1
|
Hu J, Chen Y, Lin M, Duan K, Xu M, Li T, Zhao Y, Lee BH, Deng H. Arginine-loaded globular BSAMA/fibrous GelMA biohybrid cryogels with multifunctional features and enhanced healing for soft gingival tissue regeneration. Int J Biol Macromol 2024; 278:134932. [PMID: 39179087 DOI: 10.1016/j.ijbiomac.2024.134932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Mucogingival surgery has been widely used in soft gingival tissue augmentation in which autografts are predominantly employed. However, the autografts face grand challenges, such as scarcity of palatal donor tissue and postoperative discomfort. Therefore, development of alternative soft tissue substitutes has been an imperative need. Here, we engineered an interconnected porous bovine serum albumin methacryloyl (BSAMA: B, as a drug carrier and antioxidant)/gelatin methacryloyl (GelMA: G, as a biocompatible collagen-like component)-based cryogel with L-Arginine (Arg) loaded as an angiogenic molecule, which could serve as a promising gingival tissue biohybrid scaffold. BG@Arg cryogels featured macroporous architecture, biodegradation, sponge-like properties, suturability, and sustained Arg release. Moreover, BG@Arg cryogels promoted vessel formation and collagen deposition which play an important role in tissue regeneration. Most interestingly, BG@Arg cryogels were found to enhance antioxidant effects. Finally, the therapeutic effect of BG@Arg on promoting tissue regeneration was confirmed in rat full-thickness skin and oral gingival defect models. In vivo results revealed that BG@Arg2 could promote better angiogenesis, more collagen production, and better modulation of inflammation, as compared to a commercial collagen membrane. These advantages might render BG@Arg cryogels a promising alternative to commercial collagen membrane products and possibly autografts for soft gingival tissue regeneration.
Collapse
Affiliation(s)
- Jiajun Hu
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuan Chen
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Kairui Duan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Mengdie Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Tingting Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yueming Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bae Hoon Lee
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
2
|
Alnazeh AA, Kamran MA, Almoammar S, Al Jearah MM, Qasim M, Alshahrani I. Visible light-activated curcumin-doped zinc oxide nanoparticles integrated into orthodontic adhesive on Micro-tensile bond strength, degree of conversion, and antibacterial effectiveness against Staphylococcus Aureus. An investigation using scanning electron microscopy and energy-dispersive X-ray spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112888. [PMID: 38471422 DOI: 10.1016/j.jphotobiol.2024.112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
AIM To acquire a thorough comprehension of the photoactivated Cur-doped ZnONPs at different concentrations 0%, 2.5%, and 5% on the physical qualities, antibacterial efficacy, degree of conversion, and μshear bond strength between orthodontic brackets and the enamel surface. MATERIAL AND METHODS An extensive investigation was carried out utilizing a range of analytical methods, scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, micro tensile bond strength (μTBS) testing, and evaluation of antibacterial effectiveness. Cur-doped ZnONPs at concentrations of 2.5% and 5% were blended with Transbond XT, a light-curable orthodontic adhesive. A control group without the addition of Cur-doped ZnONPs was also prepared. The tooth samples were categorized into three groups based on the weight percentage of NPs: Group 1 (control) with 0% Cur-doped ZnONPs, Group 2 with 2.5 wt% Cur-doped ZnONPs, and Group 3 with 5 wt% Cur-doped ZnONPs. The SEM technique was employed to analyze the morphological characteristics of Cur-doped ZnONPs and ZnONPs. The composition and elemental distribution of the modified Cur-doped ZnONPs were assessed using energy-dispersive X-ray spectroscopy. The effectiveness of NPs at various concentrations against S.Mutans was gauged through the pour plate method. DC of Cur-doped ZnONPs at a region of 1608 cm-1 to 1636 cm-1 for the cured area, whereas the uncured area spanned the same range of 1608 cm-1 to 1636 cm-1 was assessed. The Adhesive Remnant Index (ARI) approach was utilized to investigate the bond failure of orthodontic brackets, while a Universal Testing Machine (UTM) was utilized to test μTBS. The Kruskal-Wallis test was employed to investigate variations in S.mutans survival rates. To determine the μTBS values, analysis of variance (ANOVA) and the post hoc Tukey multiple comparisons test were used. RESULTS The maximum μTBS was given and documented in group 3: 5 wt% Cur-doped ZnONPs (21.21 ± 1.53 MPa). The lowest μTBS was given in group 2: 2.5 wt% Cur-doped ZnONPs (19.58 ± 1.27 MPa). The highest efficacy against S.mutans was documented in group 3 in which 5 wt% Cur-doped ZnONPs (0.39 ± 0.15). The lowest efficacy was seen in group 1 in which no Cur-doped ZnONPs were used (6.47 ± 1.23). The ARI analysis indicated that the predominant failure was between scores 0 and 1 among all experimental groups. Control group 1 which was not modified showed the highest DC (73.11 ± 4.19). CONCLUSION Orthodontic adhesive, containing 5% Cur-doped ZnONPs photoactivated with visible light exhibited a favorable impact on μTBS and indicated enhanced antibacterial efficacy against S.mutans. Nevertheless, it was observed that the addition of Cur-doped ZnONPs at different concentrations (2.5%,5%) resulted in a decrease in the monomer-to-polymer ratio compromising DC.
