1
|
Hakata T, Ueda Y, Yamashita T, Yamauchi I, Kosugi D, Sugawa T, Fujita H, Okamoto K, Fujii T, Taura D, Yasoda A, Akiyama H, Inagaki N. Neprilysin Inhibition Promotes Skeletal Growth via the CNP/NPR-B Pathway. Endocrinology 2024; 165:bqae058. [PMID: 38752331 DOI: 10.1210/endocr/bqae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 05/28/2024]
Abstract
C-type natriuretic peptide (CNP) plays a crucial role in enhancing endochondral bone growth and holds promise as a therapeutic agent for impaired skeletal growth. To overcome CNP's short half-life, we explored the potential of dampening its clearance system. Neprilysin (NEP) is an endopeptidase responsible for catalyzing the degradation of CNP. Thus, we investigated the effects of NEP inhibition on skeletal growth by administering sacubitril, a NEP inhibitor, to C57BL/6 mice. Remarkably, we observed a dose-dependent skeletal overgrowth phenotype in mice treated with sacubitril. Histological analysis of the growth plate revealed a thickening of the hypertrophic and proliferative zones, mirroring the changes induced by CNP administration. The promotion of skeletal growth observed in wild-type mice treated with sacubitril was nullified by the knockout of cartilage-specific natriuretic peptide receptor B (NPR-B). Notably, sacubitril promoted skeletal growth in mice only at 3 to 4 weeks of age, a period when endogenous CNP and NEP expression was higher in the lumbar vertebrae. Additionally, sacubitril facilitated endochondral bone growth in organ culture experiments using tibial explants from fetal mice. These findings suggest that NEP inhibition significantly promotes skeletal growth via the CNP/NPR-B pathway, warranting further investigations for potential applications in people with short stature.
Collapse
Affiliation(s)
- Takuro Hakata
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takafumi Yamashita
- Metabolism and Endocrinology Division of Internal Medicine, Kishiwada City Hospital, Osaka 596-8501, Japan
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Daisuke Kosugi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Taku Sugawa
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Haruka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kentaro Okamoto
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Akihiro Yasoda
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine Gifu 501-1194, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Osaka 530-8480, Japan
| |
Collapse
|
2
|
Ueda Y, Hirota K, Yamauchi I, Hakata T, Yamashita T, Fujii T, Yasoda A, Inagaki N. Is C-type natriuretic peptide regulated by a feedback loop? A study on systemic and local autoregulatory effect. PLoS One 2020; 15:e0240023. [PMID: 33002060 PMCID: PMC7529242 DOI: 10.1371/journal.pone.0240023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
C-type natriuretic peptide (CNP) is a pivotal enhancer of endochondral bone growth and is expected to be a therapeutic reagent for impaired skeletal growth. Although we showed that CNP stimulates bone growth as a local regulator in the growth plate via the autocrine/paracrine system, CNP is abundantly produced in other various tissues and its blood concentration is reported to correlate positively with growth velocity. Therefore we investigated the systemic regulation of CNP levels using rodent models. In order to examine whether CNP undergoes systemic feedback regulation, we investigated blood CNP levels and local CNP expression in various tissues, including cartilage, of 4-week-old rats after systemic administration of sufficient amounts of exogenous CNP (0.5 mg/kg/day) for 3 days. This CNP administration did not alter blood NT-proCNP levels in male rats but decreased mRNA expression only in tissue that included cartilage. Decrease in expression and blood NT-proCNP were greater in female rats. To analyze the existence of direct autoregulation of CNP in the periphery as an autocrine/paracrine system, we estimated the effect of exogenous supplementation of CNP on the expression of endogenous CNP itself in the growth plate cartilage of extracted fetal murine tibias and in ATDC5, a chondrogenic cell line. We found no alteration of endogenous CNP expression after incubation with adequate concentrations of exogenous CNP for 4 and 24 hours, which were chosen to observe primary and later transcriptional effects, respectively. These results indicate that CNP is not directly autoregulated but indirectly autoregulated in cartilage tissue. A feedback system is crucial for homeostatic regulation and further studies are needed to elucidate the regulatory system of CNP production and function.
