1
|
Ferreira A, Dos Reis LM, Manteigas D, Carvalho AB, Jorgetti V. Histomorphometric parameters of iliac bone in healthy individuals: Systematic review and meta-analysis. Bone 2025; 190:117309. [PMID: 39490656 DOI: 10.1016/j.bone.2024.117309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Despite its invasive character, bone biopsy followed by histomorphometry remains the gold standard for diagnosing and classifying many metabolic bone diseases. However, the interpretation of histomorphometric parameters requires comparison with average values obtained from a proper control group, which are only available for some populations, and reference standards still need to be published. Therefore, our objective was to estimate average values for bone histomorphometric parameters overall, by age, gender, and race (White and Black) categories of healthy adult individuals, based on a systematic review and meta-analysis of clinical studies. Relevant studies published in English with available results until December 2020 were identified by PubMed (Medline) search and consulting experts in the field. Out of 447 potentially relevant studies, 37 met the inclusion criteria. Meta-analysis using fixed-effects models was used to pool mean estimates and 95% confidence intervals (CI) for 16 bone histomorphometry parameters. An age-by-gender trend was observed in most histomorphometry parameters. The mean estimates of bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) decreased. In contrast, trabecular separation (Tb.Sp) increased from the youngest to the oldest age categories in both genders. Osteoblast surface (Ob.S/BS) and osteoclast surface (Oc.S/BS) decreased across all age categories in males. Mineralizing surface (MS/BS) increased from the youngest to the oldest age categories in females, while mineralization lag time (Mlt) increased in both genders. Furthermore, gender and race had a significant effect on several histomorphometry parameters. In conclusion, this meta-analysis provided mean estimates for normal values of histomorphometric parameters that clinicians may use when evaluating bone biopsies in patients. This enables the direct comparison of patients' histomorphometric values with the suitable reference group regarding age, gender, and race.
Collapse
Affiliation(s)
- Aníbal Ferreira
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal; Department of Nephrology and Renal and Reno-pancreatic Transplantation Unit, Curry Cabral Hospital - Central Lisbon University Hospital Center, Lisbon, Portugal; Centro Clínico Académico de Lisboa (CCAL), Lisbon, Portugal.
| | - Luciene Machado Dos Reis
- Nephrology Department, Laboratorio de Fisiopatologia Renal 16 (LIM 16), Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Vanda Jorgetti
- Nephrology Department, Laboratorio de Fisiopatologia Renal 16 (LIM 16), Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Hering RN, von Kroge S, Delsmann J, Simon A, Ondruschka B, Püschel K, Schmidt FN, Rolvien T. Pronounced cortical porosity and sex-specific patterns of increased bone and osteocyte lacunar mineralization characterize the human distal fibula with aging. Bone 2024; 182:117068. [PMID: 38458304 DOI: 10.1016/j.bone.2024.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The high occurrence of distal fibula fractures among older women suggests a potential link to impaired bone health. Here we used a multiscale imaging approach to investigate the microarchitecture, mineralization, and biomechanics of the human distal fibula in relation to age and sex. Micro-computed tomography was performed to analyze the local volumetric bone mineral density and various microarchitectural parameters of the trabecular and the cortical compartment. Bone mineral density distribution and osteocyte lacunar parameters were quantified using quantitative backscattered electron imaging in periosteal, endocortical, and trabecular regions. Additionally, cortical hardness and Young's modulus were assessed by nanoindentation. While cortical porosity strongly increased with age independent of sex, trabecular microarchitecture remained stable. Notably, nearly half of the specimens showed non-bony hypermineralized tissue located at the periosteum, similar to that previously detected in the femoral neck, with no consistent association with advanced age. Independent of this finding, cortical and trabecular mineralization, i.e., mean calcium content, as well as endocortical tissue hardness increased with age in males but not females. Importantly, we also observed mineralized osteocyte lacunae that increased with age specifically in females. In conclusion, our results indicate that skeletal aging of the distal fibula is signified not only by pronounced cortical porosity but also by an increase in mineralized osteocyte lacunae in females. These findings may provide an explanation for the increased occurrence of ankle fractures in older women.
Collapse
Affiliation(s)
- Robin-Nicolas Hering
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Delsmann
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Simon
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Nikolai Schmidt
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Delsmann MM, Bonik P, Ocokoljic A, Häussler SM, Püschel K, Praetorius M, Amling M, Peichl J, Rolvien T. Cholesteatoma Severely Impacts the Integrity and Bone Material Quality of the Incus. Calcif Tissue Int 2023; 113:609-617. [PMID: 37872266 PMCID: PMC10673740 DOI: 10.1007/s00223-023-01144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Cholesteatoma can lead to progressive destruction of the auditory ossicles along with conductive hearing loss but precise data on the microstructural, cellular, and compositional aspects of affected ossicles are not available. Here, we obtained incus specimens from patients who had cholesteatoma with conductive hearing loss. Incudes were evaluated by micro-computed tomography, histomorphometry on undecalcified sections, quantitative backscattered electron imaging, and nanoindentation. Results were compared with two control groups taken from patients with chronic otitis media as well as from skeletally intact donors at autopsy. The porosity of incus specimens was higher in cholesteatoma than in chronic otitis media, along with a higher osteoclast surface per bone surface. Histomorphometric assessment revealed higher osteoid levels and osteocyte numbers in cholesteatoma incudes. Incudes affected by cholesteatoma also showed lower matrix mineralization compared with specimens from healthy controls and chronic otitis media. Furthermore, the modulus-to-hardness ratio was higher in cholesteatoma specimens compared with controls. Taken together, we demonstrated increased porosity along with increased osteoclast indices, impaired matrix mineralization, and altered biomechanical properties as distinct features of the incus in cholesteatoma. Based on our findings, a possible impact of impaired bone quality on conductive hearing loss should be further explored.
Collapse
Affiliation(s)
- Maximilian M Delsmann
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Bonik
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Ana Ocokoljic
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sophia M Häussler
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Praetorius
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan Peichl
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
4
|
Allahyari P, Silani M, Yaghoubi V, Milovanovic P, Schmidt FN, Busse B, Qwamizadeh M. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components. J Mech Behav Biomed Mater 2023; 137:105530. [PMID: 36334581 DOI: 10.1016/j.jmbbm.2022.105530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Bone encompasses a complex arrangement of materials at different length scales, which endows it with a range of mechanical, chemical, and biological capabilities. Changes in the microstructure and characteristics of the material, as well as the accumulation of microcracks, affect the bone fracture properties. In this study, two-dimensional finite element models of the microstructure of cortical bone were considered. The eXtended Finite Element Method (XFEM) developed by Abaqus software was used for the analysis of the microcrack propagation in the model as well as for local sensitivity analysis. The stress-strain behavior obtained for the different introduced models was substantially different, confirming the importance of bone tissue microstructure for its failure behavior. Considering the role of interfaces, the results highlighted the effect of cement lines on the crack deflection path and global fracture behavior of the bone microstructure. Furthermore, bone micromorphology and areal fraction of cortical bone tissue components such as osteons, cement lines, and pores affected the bone fracture behavior; specifically, pores altered the crack propagation path since increasing porosity reduced the maximum stress needed to start crack propagation. Therefore, cement line structure, mineralization, and areal fraction are important parameters in bone fracture. The parameter-wise sensitivity analysis demonstrated that areal fraction and strain energy release rate had the greatest and the lowest effect on ultimate strength, respectively. Furthermore, the component-wise sensitivity analysis revealed that for the areal fraction parameter, pores had the greatest effect on ultimate strength, whereas for the other parameters such as elastic modulus and strain energy release rate, cement lines had the most important effect on the ultimate strength. In conclusion, the finding of the current study can help to predict the fracture mechanisms in bone by taking the morphological and material properties of its microstructure into account.