Collapse
Affiliation(s)
- Abdullah A Alnazeh
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University Abha, Saudi Arabia
| | - Muhammad Abdullah Kamran
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University Abha, Saudi Arabia.
| | - Salem Almoammar
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University Abha, Saudi Arabia
| | | | - Muhammad Qasim
- Department of Operative Dentistry and Endodontics King Khalid University Abha, Saudi Arabia
| | - Ibrahim Alshahrani
- Department of Pedodontics and Orthodontic Sciences, College of Dentistry, King Khalid University Abha, Saudi Arabia
| |
Collapse
|
3
|
Wang RR, Zhao D, Wang Y. Variations of Organic and Inorganic Components across Human Dentin-enamel Junction Revealed by SEM-EDS. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1221-1222. [PMID: 37613596 DOI: 10.1093/micmic/ozad067.628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Rong Rose Wang
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri, United States
| | - Donggao Zhao
- Electron Microscope Laboratory, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri, United States
| | - Yong Wang
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri, United States
| |
Collapse
|
4
|
Douchy L, Gauthier R, Abouelleil-Sayed H, Colon P, Grosgogeat B, Bosco J. The effect of therapeutic radiation on dental enamel and dentin: A systematic review. Dent Mater 2022; 38:e181-e201. [DOI: 10.1016/j.dental.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/03/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
|
5
|
Chen Y, Zhai MJ, Mehwish N, Xu MD, Wang Y, Gong YX, Ren MM, Deng H, Lee BH. Comparison of globular albumin methacryloyl and random-coil gelatin methacryloyl: Preparation, hydrogel properties, cell behaviors, and mineralization. Int J Biol Macromol 2022; 204:692-708. [PMID: 35150780 DOI: 10.1016/j.ijbiomac.2022.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Bovine serum albumin methacryloyl (BSAMA) is a newly emerging photocurable globular protein-based material whereas gelatin methacryloyl (GelMA) is one of the most popular photocurable fibrous protein-based materials. So far, the influence of their different structural conformations as building blocks on hydrogel properties and mineral deposition has not been investigated. Here, we compared their differences in structures, gelation kinetics, hydrogel properties, mineralization, and cell behaviors. BSAMA maintained a stable globular structure while GelMA exhibited temperature-sensitive conformations (4 - 37 °C). BSAMA displayed slower gelation kinetics and much more retarded enzymatic degradation compared to GelMA. Photocurable BSAMA (6.41 - 390.95 kPa) and GelMA hydrogels (36.09 - 199.70 kPa) exhibited tunable mechanical properties depending on their concentrations (10 - 20%). Interestingly, BSAMA hydrogels mineralized needle-like apatite (Ca/P: 1.409) with higher crystallinity compared to GelMA hydrogels (Ca/P: 1.344). BSAMA and GelMA supported satisfactory cell (MC3T3-L1) viability of 99.43 ± 0.57% and 97.14 ± 0.69%, respectively. However, BSAMA gels were less favorable to cell proliferation and migration than GelMA gels. In serum-free environments, cells on GelMA displayed a higher amount of attachment, a more elongated shape, and a longer protrusion compared to those on BSAMA (p < 0.01) during the early adhesion.
