1
|
Medeleanu M, Vali R, Sadeghpour S, Moineddin R, Doria AS. A systematic review and meta-analysis of pediatric normative peripheral quantitative computed tomography data. Bone Rep 2021; 15:101103. [PMID: 34377749 PMCID: PMC8327482 DOI: 10.1016/j.bonr.2021.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Peripheral-quantitative computed tomography (pQCT) provides an intriguing diagnostic alternative to dual-energy X-ray absorptiometry (DXA) since it can measure 3D bone geometry and differentiate between the cortical and trabecular bone compartments. OBJECTIVE To investigate and summarize the methods of pQCT image acquisition of in children, adolescents and/or young adults (up to age 20) and to aggregate the published normative pQCT data. EVIDENCE ACQUISITION A literature search was conducted in MEDLINE and EMBASE from 1947 to December 2020. Quality of the included articles was assessed using Standards for Reporting of Diagnostic Accuracy (STARD) scoring system and United States Preventative Services Task Force (USPSTF) Study Design Categorization. Seven articles, encompassing a total of 2134 participants, were aggregated in the meta-analysis. Due to dissimilar age groups and scan sites, only seven pQCT parameters of the 4% radius, 4% tibia and 38% tibia were analyzed in this meta-analysis. EVIDENCE SYNTHESIS The overall fixed-effect estimates of trabecular vBMD of the 4% radius were: 207.16 (201.46, 212.86), mg/cm3 in 8 to 9 year-old girls, 210.42 (201.91, 218.93)in 10 to 12 year-old girls, 226.99 (222.45, 231.54) in 12 to 13 year-old girls, 259.97 (254.85, 265.10) in 12 to 13 year-old boys and 171.55 (163.41,179.69) in 16 to 18 year-old girls. 21 of 54 (38.9%) primary papers received a 'good' STARD quality of reporting score (<90 and 70 ≥ %) (mean STARD score of all articles = 69.4%). The primary articles of this review had a 'good' level USPSTF study design categorization. However, most of the normative data in these articles were non-comparable and non-aggregable due to a lack of standardization of reference lines, acquisition parameters and/or age at acquisition. CONCLUSION There is not sufficient evidence to suggest that pQCT is appropriately suited for use in the pediatric clinical setting. Normative pediatric data must be systematically derived for pQCT should it ever be a modality that is used outside of research. CLINICAL IMPACT We demonstrate the need for normative pQCT reference data and for clinical guidelines that standardize pediatric acquisition parameters and delineate its use in pediatric settings.
Collapse
Affiliation(s)
- Maria Medeleanu
- Department of Physiology, Faculty of Medicine, University of Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Canada
| | - Reza Vali
- Department of Physiology, Faculty of Medicine, University of Toronto, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children and Department of Medical imaging, University of Toronto, Canada
| | | | - Rahim Moineddin
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Andrea S. Doria
- Department of Physiology, Faculty of Medicine, University of Toronto, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children and Department of Medical imaging, University of Toronto, Canada
| |
Collapse
|
2
|
Szabo E, Rimnac C. Biomechanics of immature human cortical bone: A systematic review. J Mech Behav Biomed Mater 2021; 125:104889. [PMID: 34736022 DOI: 10.1016/j.jmbbm.2021.104889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022]
Abstract
The whole bone geometry, microstructure, and mechanical properties of mature human bone are widely reported; however, immature bone (0-18 years) has not been similarly robustly characterized. There is an interest in analyzing and predicting the mechanical loading conditions associated with long bone diaphyseal fractures attributed to trauma in children. Thus, understanding the mechanical properties of immature bone in a temporal reference frame is an essential first step to understand diaphyseal fractures of pediatric long bones. The purpose of this systematic review was to ask, what is the state of knowledge regarding the 1) evolution of whole bone geometry and microstructure of immature pediatric bone as a function of maturation and 2) cortical bone density and experimental quasi-static mechanical properties at the tissue level in the diaphyseal region of immature pediatric long bones? The systematic search yielded 36 studies of the whole bone geometry, microstructure, and mechanical properties of immature pediatric long bones. The elastic modulus, yield stress, and ultimate stress were shown to generally increase with maturation, whereas the yield strain was approximately invariant; however, the specific year-to-year progression of these properties could not be characterized from the limited studies available. The results of this systematic search indicate there is a dearth of knowledge associated with the biomechanics of cortical bone from immature pediatric long bones; it also provides a basis for computational studies of immature human long bones. Additional biomechanical studies of immature human bone are necessary to develop a robust catalogue, which can be used in broad applications to understand fracture mechanics, bone pathologies, and athletic injury in the pediatric setting.