Collapse
Affiliation(s)
- P Allahyari
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - M Silani
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - V Yaghoubi
- Structural Integrity & Composites, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS, Delft, Netherlands
| | - P Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - F N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - B Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - M Qwamizadeh
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany.
| |
Collapse
|
5
|
Liu F, Hu K, Al-Qudsy LH, Wu LQ, Wang Z, Xu HY, Yang H, Yang PF. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse. Acta Biomater 2022; 152:345-354. [PMID: 36087867 DOI: 10.1016/j.actbio.2022.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
Mineralized collagen fibrils (MCFs) are the fundamental building blocks of bone tissue and contribute significantly to the mechanical behavior of bone. However, it is still largely unknown how the collagen network in bone responds to aging and the disuse normally accompanying it. Utilizing atomic force microscopy, nanoindentation and Raman spectroscopy, age-related alterations in the microstructure and mechanical properties of murine cortical tibia at multiple scales were investigated in this study. The potential difference in the responses of bone to disuse at different ages was studied. The results indicated that the age- and disuse-related alterations in bone initiate from MCFs in the bone matrix. The D-periodic spacing, radial elastic modulus of a single MCF and the mineral-to-matrix ratio on the cortical bone surface were larger in aged mice than in adult mice. Disuse, on the other hand, mainly has a major influence on aged mice, particularly on the morphology and mechanical properties of MCFs, but it only has modest effects on adult bone. These findings revealed insights into the morphological and mechanical adaptation of mineralized collagen fibrils in murine cortical bone to aging and disuse. STATEMENT OF SIGNIFICANCE: Bone is a complex structured composite material consisting of an interwoven framework of collagen fibrils reinforced by mineral particles and embedded in an extrafibrillar mineralized matrix. Utilizing atomic force microscopy, nanoindentation and Raman spectroscopy, this study suggests that the effects of aging, as well as the accompanying disuse, on the morphology and mechanical properties of bone initiate from the mineralized collagen fibril level. More interestingly, the MCF in the bone of aged mice seems to be more sensitive to disuse than that in adult mice. These findings significantly further the current understanding of the adaptation process of bone to aging at the mineralized collagen fibril level and provide direct insights into the physiological response of bone to aging and the abnormal mechanical environment.
Collapse
Affiliation(s)
- Fa Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Luban H Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lan-Qin Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhe Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui-Yun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
6
|
Costantini A, Mäkitie RE, Hartmann MA, Fratzl-Zelman N, Zillikens MC, Kornak U, Søe K, Mäkitie O. Early-Onset Osteoporosis: Rare Monogenic Forms Elucidate the Complexity of Disease Pathogenesis Beyond Type I Collagen. J Bone Miner Res 2022; 37:1623-1641. [PMID: 35949115 PMCID: PMC9542053 DOI: 10.1002/jbmr.4668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022]
Abstract
Early-onset osteoporosis (EOOP), characterized by low bone mineral density (BMD) and fractures, affects children, premenopausal women and men aged <50 years. EOOP may be secondary to a chronic illness, long-term medication, nutritional deficiencies, etc. If no such cause is identified, EOOP is regarded primary and may then be related to rare variants in genes playing a pivotal role in bone homeostasis. If the cause remains unknown, EOOP is considered idiopathic. The scope of this review is to guide through clinical and genetic diagnostics of EOOP, summarize the present knowledge on rare monogenic forms of EOOP, and describe how analysis of bone biopsy samples can lead to a better understanding of the disease pathogenesis. The diagnostic pathway of EOOP is often complicated and extensive assessments may be needed to reliably exclude secondary causes. Due to the genetic heterogeneity and overlapping features in the various genetic forms of EOOP and other bone fragility disorders, the genetic diagnosis usually requires the use of next-generation sequencing to investigate several genes simultaneously. Recent discoveries have elucidated the complexity of disease pathogenesis both regarding genetic architecture and bone tissue-level pathology. Two rare monogenic forms of EOOP are due to defects in genes partaking in the canonical WNT pathway: LRP5 and WNT1. Variants in the genes encoding plastin-3 (PLS3) and sphingomyelin synthase 2 (SGMS2) have also been found in children and young adults with skeletal fragility. The molecular mechanisms leading from gene defects to clinical manifestations are often not fully understood. Detailed analysis of patient-derived transiliac bone biopsies gives valuable information to understand disease pathogenesis, distinguishes EOOP from other bone fragility disorders, and guides in patient management, but is not widely available in clinical settings. Despite the great advances in this field, EOOP remains an insufficiently explored entity and further research is needed to optimize diagnostic and therapeutic approaches. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Paris Cité University, INSERM UMR1163, Institut Imagine, Paris, France
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
O'Bryan SJ, Giuliano C, Woessner MN, Vogrin S, Smith C, Duque G, Levinger I. Progressive Resistance Training for Concomitant Increases in Muscle Strength and Bone Mineral Density in Older Adults: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:1939-1960. [PMID: 35608815 PMCID: PMC9325860 DOI: 10.1007/s40279-022-01675-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Older adults experience considerable muscle and bone loss that are closely interconnected. The efficacy of progressive resistance training programs to concurrently reverse/slow the age-related decline in muscle strength and bone mineral density (BMD) in older adults remains unclear. OBJECTIVES We aimed to quantify concomitant changes in lower-body muscle strength and BMD in older adults following a progressive resistance training program and to determine how these changes are influenced by mode (resistance only vs. combined resistance and weight-bearing exercises), frequency, volume, load, and program length. METHODS MEDLINE/PubMed and Embase databases were searched for articles published in English before 1 June, 2021. Randomized controlled trials reporting changes in leg press or knee extension one repetition maximum and femur/hip or lumbar spine BMD following progressive resistance training in men and/or women ≥ 65 years of age were included. A random-effects meta-analysis and meta-regression determined the effects of resistance training and the individual training characteristics on the percent change (∆%) in muscle strength (standardized mean difference) and BMD (mean difference). The quality of the evidence was assessed using the Cochrane risk-of-bias tool (version 2.0) and Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria. RESULTS Seven hundred and eighty studies were identified and 14 were included. Progressive resistance training increased muscle strength (∆ standardized mean difference = 1.1%; 95% confidence interval 0.73, 1.47; p ≤ 0.001) and femur/hip BMD (∆ mean difference = 2.77%; 95% confidence interval 0.44, 5.10; p = 0.02), but not BMD of the lumbar spine (∆ mean difference = 1.60%; 95% confidence interval - 1.44, 4.63; p = 0.30). The certainty for improvement was greater for muscle strength compared with BMD, evidenced by less heterogeneity (I2 = 78.1% vs 98.6%) and a higher overall quality of evidence. No training characteristic significantly affected both outcomes (p > 0.05), although concomitant increases in strength and BMD were favored by higher training frequencies, increases in strength were favored by resistance only and higher volumes, and increases in BMD were favored by combined resistance plus weight-bearing exercises, lower volumes, and higher loads. CONCLUSIONS Progressive resistance training programs concomitantly increase lower-limb muscle strength and femur/hip bone mineral density in older adults, with greater certainty for strength improvement. Thus, to maximize the efficacy of progressive resistance training programs to concurrently prevent muscle and bone loss in older adults, it is recommended to incorporate training characteristics more likely to improve BMD.