Collapse
Affiliation(s)
- Yuan Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Meng Jiao Zhai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Nabila Mehwish
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Meng Die Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yi Wang
- Department of Orthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yi Xuan Gong
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Man Ren
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Bae Hoon Lee
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Rengerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
6
|
Lepperdinger U, Zschocke J, Kapferer-Seebacher I. Oral manifestations of Ehlers-Danlos syndromes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2021; 187:520-526. [PMID: 34741498 PMCID: PMC9298068 DOI: 10.1002/ajmg.c.31941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/24/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022]
Abstract
Ehlers‐Danlos syndromes (EDS) are a group of inherited connective tissue disorders. Patients with EDS exhibit distinct pathologies of the teeth and the oral cavity. Here, we summarize the current knowledge in the various EDS types, in particular regarding severe changes in oral health‐related quality of life, the differential emergence of periodontitis, characteristic yet highly cumbersome dental manifestations, apparent anomalies of oral soft tissues, and relevant issues related to dental implantology. Resolution of remaining open questions will primarily rely on the standardization of diagnostic criteria. Clinical centers that specialize on this rare pathology need to apply congruent approaches for exact characterization of clinical features in conjunction with genetic validation that should be reached without exception in all patients and relevant family members.
Collapse
Affiliation(s)
- Ulrike Lepperdinger
- University Hospital for Dental Prosthetics and Restorative Dentistry, Department of Dental and Oral Medicine and Cranio-Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Ines Kapferer-Seebacher
- University Hospital for Dental Prosthetics and Restorative Dentistry, Department of Dental and Oral Medicine and Cranio-Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Desoutter A, Slimani A, Tassery H, Cuisinier F, Sauro S, Salehi H, Panayotov I. Confocal Raman data analysis of tufts and spindles at the human dentin-enamel junction. Arch Oral Biol 2021; 131:105262. [PMID: 34543810 DOI: 10.1016/j.archoralbio.2021.105262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of this article is to analyze the chemical mapping of tufts and spindles of the human dental enamel using confocal Raman microscopy measuring length, structuration and composition of spindles and tufts. DESIGN we used Raman diffusion, based on the interaction between photons and optic phonons, to reveal chemical bound. Adult molars were selected and longitudinally sectioned. Areas of 120 * 120 μm were scanned near the dentin-enamel junction and grooves. Spectra were collected and phosphate and proteins peak intensities images were reconstructed, related to HPA concentration. Images of Phosphate (PO43-, 960 cm-1) and protein (CH, 2800/3000 cm-1) intensities have been reconstructed. K-mean cluster has been calculated to compare centroid spectra from enamel, dentin and tuft or spindle. RESULTS intensity profile revealed spindles as less mineralized areas than enamel, from 5 to 10 µm large. In the groove of molar, long tufts were found, more than 150 µm. CONCLUSIONS Confocal Raman microscopy is a very interesting tool to characterize chemically secondary structure of enamel. The size of a tuft in the groove allows us make the hypothesis that they could play a role in long term resilience of mechanical stress.
Collapse
Affiliation(s)
| | | | - Hervé Tassery
- LBN, Univ Montpellier, Montpellier, France; Université d'Aix-Marseille, Marseille, France
| | | | - Salavatore Sauro
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | | | | |
Collapse
|
8
|
Novel Approach to Tooth Chemistry. Quantification of the Dental-Enamel Junction. Int J Mol Sci 2021; 22:ijms22116003. [PMID: 34199407 PMCID: PMC8199634 DOI: 10.3390/ijms22116003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
The dentin-enamel junction (DEJ) is known for its special role in teeth. Several techniques were applied for the investigation of the DEJ in human sound molar teeth. The electron (EPMA) and proton (PIXE) microprobes gave consistent indications about the variability of elemental concentrations on this boundary. The locally increased and oscillating concentrations of Mg and Na were observed in the junction, in the layer adhering to the enamel and covering roughly half of the DEJ width. The chemical results were compared with the optical profiles of the junction. Our chemical and optical results were next compared with the micromechanical results (hardness, elastic modulus, friction coefficient) available in the world literature. A strong correlation of both result sets was proven, which testifies to the self-affinity of the junction structures for different locations and even for different kinds of teeth and techniques applied for studies. Energetic changes in tooth strictly connected with crystallographic transformations were calculated, and the minimum energetic status was discovered for DEJ zone. Modeling of both walls of the DEJ from optical data was demonstrated. Comparing the DEJ in human teeth with the same structure found in dinosaur, shark, and alligator teeth evidences the universality of dentin enamel junction in animal world. The paper makes a contribution to better understanding the joining of the different hard tissues.