Collapse
Affiliation(s)
- Emily Szabo
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, 2123 Martin Luther King Jr Dr, Cleveland, OH, 44106, USA.
| | - Clare Rimnac
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, 2123 Martin Luther King Jr Dr, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Popp KL, Turkington V, Hughes JM, Xu C, Unnikrishnan G, Reifman J, Bouxsein ML. Skeletal loading score is associated with bone microarchitecture in young adults. Bone 2019; 127:360-366. [PMID: 31265923 DOI: 10.1016/j.bone.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
Abstract
UNLABELLED Physical activity that involves high strain magnitudes and high rates of loading is reported to be most effective in eliciting an osteogenic bone response. Whether a history of participation in osteogenic activities during youth, as well as current participation in osteogenic activities, contributes to young adult bone microarchitecture and strength is unknown. PURPOSE We determined the association between a new skeletal loading (SkL) score reflecting physical activity from age 11 to adulthood, the bone specific physical activity questionnaire (BPAQ) and bone microarchitecture in young Black and White men and women. METHODS We conducted a cross-sectional study of young ([mean ± SD] 23.7 ± 3.3 years) Black (n = 51 women, n = 31 men) and White (n = 50 women, n = 49 men) adults. Microarchitecture and estimated bone strength (by micro-finite element analysis) were assessed at the ultradistal tibia using high-resolution peripheral quantitative computed tomography (HR-pQCT). Physical activity questionnaires were administered and a SkL score was derived based on ground reaction force, rate of loading, frequency, duration, and life period of participation per activity from age 11 onwards. BPAQ score was also calculated. We used multiple linear regression to determine associations between both SkL score and BPAQ score and bone outcomes, adjusting for age, height, weight, sex, and race. RESULTS We found that SkL score, which accounts for current and historical physical activity, was significantly associated with most cortical bone parameters at the tibia including area, area fraction, porosity, thickness, and tissue mineral density (R2 = 0.27-0.55, all p < 0.01). Further, trabecular thickness, separation, number, and bone mineral density (R2 = 0.22-0.32, all p < 0.01), as well as stiffness and failure load (R2 = 0.63-0.65, all p < 0.01), were associated with the SkL score. The BPAQ was also significantly associated with most bone parameters, but to a lesser degree than SkL score. CONCLUSION These findings suggest that among young adults, greater amounts of osteogenic physical activity, as assessed by the SkL score and BPAQ are associated with improved bone microarchitecture and strength. With the potential to predict bone parameters in young adults, these scores may ultimately serve to identify those most vulnerable to fracture.
Collapse
Affiliation(s)
- Kristin L Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA; Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02155, USA.
| | - Victoria Turkington
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA
| | - Chun Xu
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Ginu Unnikrishnan
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Jaques Reifman
- Department of Defense, Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advance Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02155, USA; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, and Department of Orthopedic Surgery, Harvard Medical School, One Overland Street, Boston, MA 02215, USA
| |
Collapse
|
4
|
Miller MJ, Agarwal SC, Aristizabal L, Langebaek C. The daily grind: Sex- and age-related activity patterns inferred from cross-sectional geometry of long bones in a pre-Columbian muisca population from Tibanica, Colombia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:311-326. [DOI: 10.1002/ajpa.23629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Melanie J. Miller
- Department of Anatomy; University of Otago; Dunedin Otago 9016 New Zealand
- Department of Anthropology; University of California; Berkeley California
| | - Sabrina C. Agarwal
- Department of Anthropology; University of California; Berkeley California
| | | | - Carl Langebaek
- Department of Antropología; Universidad de los Andes; Bogotá Colombia
| |
Collapse
|
5
|
Peacock SJ, Garland T, Middleton KM. Reply to Ruff, Warden, and Karlson. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:190-193. [DOI: 10.1002/ajpa.23614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Sarah J Peacock
- Department of Pathology and Anatomical Sciences; University of Missouri; Columbia Missouri
| | - Theodore Garland
- Department of Biology; University of California; Riverside California
| | - Kevin M. Middleton
- Department of Pathology and Anatomical Sciences; University of Missouri; Columbia Missouri
| |
Collapse
|
6
|
Peacock SJ, Coats BR, Kirkland JK, Tanner CA, Garland T, Middleton KM. Predicting the bending properties of long bones: Insights from an experimental mouse model. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:457-470. [PMID: 29154456 PMCID: PMC5823733 DOI: 10.1002/ajpa.23363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Analyses of bone cross-sectional geometry are frequently used by anthropologists and paleontologists to infer the loading histories of past populations. To address some underlying assumptions, we investigated the relative roles of genetics and exercise on bone cross-sectional geometry and bending mechanics in three mouse strains: high bone density (C3H/He), low bone density (C57BL/6), and a high-runner strain homozygous for the Myh4Minimsc allele (MM). METHODS AND MATERIALS Weanlings of each strain were divided into exercise (wheel) or control (sedentary) treatment groups for a 7-week experimental period. Morphometrics of the femoral mid-diaphysis and mechanical testing were used to assess both theoretical and ex vivo bending mechanics. RESULTS Across all measured morphological and bending traits, we found relatively small effects of exercise treatment compared to larger and more frequent interstrain differences. In the exercised group, total distance run over the experimental period was not a predictor of any morphological or bending traits. Cross-sectional geometry did not accurately predict bone response to loading. DISCUSSION Results from this experimental model do not support hypothesized associations among extreme exercise, cross-sectional geometry, and bending mechanics. Our results suggest that analysis of cross-sectional geometry alone is insufficient to predict loading response, and questions the common assumption that cross-sectional geometry differences are indicative of differential loading history.