Collapse
Affiliation(s)
- Steven J O'Bryan
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia.
| | - Catherine Giuliano
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
| | - Mary N Woessner
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
| | - Sara Vogrin
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Cassandra Smith
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Institute for Nutrition Research, School of Health and Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
von Kroge S, Stürznickel J, Bechler U, Stockhausen KE, Eissele J, Hubert J, Amling M, Beil FT, Busse B, Rolvien T. Impaired bone quality in the superolateral femoral neck occurs independent of hip geometry and bone mineral density. Acta Biomater 2022; 141:233-243. [PMID: 34999261 DOI: 10.1016/j.actbio.2022.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/01/2022]
Abstract
Skeletal adaptation is substantially influenced by mechanical loads. Osteocytes and their lacuno-canalicular network have been identified as a key player in load sensation and bone quality regulation. In the femoral neck, one of the most common fracture sites, a complex loading pattern with lower habitual loading in the superolateral neck and higher compressive stresses in the inferomedial neck is present. Variations in the femoral neck-shaft angle (NSA), i.e., coxa vara or coxa valga, provide the opportunity to examine the influence of loading patterns on bone quality. We obtained femoral neck specimens of 28 osteoarthritic human subjects with coxa vara, coxa norma and coxa valga during total hip arthroplasty. Bone mineral density (BMD) was assessed preoperatively by dual energy X-ray absorptiometry (DXA). Cortical and trabecular microstructure and three-dimensional osteocyte lacunar characteristics were assessed in the superolateral and inferomedial neck using ex vivo high resolution micro-computed tomography. Additionally, BMD distribution and osteocyte lacunar characteristics were analyzed by quantitative backscattered electron imaging (qBEI). All groups presented thicker inferomedial than superolateral cortices. Furthermore, the superolateral site exhibited a lower osteocyte lacunar density along with lower lacunar sphericity than the inferomedial site, independent of NSA. Importantly, BMD and corresponding T-scores correlated with microstructural parameters at the inferomedial but not superolateral neck. In conclusion, we provide micromorphological evidence for fracture vulnerability of the superolateral neck, which is independent of NSA and BMD. The presented bone qualitative data provide an explanation why DXA may be insufficient to predict a substantial proportion of femoral neck fractures. STATEMENT OF SIGNIFICANCE: The femoral neck, one of the most common fracture sites, is subject to a complex loading pattern. Site-specific differences (i.e., superolateral vs. inferomedial) in bone quality influence fracture risk, but it is unclear how this relates to hip geometry and bone mineral density (BMD) measurements in vivo. Here, we examine femoral neck specimens using a variety of high-resolution imaging techniques and demonstrate impaired bone quality in the superolateral compared to the inferomedial neck. Specifically, we found impaired cortical and trabecular microarchitecture, mineralization, and osteocyte properties, regardless of neck-shaft angle. Since BMD correlated with bone quality of the inferomedial but not the superolateral neck, our results illustrate why bone densitometry may not predict a substantial proportion of femoral neck fractures.
Collapse
|
9
|
Delsmann MM, Peichl J, Yorgan TA, Beil FT, Amling M, Demay MB, Rolvien T. Prevention of Hypomineralization In Auditory Ossicles of Vitamin D Receptor (Vdr) Deficient Mice. Front Endocrinol (Lausanne) 2022; 13:901265. [PMID: 35733772 PMCID: PMC9207527 DOI: 10.3389/fendo.2022.901265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Intact mineralization of the auditory ossicles - the smallest bones in the body - is essential for sound transmission in the middle ear, while ossicular hypomineralization is associated with conductive hearing loss. Here, we performed a high-resolution analysis of the ossicles in vitamin D receptor deficient mice (Vdr-/- ), which are characterized by hypocalcemia and skeletal mineralization defects, and investigated whether local hypomineralization can be prevented by feeding a calcium-rich rescue diet (Vdr-/- res ). In Vdr-/- mice fed a regular diet (Vdr-/- reg ), quantitative backscattered electron imaging (qBEI) revealed an increased void volume (porosity, p<0.0001) along with lower mean calcium content (CaMean, p=0.0008) and higher heterogeneity of mineralization (CaWidth, p=0.003) compared to WT mice. Furthermore, a higher osteoid volume per bone volume (OV/BV; p=0.0002) and a higher osteocyte lacunar area (Lc.Ar; p=0.01) were found in histomorphometric analysis in Vdr-/- reg mice. In Vdr-/- res mice, full rescue of OV/BV and Lc.Ar (both p>0.05 vs. WT) and partial rescue of porosity and CaWidth (p=0.02 and p=0.04 vs. WT) were observed. Compared with Hyp mice, a model of X-linked hypophosphatemic rickets, Vdr-/- reg mice showed a lower osteoid volume in the ossicles (p=0.0002), but similar values in the lumbar spine. These results are consistent with later postnatal impairment of mineral homeostasis in Vdr-/- mice than in Hyp mice, underscoring the importance of intact mineral homeostasis for ossicle mineralization during development. In conclusion, we revealed a distinct phenotype of hypomineralization in the auditory ossicles of Vdr-/- mice that can be partially prevented by a rescue diet. Since a positive effect of a calcium-rich diet on ossicular mineralization was demonstrated, our results open new treatment strategies for conductive hearing loss. Future studies should investigate the impact of improved ossicular mineralization on hearing function.
Collapse
Affiliation(s)
- Maximilian M. Delsmann
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jonathan Peichl
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur A. Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Marie B. Demay
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Tim Rolvien,
| |
Collapse
|
10
|
Vollersen N, Zhao W, Rolvien T, Lange F, Schmidt FN, Sonntag S, Shmerling D, von Kroge S, Stockhausen KE, Sharaf A, Schweizer M, Karsak M, Busse B, Bockamp E, Semler O, Amling M, Oheim R, Schinke T, Yorgan TA. The WNT1 G177C mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV. Bone Res 2021; 9:48. [PMID: 34759273 PMCID: PMC8580994 DOI: 10.1038/s41413-021-00170-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/28/2021] [Accepted: 06/27/2021] [Indexed: 12/27/2022] Open
Abstract
The recent identification of homozygous WNT1 mutations in individuals with osteogenesis imperfecta type XV (OI-XV) has suggested that WNT1 is a key ligand promoting the differentiation and function of bone-forming osteoblasts. Although such an influence was supported by subsequent studies, a mouse model of OI-XV remained to be established. Therefore, we introduced a previously identified disease-causing mutation (G177C) into the murine Wnt1 gene. Homozygous Wnt1G177C/G177C mice were viable and did not display defects in brain development, but the majority of 24-week-old Wnt1G177C/G177C mice had skeletal fractures. This increased bone fragility was not fully explained by reduced bone mass but also by impaired bone matrix quality. Importantly, the homozygous presence of the G177C mutation did not interfere with the osteoanabolic influence of either parathyroid hormone injection or activating mutation of LRP5, the latter mimicking the effect of sclerostin neutralization. Finally, transcriptomic analyses revealed that short-term administration of WNT1 to osteogenic cells induced not only the expression of canonical WNT signaling targets but also the expression of genes encoding extracellular matrix modifiers. Taken together, our data demonstrate that regulating bone matrix quality is a primary function of WNT1. They further suggest that individuals with WNT1 mutations should profit from existing osteoanabolic therapies.
Collapse
Affiliation(s)
- Nele Vollersen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wenbo Zhao
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Fabiola Lange
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Felix Nikolai Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Sonntag
- PolyGene AG, 8153, Rümlang, Switzerland.,ETH Phenomics Center (EPIC), ETH Zürich, 8092, Zürich, Switzerland
| | | | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kilian Elia Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center, Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, D 55131, Mainz, Germany
| | - Oliver Semler
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, 50937, Cologne, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
11
|
Butscheidt S, von Kroge S, Stürznickel J, Beil FT, Gehrke T, Püschel K, Amling M, Hahn M, Rolvien T. Allograft Chip Incorporation in Acetabular Reconstruction: Multiscale Characterization Revealing Osteoconductive Capacity. J Bone Joint Surg Am 2021; 103:1996-2005. [PMID: 34228665 DOI: 10.2106/jbjs.20.01943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Impacted bone-grafting with morselized allograft chips is commonly used to reconstruct acetabular bone defects in revision total hip arthroplasty (THA). While the overall clinical outcome of this procedure is described to be excellent, the microstructural basis and histological determinants of allograft incorporation remained to be further elucidated. METHODS The acetabula of 23 individuals with documented previous use of allograft chips during revision THA were explanted post mortem. The time that the allografts were in situ averaged 10.3 ± 4.5 years (range, 1.2 to 19.8 years). The host bone (HB)-allograft bone (AB) interface was characterized using a suite of high-resolution (HR) imaging techniques including HR-peripheral quantitative computed tomography (HR-pQCT), histological analysis, cellular histomorphometry, and scanning electron microscopy. RESULTS AB could be identified in 16 of the 23 cases. The HB and AB showed overlap (i.e., ingrowth) in 91.3% of the total interface. The mean ingrowth was 2.2 ± 1.0 mm with a maximum of 4.7 ± 2.1 mm. The periphery of the AB showed a tight interconnection with the HB associated with increased bone remodeling indices and increased trabecular thickness. While no association between the time in situ and the ingrowth was observed, the bone defect area was positively associated with the thickness of a fibrosis layer separating the ingrowth zone from the AB. CONCLUSIONS Allograft chips in revision THA form an adequate osseous foundation with successful incorporation through ingrowth of the HB (i.e., osteoconduction). While complete remodeling was not observed, larger defects were associated with fibrosis formation, which may compromise stability. CLINICAL RELEVANCE Our study provides the first systematic, multiscale long-term evaluation of chip allograft incorporation in revision THA to underscore its successful clinical use. As larger defects were associated with fibrous ingrowth, structural allografts may be superior for larger defects in terms of long-term outcomes.