Collapse
|
9
|
Wang R, Zhao D, Wang Y. Characterization of elemental distribution across human dentin-enamel junction by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Microsc Res Tech 2020; 84:881-890. [PMID: 33210420 DOI: 10.1002/jemt.23648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 11/08/2022]
Abstract
The human dentin-enamel junction (DEJ) is a natural junction that unites two dissimilar mineralized tissues in the human tooth: enamel and dentin. DEJ plays a critical role in maintaining structural and functional integrity of the tooth. However, its structure, chemical composition and function remain unclear and controversial. Systematic investigation of elemental distribution across human DEJ is still lacking in the literature. This study aimed to investigate the elemental distributions of Ca, P, O, C, N, Na, and Mg across the DEJ of human teeth using scanning electron microscope with energy dispersive spectroscopy of X-ray. The results revealed abrupt changes in the distributions of six elements (C, N, Ca, P, Na, and Mg) across the DEJ. Specifically, the four mineral elements showed similar level of change in distribution, with Ca, P, Na decreasing while Mg increasing by 21%-25% from enamel to dentin side of the DEJ. The two organic elements C and N showed much larger changes in distribution, with C increasing by ~150% and N increasing by ~270% from enamel to dentin side of the DEJ. The slope of the distribution curves across the DEJ was estimated to be ~2 μm in width and coincided with the phase intermixing of the micro-scallop structure of the DEJ.
Collapse
Affiliation(s)
- Rong Wang
- Department of Oral and Craniofacial Sciences, University of Missouri -Kansas City School of Dentistry, Kansas City, Missouri, USA
| | - Donggao Zhao
- Department of Oral and Craniofacial Sciences, University of Missouri -Kansas City School of Dentistry, Kansas City, Missouri, USA
| | - Yong Wang
- Department of Oral and Craniofacial Sciences, University of Missouri -Kansas City School of Dentistry, Kansas City, Missouri, USA
| |
Collapse
|
10
|
Gil-Bona A, Bidlack FB. Tooth Enamel and its Dynamic Protein Matrix. Int J Mol Sci 2020; 21:ijms21124458. [PMID: 32585904 PMCID: PMC7352428 DOI: 10.3390/ijms21124458] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
Collapse
Affiliation(s)
- Ana Gil-Bona
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence: (A.G.-B.); (F.B.B.)
| | - Felicitas B. Bidlack
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence: (A.G.-B.); (F.B.B.)
| |
Collapse
|
11
|
KAPFERER-SEEBACHER I, SCHNABL D, ZSCHOCKE J, POPE FM. Dental Manifestations of Ehlers-Danlos Syndromes: A Systematic Review. Acta Derm Venereol 2020; 100:adv00092. [PMID: 32147746 PMCID: PMC9128968 DOI: 10.2340/00015555-3428] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Abstract
Ehlers-Danlos syndromes (EDS) are a group of inherited connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and variable tissue fragility. However, there are limited published data on the dental manifestations of EDS. This review systematically assessed the spectrum of published dental anomalies in various types of EDS. Twenty-four individual case reports/series and 3 longer case-control studies, reporting on a total of 84 individuals with a clinical diagnosis of EDS, were included in the data analysis. The main dental features listed in classical EDS were pulp calcification and localized root hypoplasia. Common dental abnormalities observed in vascular EDS were pulp shape modifications (52.2%), exceeding root length (34.8%), and molar root fusion (47.8%). Dentinogenesis imperfecta is a consistent finding in osteogenesis imperfecta/EDS overlap syndrome. Data on dental manifestations in other types of EDS are both rare and generally inconclusive.