Collapse
Affiliation(s)
- Sarah J Peacock
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
| | | | - J Kyle Kirkland
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California
| | - Kevin M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Krahenbühl T, Guimarães RDF, Barros Filho ADA, Gonçalves EM. BONE GEOMETRY AND PHYSICAL ACTIVITY IN CHILDREN AND ADOLESCENTS: SYSTEMATIC REVIEW. ACTA ACUST UNITED AC 2018; 36:230-237. [PMID: 29412432 PMCID: PMC6038793 DOI: 10.1590/1984-0462/;2018;36;2;00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/14/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To perform a systematic review on the practice of physical activity and/or sports in health and its influence on bone geometry of healthy children and adolescents. DATA SOURCE The method used as reference was the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Databases searched for articles published from 2006 to 2016, with "Bone geometry" AND (Sport* OR Exercise* OR "Physical Activity") as descriptors, were PubMed, BIREME/LILACS and SciELO. DATA SYNTHESES After the selection, 21 articles were included. Most studies stated that practice of physical activity and/or sports was beneficial for bone geometry and bone mineral density. Only two studies presented values of bone parameters for control individuals better than those of swimmers. Physical activities and sports studied were: gymnastics (n=7), rhythmic gymnastics (n=2), tennis (n=1), soccer (n=3), capoeira (n=1), swimming (n=4), cycling (n=0), jumping activities (n=2), studies relating physical activity with isokinetic peak torque (n=1), physical activity measured by questionnaire (n=4), and additional physical education classes (n=2). CONCLUSIONS Among the sports and physical activities found, gymnastics, soccer, and more intense physical activity assessed by questionnaires were mentioned along with better results in bone geometry compared to the absence of physical activity, whereas swimming and jumping exercises did not influence it. Therefore, sports activities with weight bearing and those practiced more frequently and intensively are beneficial for bone geometry.
Collapse
|
8
|
Stature estimation from the femur and tibia in Black South African sub-adults. Forensic Sci Int 2016; 270:277.e1-277.e10. [PMID: 27856047 DOI: 10.1016/j.forsciint.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 09/12/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
Stature estimation can play a role in the positive identification of unknown individuals and as such it is routinely assessed during the examination of adult remains. Unfortunately, this is not a standard procedure when dealing with sub-adult remains due to the general lack of standard procedures for the estimation of sub-adult stature. The aim of this study was therefore to derive regression equations for the estimation of stature in black South African sub-adults. Fifty nine black South African sub-adult males and females, aged 10-17 years, voluntarily participated in the study by undergoing a full body Magnetic Resonance Imaging (MRI) scan. Living stature was measured with a stadiometer and the maximum and diaphyseal lengths of the femur and tibia were measured from the MRI scans using the image processing software OsiriX. Pearson's correlation coefficients and linear least square regression analyses were used to assess the correlations between living stature and the measurements and to generate sub-adult stature estimation equations for males, females and a combined sex sample. Measurements of the femur, tibia and the combined measures thereof showed strong statistically significant positive correlations with living stature, while the obtained regression equations were characterized by low standard error of estimates. The strong correlations and low standard error of estimates are comparable to stature estimation models reported for Black South African adults and therefore these variables can be considered good estimators of sub-adult stature which will contribute valuable information to the biological profile of unidentified sub-adult skeletal remains.