Collapse
Affiliation(s)
- Sebastian Butscheidt
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf,Hamburg, Germany.,Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Stürznickel
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf,Hamburg, Germany.,Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf,Hamburg, Germany
| | | | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf,Hamburg, Germany.,Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Henyš P, Vořechovský M, Kuchař M, Heinemann A, Kopal J, Ondruschka B, Hammer N. Bone mineral density modeling via random field: Normality, stationarity, sex and age dependence. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 210:106353. [PMID: 34500142 DOI: 10.1016/j.cmpb.2021.106353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Capturing the population variability of bone properties is of paramount importance to biomedical engineering. The aim of the present paper is to describe variability and correlations in bone mineral density with a spatial random field inferred from routine computed tomography data. METHODS Random fields were simulated by transforming pairwise uncorrelated Gaussian random variables into correlated variables through the spectral decomposition of an age-detrended correlation matrix. The validity of the random field model was demonstrated in the spatiotemporal analysis of bone mineral density. The similarity between the computed tomography samples and those generated via random fields was analyzed with the energy distance metric. RESULTS The random field of bone mineral density was found to be approximately Gaussian/slightly left-skewed/strongly right-skewed at various locations. However, average bone density could be simulated well with the proposed Gaussian random field for which the energy distance, i.e., a measure that quantifies discrepancies between two distribution functions, is convergent with respect to the number of correlation eigenpairs. CONCLUSIONS The proposed random field model allows the enhancement of computational biomechanical models with variability in bone mineral density, which could increase the usability of the model and provides a step forward in in-silico medicine.
Collapse
Affiliation(s)
- Petr Henyš
- Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentskí 1402/2, Liberec 461 17, Czech Republic
| | - Miroslav Vořechovský
- Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Veveří 331/95, Brno 602 00, Czech Republic
| | - Michal Kuchař
- Department of Anatomy, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, Hradec Králové, 500 03, Czech Republic.
| | - Axel Heinemann
- Institut für Rechtsmedizin, Universitätsklinikum Hamburg-Eppendorf, Butenfeld 34, Hamburg 22529, Germany
| | - Jiří Kopal
- Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentskí 1402/2, Liberec 461 17, Czech Republic
| | - Benjamin Ondruschka
- Institut für Rechtsmedizin, Universitätsklinikum Hamburg-Eppendorf, Butenfeld 34, Hamburg 22529, Germany
| | - Niels Hammer
- Department of Macroscopic and Clinical Anatomy, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany; Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Straße 44, 01187, Dresden, Germany
| |
Collapse
|
13
|
Lee YR, Findlay DM, Muratovic D, Kuliwaba JS. Greater heterogeneity of the bone mineralisation density distribution and low bone matrix mineralisation characterise tibial subchondral bone marrow lesions in knee osteoarthritis patients. Bone 2021; 149:115979. [PMID: 33915332 DOI: 10.1016/j.bone.2021.115979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Tibial subchondral bone marrow lesions (BMLs) identified by MRI have been recognised as potential disease predictors in knee osteoarthritis (KOA), and may associate with abnormal bone matrix mineralisation and reduced bone quality. However, these tissue-level changes of BMLs have not been extensively investigated. Thus, the aim of this study was to quantify the degree of subchondral bone matrix mineralisation (both plate and trabeculae) in relation to histomorphometric parameters of bone remodelling and osteocyte lacunae (OL) characteristics in the tibial plateau (TP) of KOA patients with and without BMLs (OA-BML and OA No-BML, respectively) in comparison to nonOA cadaveric controls (CTL). Osteochondral (cartilage-bone) tissue was sampled from the BML signal region within the medial compartment for each OA-BML TP, and from a corresponding medial region for OA No-BML and CTL TPs. The tissue samples were embedded in resin, and sections stained with Von-Kossa Haematoxylin and Eosin (H&E) for quantitation of static indices of bone remodelling. Resin blocks were then further polished, and carbon-coated for quantitative backscattered electron imaging (qBEI) to determine the bone mineralisation density distribution (BMDD), as well as OL characteristics. It was found that OA-BML contained higher osteoid volume per tissue volume (OV/TV; %) and per bone volume (OV/BV; %) in both subchondral plate and trabecular bone compared to OA No-BML and CTL. The BMDD of OA-BML in both subchondral plate and trabecular bone was shifted toward a lower degree of mineralisation. Typically, an increase in both the heterogeneity of mineralisation density (Ca Width; wt%Ca) and the percentage of lower calcium (Ca Low; % B.Ar) in trabecular bone with OA-BML versus CTL was observed. Further, unmineralised OL density (#/mm2) in subchondral plate was distinctly higher in OA-BML samples compared to CTL. The KOA patients with and without BMLs had significantly decreased density of mineralised OL (#/mm2) in trabecular bone compared to CTL. Taken together, these findings indicate that tibial BMLs in advanced KOA patients are characterised by significantly hypo-mineralised subchondral bone compared with CTL. These differences associated with evidence of increased bone remodelling in OA-BML, and may influence the mechanical properties of the subchondral bone, with implications for the overlying cartilage.
Collapse
Affiliation(s)
- Yea-Rin Lee
- Discipline of Orthopaedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia.
| | - David M Findlay
- Discipline of Orthopaedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Dzenita Muratovic
- Discipline of Orthopaedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Julia S Kuliwaba
- Discipline of Orthopaedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
14
|
Nottmeier C, Liao N, Simon A, Decker MG, Luther J, Schweizer M, Yorgan T, Kaucka M, Bockamp E, Kahl-Nieke B, Amling M, Schinke T, Petersen J, Koehne T. Wnt1 Promotes Cementum and Alveolar Bone Growth in a Time-Dependent Manner. J Dent Res 2021; 100:1501-1509. [PMID: 34009051 PMCID: PMC8649456 DOI: 10.1177/00220345211012386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The WNT/β-catenin signaling pathway plays a central role in the biology
of the periodontium, yet the function of specific extracellular WNT
ligands remains poorly understood. By using a
Wnt1-inducible transgenic mouse model targeting
Col1a1-expressing alveolar osteoblasts,
odontoblasts, and cementoblasts, we demonstrate that the WNT ligand
WNT1 is a strong promoter of cementum and alveolar bone formation in
vivo. We induced Wnt1 expression for 1, 3, or 9 wk in
Wnt1Tg mice and analyzed them at the age of 6 wk and 12 wk.