Collapse
Affiliation(s)
| | | | - Johannes ZSCHOCKE
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - F. Michael POPE
- Department of Dermatology, Chelsea & Westminster Hospital NHS Foundation Trust, London
- EDS Syndrome National Diagnostic Service, Northwick Park Hospital, Harrow, UK
| |
Collapse
|
12
|
Thompson VP. The tooth: An analogue for biomimetic materials design and processing. Dent Mater 2020; 36:25-42. [DOI: 10.1016/j.dental.2019.08.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 01/05/2023]
|
13
|
Green DR, Schulte F, Lee KH, Pugach MK, Hardt M, Bidlack FB. Mapping the Tooth Enamel Proteome and Amelogenin Phosphorylation Onto Mineralizing Porcine Tooth Crowns. Front Physiol 2019; 10:925. [PMID: 31417410 PMCID: PMC6682599 DOI: 10.3389/fphys.2019.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Tooth enamel forms in an ephemeral protein matrix where changes in protein abundance, composition and posttranslational modifications are critical to achieve healthy enamel properties. Amelogenin (AMELX) with its splice variants is the most abundant enamel matrix protein, with only one known phosphorylation site at serine 16 shown in vitro to be critical for regulating mineralization. The phosphorylated form of AMELX stabilizes amorphous calcium phosphate, while crystalline hydroxyapatite forms in the presence of the unphosphorylated protein. While AMELX regulates mineral transitions over space and time, it is unknown whether and when un-phosphorylated amelogenin occurs during enamel mineralization. This study aims to reveal the spatiotemporal distribution of the cleavage products of the most abundant AMLEX splice variants including the full length P173, the shorter leucine-rich amelogenin protein (LRAP), and the exon 4-containing P190 in forming enamel, all within the context of the changing enamel matrix proteome during mineralization. We microsampled permanent pig molars, capturing known stages of enamel formation from both crown surface and inner enamel. Nano-LC-MS/MS proteomic analyses after tryptic digestion rendered more than 500 unique protein identifications in enamel, dentin, and bone. We mapped collagens, keratins, and proteolytic enzymes (CTSL, MMP2, MMP10) and determined distributions of P173, LRAP, and P190 products, the enamel proteins enamelin (ENAM) and ameloblastin (AMBN), and matrix-metalloprotease-20 (MMP20) and kallikrein-4 (KLK4). All enamel proteins and KLK4 were near-exclusive to enamel and in excellent agreement with published abundance levels. Phosphorylated P173 and LRAP products decreased in abundance from recently deposited matrix toward older enamel, mirrored by increasing abundances of testicular acid phosphatase (ACPT). Our results showed that hierarchical clustering analysis of secretory enamel links closely matching distributions of unphosphorylated P173 and LRAP products with ACPT and non-traditional amelogenesis proteins, many associated with enamel defects. We report higher protein diversity than previously published and Gene Ontology (GO)-defined protein functions related to the regulation of mineral formation in secretory enamel (e.g., casein α-S1, CSN1S1), immune response in erupted enamel (e.g., peptidoglycan recognition protein, PGRP), and phosphorylation. This study presents a novel approach to characterize and study functional relationships through spatiotemporal mapping of the ephemeral extracellular matrix proteome.
Collapse
Affiliation(s)
- Daniel R Green
- The Forsyth Institute, Cambridge, MA, United States.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | | | - Kyu-Ha Lee
- The Forsyth Institute, Cambridge, MA, United States.,Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Megan K Pugach
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Felicitas B Bidlack
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
14
|
Jágr M, Ergang P, Pataridis S, Kolrosová M, Bartoš M, Mikšík I. Proteomic analysis of dentin-enamel junction and adjacent protein-containing enamel matrix layer of healthy human molar teeth. Eur J Oral Sci 2018; 127:112-121. [DOI: 10.1111/eos.12594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Michal Jágr
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
- Quality of Plant Products; Crop Research Institute; Prague Czech Republic
| | - Peter Ergang
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Statis Pataridis
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Marta Kolrosová
- Department of Analytical Chemistry; Faculty of Science; Charles University; Prague Czech Republic
| | - Martin Bartoš
- Institute of Dental Medicine; First Faculty of Medicine; Charles University and General University Hospital; Prague Czech Republic
| | - Ivan Mikšík
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
15
|
Vallittu PK, Durgesh BH, AlKheraif AA, Hjerppe J. From body‐on‐frame to unibody constructions and designs mimicking biological structures – an overview. Eur J Oral Sci 2018; 126 Suppl 1:95-101. [DOI: 10.1111/eos.12419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Pekka K. Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre – TCBC Institute of Dentistry University of Turku Turku Finland
- King Saud University Riyadh Kingdom of Saudi Arabia
- City of Turku Welfare Division Turku Finland
| | - Bangalore H. Durgesh
- College of Applied Medical Sciences King Saud University Riyadh Kingdom of Saudi Arabia
| | | | - Jenni Hjerppe
- Department of Prosthetic Dentistry and Stomatognathic Physiology University of Turku Turku Finland