Collapse
Affiliation(s)
- Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- * E-mail: (YU); (AY)
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takuro Hakata
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takafumi Yamashita
- Department of Metabolism and Endocrinology, Kishiwada City Hospital, Kishiwada-shi, Osaka, Japan
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Fukakusa, Fushimi-ku, Kyoto, Japan
- * E-mail: (YU); (AY)
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
3
|
Lauffer P, Miranda-Laferte E, van Duyvenvoorde HA, van Haeringen A, Werner F, Boudin E, Schmidt H, Mueller TD, Kuhn M, van der Kaay DCM. An Activating Deletion Variant in the Submembrane Region of Natriuretic Peptide Receptor-B Causes Tall Stature. J Clin Endocrinol Metab 2020; 105:5819532. [PMID: 32282051 PMCID: PMC7450217 DOI: 10.1210/clinem/dgaa190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
CONTEXT C-type natriuretic peptide (CNP) is critically involved in endochondral bone growth. Variants in the genes encoding CNP or its cyclic guanosine monophosphate (cGMP)-forming receptor (natriuretic peptide receptor-B [NPR-B], gene NPR2) cause monogenic growth disorders. Here we describe a novel gain-of-function variant of NPR-B associated with tall stature and macrodactyly of the great toes (epiphyseal chondrodysplasia, Miura type). DESIGN History and clinical characteristics of 3 family members were collected. NPR2 was selected for sequencing. Skin fibroblasts and transfected HEK-293 cells were used to compare mutant versus wild-type NPR-B activities. Homology modeling was applied to understand the molecular consequences of the variant. RESULTS Mother's height was +2.77 standard deviation scores (SDS). The heights of her 2 daughters were +1.96 SDS at 7 years and +1.30 SDS at 4 years of age. Skeletal surveys showed macrodactyly of the great toes and pseudo-epiphyses of the mid- and proximal phalanges. Sequencing identified a novel heterozygous variant c.1444_1449delATGCTG in exon 8 of NPR2, predicted to result in deletion of 2 amino acids Met482-Leu483 within the submembrane region of NPR-B. In proband's skin fibroblasts, basal cGMP levels and CNP-stimulated cGMP production were markedly increased compared with controls. Consistently, assays with transfected HEK-293 cells showed markedly augmented baseline and ligand-dependent activity of mutant NPR-B. CONCLUSIONS We report the second activating variant within the intracellular submembrane region of NPR-B resulting in tall stature and macrodactyly. Our functional and modeling studies suggest that this domain plays a critical role in the baseline conformation and ligand-dependent structural rearrangement of NPR-B required for cGMP production.
Collapse
Affiliation(s)
- Peter Lauffer
- Department of Clinical Genetics, Leiden University Medical Center, ZA Leiden, the Netherlands
- Department of Paediatric Endocrinology, Emma Children’s Hospital, Amsterdam University Medical Center, AZ Amsterdam, the Netherlands
- Correspondence and Reprint Requests: Peter Lauffer, Emma Children’s Hospital, Amsterdam University Medical Center, Department of Paediatric Endocrinology, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. E-mail:
| | | | | | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, ZA Leiden, the Netherlands
| | - Franziska Werner
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Eveline Boudin
- Centre of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
4
|
Yamamoto K, Kawai M, Yamazaki M, Tachikawa K, Kubota T, Ozono K, Michigami T. CREB activation in hypertrophic chondrocytes is involved in the skeletal overgrowth in epiphyseal chondrodysplasia Miura type caused by activating mutations of natriuretic peptide receptor B. Hum Mol Genet 2019; 28:1183-1198. [PMID: 30544148 DOI: 10.1093/hmg/ddy428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023] Open