Micro–computed tomography (CT) analyses of the mandibles revealed a
1.8-fold increased bone volume after 1 and 3 wk of
Wnt1 expression and a 3-fold increased bone
volume after 9 wk of Wnt1 expression compared to
controls. In addition, the alveolar ridges were higher in Wnt1Tg mice
as compared to controls. Nondecalcified histology demonstrated
increased acellular cementum thickness and cellular cementum volume
after 3 and 9 wk of Wnt1 expression. However, 9 wk of
Wnt1 expression was also associated with
periodontal breakdown and ectopic mineralization of the pulp. The
composition of this ectopic matrix was comparable to those of cellular
cementum as demonstrated by quantitative backscattered electron
imaging and immunohistochemistry for noncollagenous proteins. Our
analyses of 52-wk-old mice after 9 wk of Wnt1
expression revealed that Wnt1 expression affects
mandibular bone and growing incisors but not molar teeth, indicating
that Wnt1 influences only growing tissues. To further
investigate the effect of Wnt1 on cementoblasts, we
stably transfected the cementoblast cell line (OCCM-30) with a vector
expressing Wnt1-HA and performed proliferation as
well as differentiation experiments. These experiments demonstrated
that Wnt1 promotes proliferation but not
differentiation of cementoblasts. Taken together, our findings
identify, for the first time, Wnt1 as a critical
regulator of alveolar bone and cementum formation, as well as provide
important insights for harnessing the WNT signal pathway in
regenerative dentistry.
Collapse
Affiliation(s)
- C Nottmeier
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany.,Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
| | - N Liao
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany.,Department of Orthodontics, College of Stomatology, North China University of Science and Technology, Tangshan, China
| | - A Simon
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany
| | - M G Decker
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany
| | - J Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg, Hamburg, Germany
| | - M Schweizer
- ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg, Hamburg, Germany
| | - M Kaucka
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - E Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - B Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany
| | - M Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg, Hamburg, Germany
| | - T Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg, Hamburg, Germany
| | - J Petersen
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany.,Department of Osteology and Biomechanics, University Medical Center Hamburg, Hamburg, Germany
| | - T Koehne
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany.,Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
15
|
Rolvien T, Jandl NM, Stürznickel J, Beil FT, Kötter I, Oheim R, Lohse AW, Barvencik F, Amling M. Clinical and Radiological Characterization of Patients with Immobilizing and Progressive Stress Fractures in Methotrexate Osteopathy. Calcif Tissue Int 2021; 108:219-230. [PMID: 33064170 PMCID: PMC7819927 DOI: 10.1007/s00223-020-00765-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 11/06/2022]
Abstract
Methotrexate (MTX) is one of the most commonly prescribed drugs for autoimmune rheumatic diseases. As there is no consensus on its negative effects on bone, the purpose of this investigation was to determine the clinical spectrum of patients with stress fractures due to long-term MTX treatment (i.e., MTX osteopathy). We have retrospectively analyzed data from 34 patients with MTX treatment, severe lower extremity pain and immobilization. MRI scans, bone turnover markers, bone mineral density (DXA) and bone microarchitecture (HR-pQCT) were evaluated. Stress fractures were also imaged with cone beam CT. While the time between clinical onset and diagnosis was prolonged (17.4 ± 8.6 months), the stress fractures had a pathognomonic appearance (i.e., band-/meander-shaped, along the growth plate) and were diagnosed in the distal tibia (53%), the calcaneus (53%), around the knee (62%) and at multiple sites (68%). Skeletal deterioration was expressed by osteoporosis (62%) along with dissociation of low bone formation and increased bone resorption. MTX treatment was discontinued in 27/34 patients, and a combined denosumab-teriparatide treatment initiated. Ten patients re-evaluated at follow-up (2.6 ± 1.5 years) had improved clinically in terms of successful remobilization. Taken together, our findings provide the first in-depth skeletal characterization of patients with pathognomonic stress fractures after long-term MTX treatment.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nico Maximilian Jandl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529, Hamburg, Germany
| | - Frank Timo Beil
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Ina Kötter
- 3rd Department of Medicine (Rheumatology), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529, Hamburg, Germany
| | - Ansgar W Lohse
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529, Hamburg, Germany.
| |
Collapse
|
16
|
Ries C, Boese CK, Stürznickel J, Koehne T, Hubert J, Pastor MF, Hahn M, Meier SL, Beil FT, Püschel K, Amling M, Rolvien T. Age-related changes of micro-morphological subchondral bone properties in the healthy femoral head. Osteoarthritis Cartilage 2020; 28:1437-1447. [PMID: 32795512 DOI: 10.1016/j.joca.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Alterations in the subchondral bone (SCB) are likely to play a decisive role in the development of osteoarthritis (OA). Since aging represents a major risk factor for OA, the aim of the current study was to assess the microstructural changes of the subchondral bone in the femoral head during aging. DESIGN Femoral heads and matched iliac crest biopsies of 80 individuals (age 21-99 years) were collected post-mortem. The bone microstructure of the subchondral trabecular bone as well as the cartilage thickness (Cg.Th) and subchondral bone plate thickness (SCB.Th) were quantified using histomorphometry. The different subregions of the SCB were also imaged by quantitative backscattered electron imaging (qBEI) in 31 aged cases to assess the bone mineral density distribution (BMDD). RESULTS The detected linear decline of bone volume per tissue volume (BV/TV) in the femoral head with aging (Slope, 95% CI: -0.208 to -0.109 %/yr.) was primarily due to a decrease in trabecular thickness (Tb.Th, Slope, 95% CI: -0.774 to -0.343 μm/yr). While SCB.Th declined with aging (Slope, 95% CI: -1.941 to -0.034 μm/yr), no changes in Cg.Th were detected (Slope, 95% CI: -0.001 to 0.005 mm/yr). The matrix mineralization of the subchondral bone was lower compared to the trabecular bone and also decreased with aging. CONCLUSIONS Regular changes of the SCB during aging primarily involve a reduction of Tb.Th, SCB.Th and matrix mineralization. Our findings facilitate future interpretations of early and late OA specimens to decipher the role of the SCB in OA pathogenesis.
Collapse
Affiliation(s)
- C Ries
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | - C K Boese
- Department of Orthopaedic and Trauma Surgery, University Hospital of Cologne, Cologne, Germany
| | - J Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - T Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department of Orthodontics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - J Hubert
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M-F Pastor
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department of Orthopedic Surgery, Medical School Hannover, DIAKOVERE Annastift, Hannover, Germany
| | - M Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - S L Meier
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - F T Beil
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - T Rolvien
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| |
Collapse
|
17
|
Zimmermann EA, Fiedler IAK, Busse B. Breaking new ground in mineralized tissue: Assessing tissue quality in clinical and laboratory studies. J Mech Behav Biomed Mater 2020; 113:104138. [PMID: 33157423 DOI: 10.1016/j.jmbbm.2020.104138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Mineralized tissues, such as bone and teeth, have extraordinary mechanical properties of both strength and toughness. This mechanical behavior originates from deformation and fracture resistance mechanisms in their multi-scale structure. The term quality describes the matrix composition, multi-scale structure, remodeling dynamics, water content, and micro-damage accumulation in the tissue. Aging and disease result in changes in the tissue quality that may reduce strength and toughness and lead to elevated fracture risk. Therefore, the capability to measure the quality of mineralized tissues provides critical information on disease progression and mechanical integrity. Here, we provide an overview of clinical and laboratory-based techniques to assess the quality of mineralized tissues in health and disease. Current techniques used in clinical settings include radiography-based (radiographs, dual energy x-ray absorptiometry, EOS) and x-ray tomography-based methods (high resolution peripheral quantitative computed tomography, cone beam computed tomography). In the laboratory, tissue quality can be investigated in ex vivo samples with x-ray imaging (micro and nano-computed tomography, x-ray microscopy), electron microscopy (scanning/transmission electron imaging (SEM/STEM), backscattered scanning electron microscopy, Focused Ion Beam-SEM), light microscopy, spectroscopy (Raman spectroscopy and Fourier transform infrared spectroscopy) and assessment of mechanical behavior (mechanical testing, fracture mechanics and reference point indentation). It is important for clinicians and basic science researchers to be aware of the techniques available in different types of research. While x-ray imaging techniques translated to the clinic have provided exceptional advancements in patient care, the future challenge will be to incorporate high-resolution laboratory-based bone quality measurements into clinical settings to broaden the depth of information available to clinicians during diagnostics, treatment and management of mineralized tissue pathologies.