- Departments of Oral and Maxillofacial Diseases Helsinki University Hospital (HUH) Helsinki Finland
| |
Collapse
|
16
|
Nyström A, Bruckner-Tuderman L. Matrix molecules and skin biology. Semin Cell Dev Biol 2018; 89:136-146. [PMID: 30076963 DOI: 10.1016/j.semcdb.2018.07.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
An extracellular matrix (ECM) is a prerequisite for multicellular life. It is adapted to tissues and constantly undergoes changes to preserve microenvironmental homeostasis. The ECM acts as a structural scaffold that establishes tissue architecture and provides tensile strength. It has cell-instructive functions by serving as a reservoir and presenter of soluble agents, being directly signaling, integrating transmission of mechanical and biological cues, or serving as a co-factor potentiating signaling. The skin contains a highly developed, mechanically tough, but yet flexible ECM. The tissue-specific features of this ECM are largely attributed by minor ECM components. A large number of genetic and acquired ECM diseases with skin manifestations, provide an illustrative testament to the importance of correct assembly of the ECM for dermal homeostasis. Here, we will present the composition and features of the skin ECM during homeostasis and regeneration. We will discuss genetic and acquired ECM diseases affecting skin, and provide a short outlook to therapeutic strategies for them.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Hua L, Zheng J, Zhou Z, Tian ZR. Water-Switchable Interfacial Bonding on Tooth Enamel Surface. ACS Biomater Sci Eng 2018; 4:2364-2369. [PMID: 33435101 DOI: 10.1021/acsbiomaterials.8b00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tooth enamel is a distinctive nanocomposite with a highly organized hierarchical structure made of nanometer- and micrometer-scale building blocks. This structure has an excellent mechanical function that can last for decades thanks to an effective but underexploited interfacial chemical bonding between the building blocks. In this study, the nanomechanical system test (NST), scanning electron microscope (SEM), X-ray diffraction (XRD, including powder XRD or PXRD, small angle XRD or SAXRD, and grazing incidence small angle XRD or GISAXRD), and atomic force microscope (AFM) have been employed to analyze the water-mediated bonding on the enamel surface. Via the cycling between hydration, dehydration, and rehydration treatments, a reversible change in the interfacial distance (i.e., d-space in the XRD pattern) between hydroxyapatite (HAP) nanocrystallites have been found switchable between the embrittling and toughening on the enamel surface. From the hydrated to the dehydrated conditions, an energy dissipation to deform a unit volume (1 μm3) of biocomposite on the enamel surface and subsurface has decreased by 20%. This finding can help quantify and predict biomineral-surface properties in all humidity and develop new methods to protect tooth enamel of "dry-mouth" patients.
Collapse
Affiliation(s)
- Licheng Hua
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.,Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jing Zheng
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhongrong Zhou
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | | |
Collapse
|
18
|
Seyedmahmoud R, Wang Y, Thiagarajan G, Gorski JP, Reed Edwards R, McGuire JD, Walker MP. Oral cancer radiotherapy affects enamel microhardness and associated indentation pattern morphology. Clin Oral Investig 2018; 22:1795-1803. [PMID: 29151196 PMCID: PMC5908727 DOI: 10.1007/s00784-017-2275-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 11/13/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study is to determine the effects of in vitro and in vivo high-dose radiotherapy on microhardness and associated indentation pattern morphology of enamel. MATERIALS AND METHODS The inner, middle, and outer microhardness of enamel was evaluated using three experimental groups: control (non-radiated); in vitro irradiated; in vivo irradiated. In vitro specimens were exposed to simulated radiotherapy, and in vivo specimens were extracted teeth from oral cancer patients previously treated with radiotherapy. Indentations were measured via SEM images to calculate microhardness values and to assess the mechanomorphological properties of enamel before and after radiotherapy. RESULTS Middle and outer regions of enamel demonstrated a significant decrease in microhardness after in vitro and in vivo irradiation compared to the control group (p < 0.05). Two indentation patterns were observed: pattern A-presence of microcracks around indent periphery, which represents local dissipation of deformation energy; pattern B-clean, sharp indents. The percentage of clean microindentation patterns, compared to controls, was significantly higher following in vitro and in vivo irradiation in all enamel regions. The highest percentage of clean microindentations (65%) was observed in the in vivo irradiated group in the inner region of enamel near the dentin-enamel junction. CONCLUSIONS For the first time, this study shows that in vitro and in vivo irradiation alters enamel microhardness. Likewise, the indentation pattern differences suggest that enamel may become more brittle following in vitro and in vivo irradiation. CLINICAL RELEVANCE The mechanomorphological property changes of enamel following radiation may be a contributory component of pathologic enamel delamination following oral cancer radiotherapy.