Abstract
Natriuretic peptide receptor B (NPRB) produces cyclic guanosine monophosphate (cGMP) when bound by C-type natriuretic peptide (CNP). Activating mutations in NPRB cause a skeletal overgrowth disorder, which has been named epiphyseal chondrodysplasia, Miura type (ECDM; OMIM #615923). Here we explored the cellular and molecular mechanisms for the skeletal overgrowth in ECDM using a mouse model in which an activating mutant NPRB is specifically expressed in chondrocytes. The mutant mice (NPRB[p.V883M]-Tg) exhibited postnatal skeletal overgrowth and increased cGMP in cartilage. Both endogenous and transgene-derived NPRB proteins were localized at the plasma membrane of hypertrophic chondrocytes. The hypertrophic zone of growth plate was thickened in NPRB[p.V883M]-Tg. An in vivo BrdU-labeling assay suggested that some of the hypertrophic chondrocytes in NPRB[p.V883M]-Tg mice continued to proliferate, although wild-type (WT) chondrocytes stopped proliferating after they became hypertrophic. In vitro cell studies revealed that NPRB activation increased the phosphorylation of cyclic AMP-responsive element binding protein (CREB) and expression of cyclin D1 in matured chondrocytes. Treatment with cell-permeable cGMP also enhanced the CREB phosphorylation. Inhibition of cyclic adenosine monophosphate (cAMP)/protein kinase A pathway had no effects on the CREB phosphorylation induced by NPRB activation. In immunostaining of the growth plates for the proliferation marker Ki67, phosphorylated CREB and cyclin D1, most signals were similarly observed in the proliferating zone in both genotypes, but some cells in the hypertrophic zone of NPRB[p.V883M]-Tg were also positively stained. These results suggest that NPRB activation evokes its signal in hypertrophic chondrocytes to induce CREB phosphorylation and make them continue to proliferate, leading to the skeletal overgrowth in ECDM.
Collapse
Affiliation(s)
- Keiko Yamamoto
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| |
Collapse
|
5
|
Ueda Y, Yasoda A, Hirota K, Yamauchi I, Yamashita T, Kanai Y, Sakane Y, Fujii T, Inagaki N. Exogenous C-type natriuretic peptide therapy for impaired skeletal growth in a murine model of glucocorticoid treatment. Sci Rep 2019; 9:8547. [PMID: 31189976 PMCID: PMC6561908 DOI: 10.1038/s41598-019-44975-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Growth retardation is an important side effect of glucocorticoid (GC)-based drugs, which are widely used in various preparations to treat many pediatric diseases. We investigated the therapeutic effect of exogenous CNP-53, a stable molecular form of intrinsic CNP, on a mouse model of GC-induced growth retardation. We found that CNP-53 successfully restored GC-induced growth retardation when both dexamethasone (DEX) and CNP-53 were injected from 4 to 8 weeks old. Notably, CNP-53 was not effective during the first week. From 4 to 5 weeks old, neither CNP-53 in advance of DEX, nor high-dose CNP-53 improved the effect of CNP. Conversely, when CNP-53 was started at 5 weeks old, final body length at 8 weeks old was comparable to that when CNP-53 was started at 4 weeks old. As for the mechanism of resistance to the CNP effect, DEX did not impair the production of cGMP induced by CNP. CNP reduced Erk phosphorylation even under treatment with DEX, while CNP did not changed that of p38 or GSK3β. Collectively, the effect of CNP-53 on GC-induced growth retardation is dependent on age in a mouse model, suggesting adequate and deliberate use of CNP would be effective for GC-induced growth retardation in clinical settings.
Collapse
Affiliation(s)
- Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan. .,Clinical Research Center, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, 612-8555, Kyoto, Japan.