Collapse
|
9
|
Meiring RM, Micklesfield LK, McVeigh JA. The effect of loading and ethnicity on annual changes in cortical bone of the radius and tibia in pre-pubertal children. Ann Hum Biol 2016; 43:520-526. [PMID: 26452753 DOI: 10.3109/03014460.2015.1106009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND It is unclear what effect habitual physical activity or ethnicity has on annual changes in bone size and strength in pre-pubertal children. AIM To determine whether the annual relative change in bone size and strength differed between high and low bone loaders and also between black and white pre-pubertal children. SUBJECTS AND METHODS Peripheral quantitative computed tomography (pQCT) scans of the 65% radius and tibia were completed on 41 black and white children (15 boys, 26 girls) between the ages of 8-11 years, at baseline and 1 year later. Children were categorised into either a high or low bone loading group from a peak bone strain score obtained from a bone-specific physical activity questionnaire. Total area (ToA), cortical area (CoA), cortical density (CoD), strength-strain index (SSI), periosteal circumference (PC), endosteal circumference (EC) and cortical thickness (CT) were assessed. RESULTS There was no difference in annual relative change in radial or tibia bone size and strength between the low and high bone loaders. Black children had a greater annual relative change in CoD (p = 0.03) and SSI (p = 0.05) compared to the white children. CONCLUSION Children who performed high bone loading activities over a 1-year period had similar bone growth to children who did low bone loading activities over the same period. Rapid maturational growth over this period may have resulted in bone adapting to the strains of habitual physical activity placed on it. Black children may have greater tibial bone strength compared to white children due to a greater annual increase in cortical density.
Collapse
Affiliation(s)
- Rebecca M Meiring
- a Exercise Laboratory, School of Physiology, Faculty of Health Sciences , University of the Witwatersrand , Johannesburg , South Africa and
| | - Lisa K Micklesfield
- b MRC/WITS Developmental Pathways for Health Research Unit, Department of Pediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Joanne A McVeigh
- a Exercise Laboratory, School of Physiology, Faculty of Health Sciences , University of the Witwatersrand , Johannesburg , South Africa and
| |
Collapse
|
10
|
Stagi S, Cavalli L, Cavalli T, de Martino M, Brandi ML. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Ital J Pediatr 2016; 42:88. [PMID: 27670687 PMCID: PMC5037897 DOI: 10.1186/s13052-016-0297-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Peripheral quantitative computed tomography provides an automatical scan analysis of trabecular and cortical bone compartments, calculating not only their bone mineral density (BMD), but also bone geometrical parameters, such as marrow and cortical Cross-Sectional Area (CSA), Cortical Thickness (CoTh), both periosteal and endosteal circumference, as well as biomechanical parameters like Cross-Sectional Moment of Inertia (CSMI), a measure of bending, polar moment of inertia, indicating bone strength in torsion, and Strength Strain Index (SSI). Also CSA of muscle and fat can be extracted. Muscles, which are thought to stimulate bones to adapt their geometry and mineral content, are determinant to preserve or increase bone strength; thus, pQCT provides an evaluation of the functional 'muscle-bone unit', defined as BMC/muscle CSA ratio. This functional approach to bone densitometry can establish if bone strength is normally adapted to the muscle force, and if muscle force is adequate for body size, providing more detailed insights to targeted strategies for the prevention and treatment of bone fragility. The present paper offers an extensive review of technical features of pQCT and its possible clinical application in the diagnostic of bone status as well as in the monitoring of the skeleton's health follow-up.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children’s University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Loredana Cavalli
- Department of Surgery and Translational Medicine, Endocrinology Unit, University of Florence, Florence, Italy
| | - Tiziana Cavalli
- Department of Surgery and Translational Medicine, Emergency and Digestive Surgery with Oncological and Functional Address Unit, University of Florence, Florence, Italy
| | - Maurizio de Martino
- Health Sciences Department, University of Florence, Anna Meyer Children’s University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, Endocrinology Unit, University of Florence, Florence, Italy
| |
Collapse
|
11
|
A radiographic investigation of the relationships between humeral cortical bone thickness, medullary canal width and the supratrochlear aperture (STA). Surg Radiol Anat 2016; 39:57-68. [PMID: 27241519 DOI: 10.1007/s00276-016-1701-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
The supratrochlear aperture (STA) is a perforation of the septum between the olecranon and coronoid fossae of the humerus. Bones with STA are prone to supracondylar fractures and are thought to have narrower medullary canals. Our aim was to explore the relationship of the STA with medullary canal width and humeral size. The study employed a case-control research design with approximately equal numbers of individuals with and without STA from South African Whites, Blacks, and the Mixed ethnic group. Radiographs were taken anteroposteriorly using a Lodox Statscan and Image J® software was used to acquire measurements from the radiographs. In the proximal diaphysis, the mean medullary canal width was significantly smaller for STA humeri (13.59 vs. 14.72 mm). The same was true for the midshaft (10.21 vs. 10.84 mm) and the distal portion (10.05 vs. 10.63 mm). While STA humeri appeared to have narrower medullary canal dimensions, this was not the case after standardizing for bone size. The smaller medullary canal width reported in the literature for STA-bearing humeri is, therefore, due to bone size differences and not STA presence. This is supported by the strong positive correlation between bone size and medullary canal width irrespective of STA status. Thus, the medullary canal width increases with bone size independent of STA status. We, therefore, propose that bone size, and not STA presence, is the major factor to consider when choosing rods for intramedullary fixation.