Collapse
Affiliation(s)
- R Seyedmahmoud
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th St, Kansas City, MO, 64108, USA
| | - Y Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th St, Kansas City, MO, 64108, USA.
- Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, 650 East 25th St, Kansas City, MO, 64108, USA.
| | - G Thiagarajan
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th St, Kansas City, MO, 64108, USA
- Department of Civil and Mechanical Engineering, School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO, USA
| | - J P Gorski
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th St, Kansas City, MO, 64108, USA
- Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, 650 East 25th St, Kansas City, MO, 64108, USA
| | - R Reed Edwards
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th St, Kansas City, MO, 64108, USA
| | - J D McGuire
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th St, Kansas City, MO, 64108, USA
| | - M P Walker
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th St, Kansas City, MO, 64108, USA.
- Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, 650 East 25th St, Kansas City, MO, 64108, USA.
| |
Collapse
|
19
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Segarra MS, Shimada Y, Sadr A, Sumi Y, Tagami J. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography. J Dent Res 2016; 96:308-314. [PMID: 27872333 DOI: 10.1177/0022034516680156] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.
Collapse
Affiliation(s)
- M S Segarra
- 1 Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Japan.,2 Section of Operative Dentistry, College of Dentistry, University of the Philippines, Manila, Philippines
| | - Y Shimada
- 1 Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Japan
| | - A Sadr
- 1 Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Japan.,3 Restorative Dentistry, University of Washington, Seattle, WA, USA
| | - Y Sumi
- 4 Advanced Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - J Tagami
- 1 Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Japan
| |
Collapse
|
21
|
Yahyazadehfar M, Zhang D, Arola D. On the importance of aging to the crack growth resistance of human enamel. Acta Biomater 2016; 32:264-274. [PMID: 26747980 DOI: 10.1016/j.actbio.2015.12.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/03/2015] [Accepted: 12/30/2015] [Indexed: 11/28/2022]
Abstract
With improvements in oral health and an overall increase in quality of life, the percentage of fully or largely dentate seniors is increasing. Understanding the effects of aging on the mechanical properties of teeth is essential to the maintenance of lifelong oral health. In this investigation the effects of aging on the fracture toughness of human enamel were evaluated from incremental crack growth experiments performed on tissue of donor teeth representing "young" (17 ⩽ age ⩽ 25) and "old" (age ⩾ 55) age groups. Results showed that the old enamel exhibited significantly lower resistance to fracture than that of the young tissue in two orthogonal directions of crack growth. For crack growth transverse to the enamel rods, the fracture toughness of the old enamel (0.37 ± 0.15 MPa m(0.5)) was nearly 70% lower than that of tissue from the young teeth (1.23 ± 0.20 MPa m(0.5)). Based on results from a mechanistic analysis of crack growth, the reduction in fracture resistance is attributed to a decrease in the degree of extrinsic toughening. The practice of restorative dentistry should account for these changes in tooth tissues in the treatment of senior patients. STATEMENT OF SIGNIFICANCE The mechanical behavior of enamel has been studied for over 3 decades. Due to the limited volume of tissue available for evaluation, past work has been largely based on indentation methods. In this investigation we have evaluated the resistance to fracture of human enamel using a conventional fracture mechanics approach and incremental crack growth. We compared the fracture resistance of cuspal enamel obtained from the teeth of representative "young" and "old" donor groups. Our results show that there is a substantial reduction in the resistance to fracture with age, that it is anisotropic, and that the degradation is more severe than that which occurs to dentin. As such, we feel this work is a significant contribution to the field.