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Takafumi Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Yugo Kanai
- Department of Diabetes and Endocrinology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, 543-8555, Osaka, Japan
| | - Yoriko Sakane
- Preemptive Medicine and Lifestyle Related Disease Research Center, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| |
Collapse
|
6
|
Edmund AB, Walseth TF, Levinson NM, Potter LR. The pseudokinase domains of guanylyl cyclase-A and -B allosterically increase the affinity of their catalytic domains for substrate. Sci Signal 2019; 12:12/566/eaau5378. [PMID: 30696704 DOI: 10.1126/scisignal.aau5378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natriuretic peptides regulate multiple physiologic systems by activating transmembrane receptors containing intracellular guanylyl cyclase domains, such as GC-A and GC-B, also known as Npr1 and Npr2, respectively. Both enzymes contain an intracellular, phosphorylated pseudokinase domain (PKD) critical for activation of the C-terminal cGMP-synthesizing guanylyl cyclase domain. Because ATP allosterically activates GC-A and GC-B, we investigated how ATP binding to the PKD influenced guanylyl cyclase activity. Molecular modeling indicated that all the residues of the ATP-binding site of the prototypical kinase PKA, except the catalytic aspartate, are conserved in the PKDs of GC-A and GC-B. Kinase-inactivating alanine substitutions for the invariant lysine in subdomain II or the aspartate in the DYG-loop of GC-A and GC-B failed to decrease enzyme phosphate content, consistent with the PKDs lacking kinase activity. In contrast, both mutations reduced enzyme activation by blocking the ability of ATP to decrease the Michaelis constant without affecting peptide-dependent activation. The analogous lysine-to-alanine substitution in a glutamate-substituted phosphomimetic mutant form of GC-B also reduced enzyme activity, consistent with ATP stimulating guanylyl cyclase activity through an allosteric, phosphorylation-independent mechanism. Mutations designed to rigidify the conserved regulatory or catalytic spines within the PKDs increased guanylyl cyclase activity, increased sensitivity to natriuretic peptide, or reduced the Michaelis constant in the absence of ATP, consistent with ATP binding stabilizing the PKD in a conformation analogous to that of catalytically active kinases. We conclude that allosteric mechanisms evolutionarily conserved in the PKDs promote the catalytic activation of transmembrane guanylyl cyclases.
Collapse
Affiliation(s)
- Aaron B Edmund
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Nicholas M Levinson
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA. .,Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Wang L, Jia H, Tower RJ, Levine MA, Qin L. Analysis of short-term treatment with the phosphodiesterase type 5 inhibitor tadalafil on long bone development in young rats. Am J Physiol Endocrinol Metab 2018; 315:E446-E453. [PMID: 29920215 PMCID: PMC6230700 DOI: 10.1152/ajpendo.00130.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic GMP (cGMP) is an important intracellular regulator of endochondral bone growth and skeletal remodeling. Tadalafil, an inhibitor of the phosphodiesterase (PDE) type 5 (PDE5) that specifically hydrolyzes cGMP, is increasingly used to treat children with pulmonary arterial hypertension (PAH), but the effect of tadalafil on bone growth and strength has not been previously investigated. In this study, we first analyzed the expression of transcripts encoding PDEs in primary cultures of chondrocytes from newborn rat epiphyses. We detected robust expression of PDE5 as the major phosphodiesterase hydrolyzing cGMP. Time-course experiments showed that C-type natriuretic peptide increased intracellular levels of cGMP in primary chondrocytes with a peak at 2 min, and in the presence of tadalafil the peak level of intracellular cGMP was 37% greater ( P < 0.01) and the decline was significantly attenuated. Next, we treated 1-mo-old Sprague Dawley rats with vehicle or tadalafil for 3 wk. Although 10 mg·kg-1·day-1 tadalafil led to a significant 52% ( P < 0.01) increase in tissue levels of cGMP and a 9% reduction ( P < 0.01) in bodyweight gain, it did not alter long bone length, cortical or trabecular bone properties, and histological features. In conclusion, our results indicate that PDE5 is highly expressed in growth plate chondrocytes, and short-term tadalafil treatment of growing rats at doses comparable to those used in children with PAH has neither obvious beneficial effect on long bone growth nor any observable adverse effect on growth plate structure and trabecular and cortical bone structure.
