome damage. Patients with RECQL4 mutations have problems with bone formation and a low bone mass, similar to osteoporosis. RTS patients have a highly increased risk of developing bone cancer (osteosarcoma). The role of RECQL4 in normal bone development and osteosarcoma formation is largely unknown. We have used mouse models to understand the specific role of Recql4 in bone development. Mice with Recql4 removed specifically from their bone cells have shortened bones and a reduced rate of bone formation. Therefore, RECQL4 is essential for normal bone development. Interestingly, the animals with no Recql4 in bone cells did not develop osteosarcoma. Using mouse models of osteosarcoma, we observed delayed cancer formation when Recql4 was also deleted. Further analysis demonstrated that bone cancer could not arise from Recql4 null cells even with concurrent p53 deletion. These studies clarify the role of RECQL4 in both normal and malignant bone biology and suggest that RECQL4 mutations that cause osteosarcoma most likely result in proteins with reduced, but not absent, function.
Collapse
Affiliation(s)
- Alvin J. M. Ng
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Mannu K. Walia
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Monique F. Smeets
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | - Natalie A. Sims
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Louise E. Purton
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Nicole C. Walsh
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - T. John Martin
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Carl R. Walkley
- St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- * E-mail:
| |
Collapse
|
48
|
Gupte A, Baker EK, Wan SS, Stewart E, Loh A, Shelat AA, Gould CM, Chalk AM, Taylor S, Lackovic K, Karlström Å, Mutsaers AJ, Desai J, Madhamshettiwar PB, Zannettino ACW, Burns C, Huang DCS, Dyer MA, Simpson KJ, Walkley CR. Systematic Screening Identifies Dual PI3K and mTOR Inhibition as a Conserved Therapeutic Vulnerability in Osteosarcoma. Clin Cancer Res 2015; 21:3216-29. [PMID: 25862761 PMCID: PMC4506243 DOI: 10.1158/1078-0432.ccr-14-3026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/26/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Osteosarcoma is the most common cancer of bone occurring mostly in teenagers. Despite rapid advances in our knowledge of the genetics and cell biology of osteosarcoma, significant improvements in patient survival have not been observed. The identification of effective therapeutics has been largely empirically based. The identification of new therapies and therapeutic targets are urgently needed to enable improved outcomes for osteosarcoma patients. EXPERIMENTAL DESIGN We have used genetically engineered murine models of human osteosarcoma in a systematic, genome-wide screen to identify new candidate therapeutic targets. We performed a genome-wide siRNA screen, with or without doxorubicin. In parallel, a screen of therapeutically relevant small molecules was conducted on primary murine- and primary human osteosarcoma-derived cell cultures. All results were validated across independent cell cultures and across human and mouse osteosarcoma. RESULTS The results from the genetic and chemical screens significantly overlapped, with a profound enrichment of pathways regulated by PI3K and mTOR pathways. Drugs that concurrently target both PI3K and mTOR were effective at inducing apoptosis in primary osteosarcoma cell cultures in vitro in both human and mouse osteosarcoma, whereas specific PI3K or mTOR inhibitors were not effective. The results were confirmed with siRNA and small molecule approaches. Rationale combinations of specific PI3K and mTOR inhibitors could recapitulate the effect on osteosarcoma cell cultures. CONCLUSIONS The approaches described here have identified dual inhibition of the PI3K-mTOR pathway as a sensitive, druggable target in osteosarcoma, and provide rationale for translational studies with these agents.
Collapse
Affiliation(s)
- Ankita Gupte
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia. Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Emma K Baker
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia. Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Soo-San Wan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amos Loh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cathryn M Gould
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia. Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia. Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Kurt Lackovic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Åsa Karlström
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anthony J Mutsaers
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia. Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia. Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jayesh Desai
- Department of Medical Oncology, Royal Melbourne Hospital, Melbourne, Victoria, Australia. Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Piyush B Madhamshettiwar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia. Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Chris Burns
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee. Howard Hughes Medical Institute, Chevy Chase, Maryland.
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia. Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia. ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| |
Collapse
|
49
|
Baker EK, Taylor S, Gupte A, Chalk AM, Bhattacharya S, Green AC, Martin TJ, Strbenac D, Robinson MD, Purton LE, Walkley CR. Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma. Bone 2015; 73:223-32. [PMID: 25571841 DOI: 10.1016/j.bone.2014.12.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/03/2014] [Accepted: 12/28/2014] [Indexed: 12/29/2022]
Abstract
Wnt pathway targeting is of high clinical interest for treating bone loss disorders such as osteoporosis. These therapies inhibit the action of negative regulators of osteoblastic Wnt signaling. The report that Wnt inhibitory factor 1 (WIF1) was epigenetically silenced via promoter DNA methylation in osteosarcoma (OS) raised potential concerns for such treatment approaches. Here we confirm that Wif1 expression is frequently reduced in OS. However, we demonstrate that silencing is not driven by DNA methylation. Treatment of mouse and human OS cells showed that Wif1 expression was robustly induced by HDAC inhibition but not by methylation inhibition. Consistent with HDAC dependent silencing, the Wif1 locus in OS was characterized by low acetylation levels and a bivalent H3K4/H3K27-trimethylation state. Wif1 expression marked late stages of normal osteoblast maturation and stratified OS tumors based on differentiation stage across species. Culture of OS cells under differentiation inductive conditions increased expression of Wif1. Together these results demonstrate that Wif1 is not targeted for silencing by DNA methylation in OS. Instead, the reduced expression of Wif1 in OS cells is in context with their stage in differentiation.
Collapse
Affiliation(s)
- Emma K Baker
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia.
| | - Scott Taylor
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Ankita Gupte
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alistair M Chalk
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Shreya Bhattacharya
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Alanna C Green
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - T John Martin
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia; Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Dario Strbenac
- Cancer Epigenetics, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Carl R Walkley
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia.
| |
Collapse
|
50
|
Sottnik JL, Campbell B, Mehra R, Behbahani-Nejad O, Hall CL, Keller ET. Osteocytes serve as a progenitor cell of osteosarcoma. J Cell Biochem 2015; 115:1420-9. [PMID: 24700678 DOI: 10.1002/jcb.24793] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 01/20/2023]
Abstract
Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO-Y4, a SV-40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO-Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors.
Collapse
Affiliation(s)
- Joseph L Sottnik
- Department of Urology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | | | | | | | | |
Collapse
|