Collapse
Affiliation(s)
- Mobin Yahyazadehfar
- Department of Material Science and Engineering, University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Dongsheng Zhang
- Department of Mechanics, Shanghai University, Shanghai 200444, PR China
| | - Dwayne Arola
- Department of Material Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA; Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Reed R, Xu C, Liu Y, Gorski JP, Wang Y, Walker MP. Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol 2015; 60:690-7. [PMID: 25766468 DOI: 10.1016/j.archoralbio.2015.02.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/19/2014] [Accepted: 02/20/2015] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To understand radiotherapy-induced dental lesions characterized by enamel loss or delamination near the dentine-enamel junction (DEJ), this study evaluated enamel and dentine nano-mechanical properties and chemical composition before and after simulated oral cancer radiotherapy. DESIGN Sections from seven non-carious third molars were exposed to 2 Gy fractions, 5 days/week for 7 weeks for a total of 70 Gy. Nanoindentation was used to evaluate Young's modulus, while Raman microspectroscopy was used to measure protein/mineral ratios, carbonate/phosphate ratios, and phosphate peak width. All measures were completed prior to and following radiation at the same four buccal and lingual sites 500 and 30 μm from the DEJ in enamel and dentine (E-500, E-30, D-30 and D-500). RESULTS The elastic modulus of enamel and dentine was significantly increased (P ≤ 0.05) following radiation. Based on Raman spectroscopic analysis, there was a significant decrease in the protein to mineral ratio (2931/430 cm(-1)) following radiation at all sites tested except at D-500, while the carbonate to phosphate ratio (1070/960 cm(-1)) increased at E-30 and decreased at D-500. Finally, phosphate peak width as measured by FWHM at 960 cm(-1) significantly decreased at both D-30 and D-500 following radiation. CONCLUSIONS Simulated radiotherapy produced an increase in the stiffness of enamel and dentine near the DEJ. Increased stiffness is speculated to be the result of the radiation-induced decrease in the protein content, with the percent reduction much greater in the enamel sites. Such changes in mechanical properties and chemical composition could potentially contribute to DEJ biomechanical failure leading to enamel delamination that occurs post-radiotherapy. However, other analyses are required for a better understanding of radiotherapy-induced effects on tooth structure to improve preventive and restorative treatments for oral cancer patients.
Collapse
Affiliation(s)
- R Reed
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, United States
| | - C Xu
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, United States
| | - Y Liu
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, United States
| | - J P Gorski
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, United States; Center of Excellencein Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, MO, United States
| | - Y Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, United States; Center of Excellencein Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, MO, United States
| | - M P Walker
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, United States; Center of Excellencein Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, MO, United States.
| |
Collapse
|
23
|
McGuire JD, Gorski JP, Dusevich V, Wang Y, Walker MP. Type IV collagen is a novel DEJ biomarker that is reduced by radiotherapy. J Dent Res 2014; 93:1028-34. [PMID: 25146181 DOI: 10.1177/0022034514548221] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The dental basement membrane (BM) is composed of collagen types IV, VI, VII, and XVII, fibronectin, and laminin and plays an inductive role in epithelial-mesenchymal interactions during tooth development. The BM is degraded and removed during later-stage tooth morphogenesis; however, its original position defines the location of the dentin-enamel junction (DEJ) in mature teeth. We recently demonstrated that type VII collagen is a novel component of the inner enamel organic matrix layer contiguous with the DEJ. Since it is frequently co-expressed with and forms functional complexes with type VII collagen, we hypothesized that type IV collagen should also be localized to the DEJ in mature human teeth. To identify collagen IV, we first evaluated defect-free erupted teeth from various donors. To investigate a possible stabilizing role, we also evaluated extracted teeth exposed to high-dose radiotherapy--teeth that manifest post-radiotherapy DEJ instability. We now show that type IV collagen is a component within the morphological DEJ of posterior and anterior teeth from individuals aged 18 to 80 yr. Confocal microscopy revealed that immunostained type IV collagen was restricted to the 5- to 10-µm-wide optical DEJ, while collagenase treatment or previous in vivo tooth-level exposure to > 60 Gray irradiation severely reduced immunoreactivity. This assignment was confirmed by Western blotting with whole-tooth crown and enamel extracts. Without reduction, type IV collagen contained macromolecular α-chains of 225 and 250 kDa. Compositionally, our results identify type IV collagen as the first macromolecular biomarker of the morphological DEJ of mature teeth. Given its network structure and propensity to stabilize the dermal-epidermal junction, we propose that a collagen-IV-enriched DEJ may, in part, explain its well-known fracture toughness, crack propagation resistance, and stability. In contrast, loss of type IV collagen may represent a biochemical rationale for the DEJ instability observed following oral cancer radiotherapy.
Collapse
Affiliation(s)
- J D McGuire
- Department of Oral and Craniofacial Sciences, School of Dentistry
| | - J P Gorski
- Department of Oral and Craniofacial Sciences, School of Dentistry Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - V Dusevich
- Department of Oral and Craniofacial Sciences, School of Dentistry
| | - Y Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - M P Walker
- Department of Oral and Craniofacial Sciences, School of Dentistry Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|