Collapse
Affiliation(s)
- Luqiang Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Department of Orthopaedics, Shandong University Qilu Hospital, Shandong University , Jinan , China
| | - Haoruo Jia
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Department of Orthopaedics, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, China
| | - Robert J Tower
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Michael A Levine
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Endocrinology and Diabetes and the Center for Bone Health, The Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Regulation of the Natriuretic Peptide Receptor 2 (Npr2) by Phosphorylation of Juxtamembrane Serine and Threonine Residues Is Essential for Bifurcation of Sensory Axons. J Neurosci 2018; 38:9768-9780. [PMID: 30249793 DOI: 10.1523/jneurosci.0495-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/28/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
cGMP signaling elicited by activation of the transmembrane receptor guanylyl cyclase Npr2 (also known as guanylyl cyclase B) by the ligand CNP controls sensory axon bifurcation of DRG and cranial sensory ganglion (CSG) neurons entering the spinal cord or hindbrain, respectively. Previous studies have shown that Npr2 is phosphorylated on serine and threonine residues in its kinase homology domain (KHD). However, it is unknown whether phosphorylation of Npr2 is essential for axon bifurcation. Here, we generated a knock-in mouse line in which the seven regulatory serine and threonine residues in the KHD of Npr2 were substituted by alanine (Npr2-7A), resulting in a nonphosphorylatable enzyme. Real-time imaging of cGMP in DRG neurons with a genetically encoded fluorescent cGMP sensor or biochemical analysis of guanylyl cyclase activity in brain or lung tissue revealed the absence of CNP-induced cGMP generation in the Npr27A/7A mutant. Consequently, bifurcation of axons, but not collateral formation, from DRG or CSG in this mouse mutant was perturbed at embryonic and mature stages. In contrast, axon branching was normal in a mouse mutant in which constitutive phosphorylation of Npr2 is mimicked by a replacement of all of the seven serine and threonine sites by glutamic acid (Npr2-7E). Furthermore, we demonstrate that the Npr27A/7A mutation causes dwarfism as described for global Npr2 mutants. In conclusion, our in vivo studies provide strong evidence that phosphorylation of the seven serine and threonine residues in the KHD of Npr2 is an important regulatory element of Npr2-mediated cGMP signaling which affects physiological processes, such as axon bifurcation and bone growth.SIGNIFICANCE STATEMENT The branching of axons is a morphological hallmark of virtually all neurons. It allows an individual neuron to innervate different targets and to communicate with neurons located in different regions of the nervous system. The natriuretic peptide receptor 2 (Npr2), a transmembrane guanylyl cyclase, is essential for the initiation of bifurcation of sensory axons when entering the spinal cord or the hindbrain. By using two genetically engineered mouse lines, we show that phosphorylation of specific serine and threonine residues in juxtamembrane regions of Npr2 are required for its enzymatic activity and for axon bifurcation. These investigations might help to understand the regulation of Npr2 and its integration in intracellular signaling systems.
Collapse
|
9
|
Fujii T, Hirota K, Yasoda A, Takizawa A, Morozumi N, Nakamura R, Yotsumoto T, Kondo E, Yamashita Y, Sakane Y, Kanai Y, Ueda Y, Yamauchi I, Yamanaka S, Nakao K, Kuwahara K, Jindo T, Furuya M, Mashimo T, Inagaki N, Serikawa T, Nakao K. Rats deficient C-type natriuretic peptide suffer from impaired skeletal growth without early death. PLoS One 2018; 13:e0194812. [PMID: 29566041 PMCID: PMC5864047 DOI: 10.1371/journal.pone.0194812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
We have previously investigated the physiological role of C-type natriuretic peptide (CNP) on endochondral bone growth, mainly with mutant mouse models deficient in CNP, and reported that CNP is indispensable for physiological endochondral bone growth in mice. However, the survival rate of CNP knockout (KO) mice fell to as low as about 70% until 10 weeks after birth, and we could not sufficiently analyze the phenotype at the adult stage. Herein, we generated CNP KO rats by using zinc-finger nuclease-mediated genome editing technology. We established two lines of mutant rats completely deficient in CNP (CNP KO rats) that exhibited a phenotype identical to that observed in mice deficient in CNP, namely, a short stature with severely impaired endochondral bone growth. Histological analysis revealed that the width of the growth plate, especially that of the hypertrophic chondrocyte layer, was markedly lower and the proliferation of growth plate chondrocytes tended to be reduced in CNP KO rats. Notably, CNP KO rats did not have malocclusions and survived for over one year after birth. At 33 weeks of age, CNP KO rats persisted significantly shorter than wild-type rats, with closed growth plates of the femur in all samples, which were not observed in wild-type rats. Histologically, CNP deficiency affected only bones among all body tissues studied. Thus, CNP KO rats survive over one year, and exhibit a deficit in endochondral bone growth and growth retardation throughout life.