Collapse
|
12
|
Wallace IJ, Judex S, Demes B. Effects of load-bearing exercise on skeletal structure and mechanics differ between outbred populations of mice. Bone 2015; 72:1-8. [PMID: 25460574 DOI: 10.1016/j.bone.2014.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022]
Abstract
Effects of load-bearing exercise on skeletal structure and mechanical properties can vary between inbred strains of mice. Here, we examine whether such variation also exists at the population level. An experiment was performed with two outbred mouse stocks that have been reproductively isolated for >120 generations (Hsd:ICR, Crl:CD1). Growing females from each stock were either treated with a treadmill-running regimen for 1 month or served as controls. Limb forces were recorded with a force plate and cage activity monitored to verify that they were similar between stocks. After the experiment, femoral cortical and trabecular bone structure were quantified with micro-CT in the mid-diaphysis and distal metaphysis, respectively, and diaphyseal structural strength was determined with mechanical testing. Among Hsd:ICR mice, running led to significant improvements in diaphyseal bone quantity, structural geometry, and mechanical properties, as well as enhanced trabecular morphology. In contrast, among Crl:CD1 mice, the same running regimen had little effect on cortical and trabecular structure and significantly reduced diaphyseal resistance to fracture. In neither stock was body mass, muscle mass, or cage activity level different between runners and controls. Given that most environmental variables were controlled in this study, the differential effects of exercise on Hsd:ICR and Crl:CD1 bones were likely due to genetic differences between stocks. These results suggest that the benefits of loading for bone may vary between human populations (e.g., ethnic groups), in which case exercise programs and technologies designed to promote bone health with mechanical signals may be more advantageous to certain populations than others.
Collapse
Affiliation(s)
- Ian J Wallace
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
13
|
Muller D, Errington SL, Szabo CP, Pitts N, Jacklin L. Disparate plasma cortisol concentrations in sexually abused female children from Johannesburg, South Africa. CHILD ABUSE & NEGLECT 2014; 38:1778-1786. [PMID: 25169148 DOI: 10.1016/j.chiabu.2014.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/17/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
A growing body of research indicates that a bidirectional response to a stressor may occur in maltreated children and may be associated with later life psychopathology. However, few studies have investigated stress reactivity in children when they first present to a sexual abuse clinic. Thus, in order to evaluate whether HPA axis dysregulation would be evident at first presentation to a sexual abuse clinic in young girls (n = 26), between the ages of 6-12 years old, blood samples were obtained immediately following examination at a forensic sexual abuse clinic and from the matched control group of children (n = 14; 10.1 ± 0.8) immediately following a bone density scan. Stratification of the sexually abused group into those children who were reportedly abused by a stranger and had no other family stressors (n = 15, 10.4 ± 1.8) and those children whose parents reported abuse of the child by a stranger and other family stressors (n = 11; 9.5 ± 1.8) revealed differences in stress reactivity. Plasma concentrations, of the children from the forensic clinic, were significantly increased in children who reported abuse by a stranger only (322.3 ± 117.4 nmol/l) and significantly decreased in children whose histories indicated sexual abuse by a stranger and other family stressors (149.6 ± 39.7 nmol/l) when compared to the control group (225.5 ± 47.5 nmol/l). In conclusion, following sexual abuse and a secondary stressor, the forensic examination, there is evidence of divergent cortisol responses in the stratified clinical group of children.
Collapse
Affiliation(s)
- Denise Muller
- School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | | | - Christopher P Szabo
- School of Clinical Medicine, Department of Psychiatry, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Neville Pitts
- School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Lorna Jacklin
- School of Clinical Medicine, Department of Pediatrics, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|