Collapse
Affiliation(s)
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
18
|
A novel, multi-level approach to assess allograft incorporation in revision total hip arthroplasty. Sci Rep 2020; 10:15226. [PMID: 32939007 PMCID: PMC7494851 DOI: 10.1038/s41598-020-72257-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022] Open
Abstract
The successful use of allografts in reconstructive orthopedic surgery, including revision total hip arthroplasty (THA), has been outlined repeatedly. Nonetheless, as previous studies were primarily based on clinical follow-ups, we aimed to create an algorithm that accurately determines the extent of allograft incorporation in the acetabulum and femur using a suite of high-resolution imaging techniques. This study is based on a large patient database including > 4,500 patient data with previous revision THA and simultaneous use of allografts. While the database was continuously matched with the deceased individuals at the local forensic medicine department, complete hips were retrieved in case of a positive match. A positive match was achieved for n = 46 hips at a mean follow-up of 11.8 ± 5.1 years. Comprehensive imaging included contact radiography, high-resolution computed tomography (HR-pQCT), undecalcified histology of ground sections and quantitative backscattered electron imaging (qBEI). We here define a histomorphometric toolkit of parameters to precisely characterize the incorporation of structural (bulk) and morselized (chip) allografts in the acetabulum (n = 38) and femur (n = 8), including the defect area and interface length, microstructural and cellular bone turnover parameters as well as overlap and fibrosis thickness. This collection of samples, through its unique study design and precise definition of incorporation parameters, will provide the scientific community with a valuable source for further in-depth investigation of allograft incorporation and, beyond that, the regenerative potential of this osteoconductive scaffold.
Collapse
|
19
|
Butscheidt S, Ernst M, Rolvien T, Hubert J, Zustin J, Amling M, Martens T. Primary intraosseous meningioma: clinical, histological, and differential diagnostic aspects. J Neurosurg 2020; 133:281-290. [PMID: 31226688 DOI: 10.3171/2019.3.jns182968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/29/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Primary intraosseous meningioma (PIM) is a rare manifestation of meningioma, a benign, neoplastic lesion of the meninges. Its characteristic appearance is hyperostosis, while no or only minimal dural changes can be observed. This study aims to characterize this rare entity from both a clinical and histopathological point of view in order to improve clinical management. METHODS In the years 2009-2017, 26 cases of PIM were diagnosed using MRI and CT scans. In 16 cases the indication for resection was given, and specimens were further examined using a multilevel approach, including histological and immunohistochemical analyses. Additionally, the local database was searched for all cases of meningiomas, as well as osteosclerotic differential diagnoses-i.e., fibrous dysplasia, Paget's disease of bone, and other benign osteosclerotic lesions. RESULTS In this study, PIM represented 2.4% of all meningiomas with a predominant occurrence in females (85%). Regarding the initial manifestation, PIMs show a slightly earlier onset than meningiomas. While most PIMs are located in the sphenoid bone, associated calcifications were visible in 58% of the cases on CT scans. Most of the cases were classified as WHO grade I (93%) and meningotheliomatous meningiomas (91%). Tumor growth was associated with an increased bone resorption followed by massive osteoid deposition and consecutive sclerosis. The frequently observed frayed appearance results from multiple bony canals, which contain blood vessels for the blood supply of the highly vascularized tumor tissue. CONCLUSIONS PIM is a rare but important differential diagnosis for osteosclerotic lesions of the skull, especially in women. Tumor-induced, cellular-mediated bone resorption and formation may play a central role in the underlying pathogenesis.
Collapse
Affiliation(s)
| | - Marielle Ernst
- 3Neuroradiological Diagnostics and Intervention, University Medical Center Hamburg-Eppendorf
| | - Tim Rolvien
- Departments of1Osteology and Biomechanics
- 2Orthopedics, and
| | - Jan Hubert
- Departments of1Osteology and Biomechanics
- 2Orthopedics, and
| | - Jozef Zustin
- 4Pathology Practice, Pathologie-Hamburg, Lademannbogen; and
| | | | - Tobias Martens
- 5Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Howaldt A, Hennig AF, Rolvien T, Rössler U, Stelzer N, Knaus A, Böttger S, Zustin J, Geißler S, Oheim R, Amling M, Howaldt HP, Kornak U. Adult Osteosclerotic Metaphyseal Dysplasia With Progressive Osteonecrosis of the Jaws and Abnormal Bone Resorption Pattern Due to a LRRK1 Splice Site Mutation. J Bone Miner Res 2020; 35:1322-1332. [PMID: 32119750 DOI: 10.1002/jbmr.3995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Osteosclerotic metaphyseal dysplasia (OSMD) is a rare autosomal recessive sclerosing skeletal dysplasia. We report on a 34-year-old patient with sandwich vertebrae, platyspondyly, osteosclerosis of the tubular bones, pathologic fractures, and anemia. In the third decade, he developed osteonecrosis of the jaws, which was progressive in spite of repeated surgical treatment over a period of 11 years. An iliac crest bone biopsy revealed the presence of hypermineralized cartilage remnants, large multinucleated osteoclasts with abnormal morphology, and inadequate bone resorption typical for osteoclast-rich osteopetrosis. After exclusion of mutations in TCIRG1 and CLCN7 we performed trio-based exome sequencing. The novel homozygous splice-site mutation c.261G>A in the gene LRRK1 was found and co-segregated with the phenotype in the family. cDNA sequencing showed nearly complete skipping of exon 3 leading to a frameshift (p.Ala34Profs*33). Osteoclasts differentiated from the patient's peripheral blood monocytes were extremely large. Instead of resorption pits these cells were only capable of superficial erosion. Phosphorylation of L-plastin at position Ser5 was strongly reduced in patient-derived osteoclasts showing a loss of function of the mutated LRRK1 kinase protein. Our analysis indicates a strong overlap of LRRK1-related OSMD with other forms of intermediate osteopetrosis, but an exceptional abnormality of osteoclast resorption. Like in other osteoclast pathologies an increased risk for progressive osteonecrosis of the jaws should be considered in OSMD, an intermediate form of osteopetrosis. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Antonia Howaldt
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Floriane Hennig
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Rössler
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nina Stelzer
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sebastian Böttger
- Department for Maxillo Facial Surgery, Justus Liebig University Gießen, Gießen, Germany
| | - Jozef Zustin
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Geißler
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Peter Howaldt
- Department for Maxillo Facial Surgery, Justus Liebig University Gießen, Gießen, Germany
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Rolvien T, Milovanovic P, Schmidt FN, von Kroge S, Wölfel EM, Krause M, Wulff B, Püschel K, Ritchie RO, Amling M, Busse B. Long-Term Immobilization in Elderly Females Causes a Specific Pattern of Cortical Bone and Osteocyte Deterioration Different From Postmenopausal Osteoporosis. J Bone Miner Res 2020; 35:1343-1351. [PMID: 31999373 DOI: 10.1002/jbmr.3970] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/23/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