Collapse
Affiliation(s)
- Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| | - Akiko Takizawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | | | | | | | - Eri Kondo
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeki Yamanaka
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumasa Nakao
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | - Mayumi Furuya
- Asubio Pharma Co., Ltd., Kobe, Japan
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoji Mashimo
- Genome Editing Research and Development (R&D) Center and Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadao Serikawa
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Dephosphorylation is the mechanism of fibroblast growth factor inhibition of guanylyl cyclase-B. Cell Signal 2017; 40:222-229. [PMID: 28964968 DOI: 10.1016/j.cellsig.2017.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022]
Abstract
Activating mutations in fibroblast growth factor receptor 3 (FGFR3) and inactivating mutations of guanylyl cyclase-B (GC-B, also called NPRB or NPR2) cause dwarfism. FGF exposure inhibits GC-B activity in a chondrocyte cell line, but the mechanism of the inactivation is not known. Here, we report that FGF exposure causes dephosphorylation of GC-B in rat chondrosarcoma cells, which correlates with a rapid, potent and reversible inhibition of C-type natriuretic peptide-dependent activation of GC-B. Cells expressing a phosphomimetic mutant of GC-B that cannot be inactivated by dephosphorylation because it contains glutamate substitutions for all known phosphorylation sites showed no decrease in GC-B activity in response to FGF. We conclude that FGF rapidly inactivates GC-B by a reversible dephosphorylation mechanism, which may contribute to the signaling network by which activated FGFR3 causes dwarfism.
Collapse
|
11
|
Dickey DM, Otto NM, Potter LR. Skeletal overgrowth-causing mutations mimic an allosterically activated conformation of guanylyl cyclase-B that is inhibited by 2,4,6,-trinitrophenyl ATP. J Biol Chem 2017; 292:10220-10229. [PMID: 28450398 DOI: 10.1074/jbc.m117.780536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
Activating mutations in the receptor for C-type natriuretic peptide (CNP), guanylyl cyclase B (GC-B, also known as Npr2 or NPR-B), increase cellular cGMP and cause skeletal overgrowth, but how these mutations affect GTP catalysis is poorly understood. The A488P and R655C mutations were compared with the known mutation V883M. Neither mutation affected GC-B concentrations. The A488P mutation decreased the EC50 5-fold, increased Vmax 2.6-fold, and decreased the Km 13-fold, whereas the R655C mutation decreased the EC50 5-fold, increased the Vmax 2.1-fold, and decreased the Km 4.7-fold. Neither mutation affected maximum activity at saturating CNP concentrations. Activation by R655C did not require disulfide bond formation. Surprisingly, the A488P mutant only activated the receptor when it was phosphorylated. In contrast, the R655C mutation converted GC-B-7A from CNP-unresponsive to CNP-responsive. Interestingly, neither mutant was activated by ATP, and the Km and Hill coefficient of each mutant assayed in the absence of ATP were similar to those of wild-type GC-B assayed in the presence of ATP. Finally, 1 mm 2,4,6,-trinitrophenyl ATP inhibited all three mutants by as much as 80% but failed to inhibit WT-GC-B. We conclude that 1) the A488P and R655C missense mutations result in a GC-B conformation that mimics the allosterically activated conformation, 2) GC-B phosphorylation is required for CNP-dependent activation by the A488P mutation, 3) the R655C mutation abrogates the need for phosphorylation in receptor activation, and 4) an ATP analog selectively inhibits the GC-B mutants, indicating that a pharmacologic approach could reduce GC-B dependent human skeletal overgrowth.
Collapse
Affiliation(s)
- Deborah M Dickey
- From the Department of Biochemistry, Molecular Biology, and Biophysics and
| | - Neil M Otto
- From the Department of Biochemistry, Molecular Biology, and Biophysics and
| | - Lincoln R Potter
- From the Department of Biochemistry, Molecular Biology, and Biophysics and .,the Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
12
|
Schmidt H, Peters S, Frank K, Wen L, Feil R, Rathjen FG. Dorsal root ganglion axon bifurcation tolerates increased cyclic GMP levels: the role of phosphodiesterase 2A and scavenger receptor Npr3. Eur J Neurosci 2016; 44:2991-3000. [PMID: 27740716 DOI: 10.1111/ejn.13434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
A cyclic GMP (cGMP) signaling pathway, comprising C-type natriuretic peptide (CNP), its guanylate cyclase receptor Npr2, and cGMP-dependent protein kinase I, is critical for the bifurcation of dorsal root ganglion (DRG) and cranial sensory ganglion axons when entering the mouse spinal cord and the hindbrain respectively. However, the identity and functional relevance of phosphodiesterases (PDEs) that degrade cGMP in DRG neurons are not completely understood. Here, we asked whether regulation of the intracellular cGMP concentration by PDEs modulates the branching of sensory axons. Real-time imaging of cGMP with a genetically encoded fluorescent cGMP sensor, RT-PCR screens, in situ hybridization, and immunohistology combined with the analysis of mutant mice identified PDE2A as the major enzyme for the degradation of CNP-induced cGMP in embryonic DRG neurons. Tracking of PDE2A-deficient DRG sensory axons in conjunction with cGMP measurements indicated that axon bifurcation tolerates increased cGMP concentrations. As we found that the natriuretic peptide scavenger receptor Npr3 is expressed by cells associated with dorsal roots but not in DRG neurons itself at early developmental stages, we analyzed axonal branching in the absence of Npr3. In Npr3-deficient mice, the majority of sensory axons showed normal bifurcation, but a small population of axons (13%) was unable to form T-like branches and generated turns in rostral or caudal directions only. Taken together, this study shows that sensory axon bifurcation is insensitive to increases of CNP-induced cGMP levels and Npr3 does not have an important scavenging function in this axonal system.
Collapse
Affiliation(s)
- Hannes Schmidt
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| | - Stefanie Peters
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Katharina Frank
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| | - Lai Wen
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Fritz G Rathjen
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| |
Collapse
|
13
|
Kubota T, Wang W, Miura K, Nakayama H, Yamamoto K, Fujiwara M, Ohata Y, Tachibana M, Kitaoka T, Takakuwa S, Miyoshi Y, Namba N, Ozono K. Serum NT-proCNP levels increased after initiation of GH treatment in patients with achondroplasia/hypochondroplasia. Clin Endocrinol (Oxf) 2016; 84:845-50. [PMID: 26814021 DOI: 10.1111/cen.13025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/07/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Serum amino-terminal propeptide of C-type natriuretic peptide (NT-proCNP) levels have been proposed as a biomarker of linear growth in healthy children. The usefulness of NT-proCNP in patients with achondroplasia (ACH)/hypochondroplasia (HCH) remains to be elucidated. The objective was to study whether serum NT-proCNP level is a good biomarker for growth in ACH/HCH and other patients of short stature. DESIGN This was a longitudinal cohort study. PATIENTS Sixteen children with ACH (aged 0·4-4·3 years), six children with HCH (2·7-6·3 years), 23 children with idiopathic short stature (ISS) (2·2-9·0 years), eight short children with GH deficiency (GHD) (2·9-6·8 years) and five short children born small for gestational age (SGA) (2·0-6·6 years). Patients with ACH/HCH received GH treatment for 1 year. MEASUREMENTS Serum NT-proCNP levels and height were measured. RESULTS NT-proCNP levels positively correlated with height velocity in these short children (P < 0·05, r = 0·27). NT-proCNP levels inversely correlated with age in children with ISS alone (P < 0·01, r = -0·55). Serum NT-proCNP levels in patients with ACH/HCH were increased 3 months following the initiation of GH treatment (P < 0·05). Height SDS gain during GH treatment for 1 year was positively correlated with the changes in NT-proCNP levels after the initiation of GH (P < 0·01, r = 0·72). CONCLUSION Serum NT-proCNP levels may be a good biomarker to indicate the effect of GH treatment on growth in patients with ACH/HCH at least in the first year and height velocity in short stature patients.
Collapse
Affiliation(s)
- Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wei Wang
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Miura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirofumi Nakayama
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiko Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makiko Tachibana
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Takakuwa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoko Miyoshi
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Dickey DM, Edmund AB, Otto NM, Chaffee TS, Robinson JW, Potter LR. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism. J Biol Chem 2016; 291:11385-93. [PMID: 26980729 DOI: 10.1074/jbc.m115.704015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 01/18/2023] Open
Abstract
C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism.