Immobilization as a result of long-term bed rest can lead to gradual bone loss. Because of their distribution throughout the bone matrix and remarkable interconnectivity, osteocytes represent the major mechanosensors in bone and translate mechanical into biochemical signals controlling bone remodeling. To test whether immobilization affects the characteristics of the osteocyte network in human cortical bone, femoral diaphyseal bone specimens were analyzed in immobilized female individuals and compared with age-matched postmenopausal individuals with primary osteoporosis. Premenopausal and postmenopausal healthy individuals served as control groups. Cortical porosity, osteocyte number and lacunar area, the frequency of hypermineralized lacunae, as well as cortical bone calcium content (CaMean) were assessed using bone histomorphometry and quantitative backscattered electron imaging (qBEI). Bone matrix properties were further analyzed by Fourier transform infrared spectroscopy (FTIR). In the immobilization group, cortical porosity was significantly higher, and qBEI revealed a trend toward higher matrix mineralization compared with osteoporotic individuals. Osteocyte density and canalicular density showed a declining rate from premenopausal toward healthy postmenopausal and osteoporotic individuals with peculiar reductions in the immobilization group, whereas the number of hypermineralized lacunae accumulated inversely. In conclusion, reduced osteocyte density and impaired connectivity during immobilization are associated with a specific bone loss pattern, reflecting a phenotype clearly distinguishable from postmenopausal osteoporosis. Immobilization periods may lead to a loss of survival signals for osteocytes, provoking bone loss that is even higher than in osteoporosis states, whereas osteocytic osteolysis remains absent. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Krause
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Wulff
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Asgharzadeh P, Röhrle O, Willie BM, Birkhold AI. Decoding rejuvenating effects of mechanical loading on skeletal aging using in vivo μCT imaging and deep learning. Acta Biomater 2020; 106:193-207. [PMID: 32058080 DOI: 10.1016/j.actbio.2020.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022]
Abstract
Throughout the process of aging, dynamic changes of bone material, micro- and macro-architecture result in a loss of strength and therefore in an increased likelihood of fragility fractures. To date, precise contributions of age-related changes in bone (re)modeling and (de)mineralization dynamics to this fragility increase are not completely understood. Here, we present an image-based deep learning approach to quantitatively describe the effects of short-term aging and adaptive response to cyclic loading applied to proximal mouse tibiae and fibulae. Our approach allowed us to perform an end-to-end age prediction based on μCT imaging to determine the dynamic biological process of aging during a two week period, therefore permitting short-term bone aging analysis with 95% accuracy in predicting time points. In a second application, our deep learning analysis reveals that two weeks of in vivo mechanical loading are associated with an underlying rejuvenating effect of 5 days. Additionally, by quantitatively analyzing the learning process, we could, for the first time, identify the localization of the age-relevant encoded information and demonstrate 89% load-induced similarity of these locations in the loaded tibia with younger control bones. These data therefore suggest that our method enables identifying a general prognostic phenotype of a certain skeletal age as well as a temporal and localized loading-treatment effect on this apparent skeletal age for the studied mouse tibia and fibula. Future translational applications of this method may provide an improved decision-support method for osteoporosis treatment at relatively low cost. STATEMENT OF SIGNIFICANCE: Bone is a highly complex and dynamic structure that undergoes changes during the course of aging as well as in response to external stimuli, such as loading. Automatic assessment of "age" and "state" of the bone may lead to early prognosis of deceases such as osteoporosis and enables evaluating the effects of certain treatments. Here, we present an artificial intelligence-based method capable of automatically predicting the skeletal age from μCT images with 95% accuracy. Additionally, we utilize it to demonstrate the rejuvenation effects of in-vivo loading treatment on bones. We further, for the first time, break down aging-related local changes in bone by quantitatively analyzing "what the age assessment model has learned" and use this information to investigate the structural details of rejuvenation process.
Collapse
Affiliation(s)
- Pouyan Asgharzadeh
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany. http://bit.ly/2Tqx_PA
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Canada
| | - Annette I Birkhold
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science (SC SimTech), Stuttgart, Germany
| |
Collapse
|
23
|
Rolvien T, Schmidt T, Schmidt FN, von Kroge S, Busse B, Amling M, Barvencik F. Recovery of bone mineralization and quality during asfotase alfa treatment in an adult patient with infantile-onset hypophosphatasia. Bone 2019; 127:67-74. [PMID: 31152801 DOI: 10.1016/j.bone.2019.05.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Hypophosphatasia (HPP) is a hereditary musculoskeletal disorder characterized by low serum alkaline phosphatase (ALP) activity leading to poor bone mineralization. On a micro-morphological level, this may not only be reflected by an enrichment of osteoid but also a degradation of bone quality. Asfotase alfa is an enzyme replacement therapy that was recently demonstrated to improve bone mineralization as well as clinical status (e.g. growth, muscle strength and quality of life). However, the underlying changes of bone quality parameters on asfotase alfa treatment are currently not known. In the present study, we report a 24-year-old woman with genetically confirmed infantile-onset HPP and recurrent fractures. While the initiated asfotase alfa treatment was followed by rapid clinical improvements (i.e., disappearance of bone marrow edema, increase of muscle strength), the BMD assessed by DXA at the hip and spine increased moderately at two years follow-up. A detailed skeletal assessment using high-resolution peripheral quantitative computed tomography (HR-pQCT) and a high-resolution analysis of two consecutive iliac crest bone biopsies revealed only minor improvements of bone microarchitecture but a remarkable reduction of osteoid parameters. Furthermore, the high mineralization heterogeneity at baseline assessed by quantitative backscattered electron imaging (qBEI) decreased after 2 year of asfotase alfa treatment. Finally, we found an increase in mineral maturation reflected by higher mineral-to-matrix and carbonate-to-phosphate ratios using Fourier transform infrared spectroscopy (FTIR) imaging as well as increased local mechanical properties using reference point indentation (RPI). Taken together, our findings provide evidence for an improvement of bone quality indices beyond the mere reduction of osteoid indices and thereby contribute to the understanding of fracture risk reduction in HPP patients on asfotase alfa treatment.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Tobias Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
24
|
Schmidt FN, Delsmann MM, Mletzko K, Yorgan TA, Hahn M, Siebert U, Busse B, Oheim R, Amling M, Rolvien T. Ultra-high matrix mineralization of sperm whale auditory ossicles facilitates high sound pressure and high-frequency underwater hearing. Proc Biol Sci 2019; 285:20181820. [PMID: 30963901 DOI: 10.1098/rspb.2018.1820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The auditory ossicles-malleus, incus and stapes-are the smallest bones in mammalian bodies and enable stable sound transmission to the inner ear. Sperm whales are one of the deepest diving aquatic mammals that produce and perceive sounds with extreme loudness greater than 180 dB and frequencies higher than 30 kHz. Therefore, it is of major interest to decipher the microstructural basis for these unparalleled hearing abilities. Using a suite of high-resolution imaging techniques, we reveal that auditory ossicles of sperm whales are highly functional, featuring an ultra-high matrix mineralization that is higher than their teeth. On a micro-morphological and cellular level, this was associated with osteonal structures and osteocyte lacunar occlusions through calcified nanospherites (i.e. micropetrosis), while the bones were characterized by a higher hardness compared to a vertebral bone of the same animals as well as to human auditory ossicles. We propose that the ultra-high mineralization facilitates the unique hearing ability of sperm whales. High matrix mineralization represents an evolutionary conserved or convergent adaptation to middle ear sound transmission.