Collapse
Affiliation(s)
- Deborah M Dickey
- From the Departments of Biochemistry, Molecular Biology, and Biophysics and
| | - Aaron B Edmund
- From the Departments of Biochemistry, Molecular Biology, and Biophysics and
| | - Neil M Otto
- From the Departments of Biochemistry, Molecular Biology, and Biophysics and
| | - Thomas S Chaffee
- From the Departments of Biochemistry, Molecular Biology, and Biophysics and
| | - Jerid W Robinson
- From the Departments of Biochemistry, Molecular Biology, and Biophysics and
| | - Lincoln R Potter
- From the Departments of Biochemistry, Molecular Biology, and Biophysics and Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
15
|
Wang SR, Jacobsen CM, Carmichael H, Edmund AB, Robinson JW, Olney RC, Miller TC, Moon JE, Mericq V, Potter LR, Warman ML, Hirschhorn JN, Dauber A. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature. Hum Mutat 2015; 36:474-81. [PMID: 25703509 DOI: 10.1002/humu.22773] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
Abstract
Based on the observation of reduced stature in relatives of patients with acromesomelic dysplasia, Maroteaux type (AMDM), caused by homozygous or compound heterozygous mutations in natriuretic peptide receptor-B gene (NPR2), it has been suggested that heterozygous mutations in this gene could be responsible for the growth impairment observed in some cases of idiopathic short stature (ISS). We enrolled 192 unrelated patients with short stature and 192 controls of normal height and identified seven heterozygous NPR2 missense or splice site mutations all in the short stature patients, including one de novo splice site variant. Three of the six inherited variants segregated with short stature in the family. Nine additional rare nonsynonymous NPR2 variants were found in three additional cohorts. Functional studies identified eight loss-of-function mutations in short individuals and one gain-of-function mutation in tall individuals. With these data, we were able to rigorously verify that NPR2 functional haploinsufficiency contributes to short stature. We estimate a prevalence of NPR2 haploinsufficiency of between 0 and 1/26 in people with ISS. We suggest that NPR2 gain of function may be a more common cause of tall stature than previously recognized.
Collapse
|
16
|
Hess JE, Caudill CC, Keefer ML, McIlraith BJ, Moser ML, Narum SR. Genes predict long distance migration and large body size in a migratory fish, Pacific lamprey. Evol Appl 2014; 7:1192-208. [PMID: 25558280 PMCID: PMC4275091 DOI: 10.1111/eva.12203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/17/2014] [Indexed: 12/20/2022] Open
Abstract
Elucidation of genetic mechanisms underpinning migratory behavior could help predict how changes in genetic diversity may affect future spatiotemporal distribution of a migratory species. This ability would benefit conservation of one such declining species, anadromous Pacific lamprey (Entosphenus tridentatus). Nonphilopatric migration of adult Pacific lamprey has homogenized population-level neutral variation but has maintained adaptive variation that differentiates groups based on geography, run-timing and adult body form. To investigate causes for this adaptive divergence, we examined 647 adult lamprey sampled at a fixed location on the Columbia River and radiotracked during their subsequent upstream migration. We tested whether genetic variation [94 neutral and adaptive single nucleotide polymorphisms (SNPs) previously identified from a genomewide association study] was associated with phenotypes of migration distance, migration timing, or morphology. Three adaptive markers were strongly associated with morphology, and one marker also correlated with upstream migration distance and timing. Genes physically linked with these markers plausibly influence differences in body size, which is also consistently associated with migration distance in Pacific lamprey. Pacific lamprey conservation implications include the potential to predict an individual's upstream destination based on its genotype. More broadly, the results suggest a genetic basis for intrapopulation variation in migration distance in migratory species.
Collapse
Affiliation(s)
- Jon E Hess
- Columbia River Inter-Tribal Fish Commission Hagerman, ID, USA
| | - Christopher C Caudill
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho Moscow, ID, USA
| | - Matthew L Keefer
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho Moscow, ID, USA
| | | | - Mary L Moser
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Seattle, WA, USA
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission Hagerman, ID, USA
| |
Collapse
|