Collapse
Affiliation(s)
- Felix N Schmidt
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Maximilian M Delsmann
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Kathrin Mletzko
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Timur A Yorgan
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Michael Hahn
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Ursula Siebert
- 2 Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover , Foundation, Werftstrasse 6, 25761 Buesum , Germany
| | - Björn Busse
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Ralf Oheim
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Michael Amling
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany
| | - Tim Rolvien
- 1 Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf , Lottestrasse 59, 22529 Hamburg , Germany.,3 Department of Orthopedics, University Medical Center Hamburg-Eppendorf , Martinistrasse 52, 20246 Hamburg , Germany
| |
Collapse
|
25
|
Schmidt T, Rolvien T, Linke C, Jandl NM, Oheim R, Amling M, Barvencik F. Outcome of Teriparatide Treatment on Fracture Healing Complications and Symptomatic Bone Marrow Edema in Four Adult Patients With Hypophosphatasia. JBMR Plus 2019; 3:e10215. [PMID: 31485555 PMCID: PMC6715780 DOI: 10.1002/jbm4.10215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
The response to teriparatide has been described in very few cases of hypophosphatasia (HPP). In this cross‐sectional study, we report the prevalence of symptomatic bone marrow edema (BME) and fracture healing complications in a large cohort of childhood and adult HPP patients and discuss the results of teriparatide treatment in four cases. From 2016 to 2018, 51 patients with a diagnosis of HPP were seen at our institution. The diagnosis of HPP was established by low serum alkaline phosphatase (ALP), elevated serum pyridoxal‐5‐phosphate (PLP), at least one typical clinical symptom of HPP and supported by ALPL mutation analysis. In this study cohort, 28 (56%) and 14 (27%) patients had a history of fracture or a history of BME, respectively. Four patients, including middle‐aged to elderly women and men who all presented with persistent symptomatic BME or fracture healing complications, were treated with teriparatide. DXA was performed prior to treatment and laboratory values were measured on a regular basis during treatment. Treatment with teriparatide showed variable effects in terms of clinical and biochemical response. Although all four patients displayed a temporary increase in ALP activity, only two patients with a mild form of adult HPP and moderately increased PLP levels showed definite clinical and radiological improvement after teriparatide treatment. In conclusion, fracture healing complications and BME occur frequently in HPP patients. Teriparatide shows variable clinical and biochemical effects depending on the severity of the disease. PLP levels and the number of ALPL alleles might be good parameters to predict treatment outcomes. © 2019 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research
Collapse
Affiliation(s)
- Tobias Schmidt
- Department of Osteology and Biomechanics University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics University Medical Center Hamburg-Eppendorf Hamburg Germany.,Department of Orthopedics University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Carolin Linke
- Department of Osteology and Biomechanics University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Nico Maximilian Jandl
- Department of Osteology and Biomechanics University Medical Center Hamburg-Eppendorf Hamburg Germany.,Department of Orthopedics University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Michael Amling
- Department of Osteology and Biomechanics University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics University Medical Center Hamburg-Eppendorf Hamburg Germany
| |
Collapse
|
26
|
Rolvien T, Krause M, Zustin J, Yastrebov O, Oheim R, Barvencik F, Frosch KH, Amling M. Intra-articular osteoid osteoma accompanied by extensive bone marrow edema. A clinical and micro-morphological analysis. J Bone Oncol 2019; 18:100256. [PMID: 31497501 PMCID: PMC6722254 DOI: 10.1016/j.jbo.2019.100256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
A series of patients with intra-articular osteoid osteoma (OO) is demonstrated. Extensive and persistent bone marrow edema syndrome masked the correct diagnosis. No consistent patterns of impaired bone mineral status could be confirmed in these patients. Nidus specimens displayed significantly higher mineralization heterogeneity determined by qBEI.
Osteoid osteoma (OO) is a benign bone tumor producing non-mineralized bone matrix (i.e., osteoid). While peritumoral edema is commonly found in OO, extensive bone marrow edema has been reported less frequently. Furthermore, the micro-morphological characteristics of the nidus and its central calcification remain unclear. In this study, a consecutive series of four patients suffering from extensive bone marrow edema triggered by intra-articular osteoid osteoma underwent clinical examination, magnetic resonance imaging (MRI) and computed tomography (CT) as well as dual-energy X-ray absorptiometry (DXA) and laboratory bone turnover analyses. The obtained resection specimens were processed by undecalcified histology and were subsequently analyzed by light microscopy and quantitative backscattered electron imaging (qBEI). We report an entity of intra-articular osteoid osteoma in the knee and foot, in which an extensive and persistent bone marrow edema syndrome masked the correct diagnosis. While metabolic bone diseases were excluded in all cases, the reassessment of the patients’ clinical history including pain characteristics (nocturnal, aspirin sensitivity) led us to perform additional CT, where the tumor was diagnosed. The micro-morphological analysis of the OO biopsies revealed that the nidus was surrounded by hyperosteoidosis, while central mineralization was detected in all cases. This mineralized area showed a significantly higher mineralization heterogeneity than the surrounding trabecular bone and more disorganized collagen fibers detected by qBEI and polarized light microscopy, respectively. Taken together, our results indicate that osteoid osteoma should be considered when persistent and extensive, peri-articular bone marrow edema is diagnosed. The central calcification that is found inside the nidus in conventional imaging was mirrored by bone matrix with a heterogeneous mineralization pattern.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Corresponding author at: Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany.
| | - Matthias Krause
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jozef Zustin
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Pathologisch-Anatomisches Institut Regensburg, Regensburg, Germany
| | - Oleg Yastrebov
- Department of Foot Surgery, Agaplesion Diakonieklinikum, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl-Heinz Frosch
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Corresponding author.
| |
Collapse
|
27
|
Zimmermann EA, Riedel C, Schmidt FN, Stockhausen KE, Chushkin Y, Schaible E, Gludovatz B, Vettorazzi E, Zontone F, Püschel K, Amling M, Ritchie RO, Busse B. Mechanical Competence and Bone Quality Develop During Skeletal Growth. J Bone Miner Res 2019; 34:1461-1472. [PMID: 30913317 DOI: 10.1002/jbmr.3730] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 02/01/2023]
Abstract
Bone fracture risk is influenced by bone quality, which encompasses bone's composition as well as its multiscale organization and architecture. Aging and disease deteriorate bone quality, leading to reduced mechanical properties and higher fracture incidence. Largely unexplored is how bone quality and mechanical competence progress during longitudinal bone growth. Human femoral cortical bone was acquired from fetal (n = 1), infantile (n = 3), and 2- to 14-year-old cases (n = 4) at the mid-diaphysis. Bone quality was assessed in terms of bone structure, osteocyte characteristics, mineralization, and collagen orientation. The mechanical properties were investigated by measuring tensile deformation at multiple length scales via synchrotron X-ray diffraction. We find dramatic differences in mechanical resistance with age. Specifically, cortical bone in 2- to 14-year-old cases exhibits a 160% greater stiffness and 83% higher strength than fetal/infantile cases. The higher mechanical resistance of the 2- to 14-year-old cases is associated with advantageous bone quality, specifically higher bone volume fraction, better micronscale organization (woven versus lamellar), and higher mean mineralization compared with fetal/infantile cases. Our study reveals that bone quality is superior after remodeling/modeling processes convert the primary woven bone structure to lamellar bone. In this cohort of female children, the microstructural differences at the femoral diaphysis were apparent between the 1- to 2-year-old cases. Indeed, the lamellar bone in 2- to 14-year-old cases had a superior structural organization (collagen and osteocyte characteristics) and composition for resisting deformation and fracture than fetal/infantile bone. Mechanistically, the changes in bone quality during longitudinal bone growth lead to higher fracture resistance because collagen fibrils are better aligned to resist tensile forces, while elevated mean mineralization reinforces the collagen scaffold. Thus, our results reveal inherent weaknesses of the fetal/infantile skeleton signifying its inferior bone quality. These results have implications for pediatric fracture risk, as bone produced at ossification centers during children's longitudinal bone growth could display similarly weak points. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Christoph Riedel
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Kilian E Stockhausen
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Yuriy Chushkin
- Beamline ID 10, European Synchrotron Radiation Facility, Grenoble, France
| | - Eric Schaible
- Experimental Systems Group, Advanced Light Source, Berkeley, CA, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, NSW, Australia
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center, Hamburg, Germany
| | - Federico Zontone
- Beamline ID 10, European Synchrotron Radiation Facility, Grenoble, France
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| |
Collapse
|
28
|
Cai J, He WG, Wang L, Zhou K, Wu TX. Osteoporosis Recognition in Rats under Low-Power Lens Based on Convexity Optimization Feature Fusion. Sci Rep 2019; 9:10971. [PMID: 31358772 PMCID: PMC6662810 DOI: 10.1038/s41598-019-47281-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/15/2019] [Indexed: 11/09/2022] Open
Abstract
Considering the poor medical conditions in some regions of China, this paper attempts to develop a simple and easy way to extract and process the bone features of blurry medical images and improve the diagnosis accuracy of osteoporosis as much as possible. After reviewing the previous studies on osteoporosis, especially those focusing on texture analysis, a convexity optimization model was proposed based on intra-class dispersion, which combines texture features and shape features. Experimental results show that the proposed model boasts a larger application scope than Lasso, a popular feature selection method that only supports generalized linear models. The research findings ensure the accuracy of osteoporosis diagnosis and enjoy good potentials for clinical application.
Collapse
Affiliation(s)
- Jie Cai
- School of Information Engineering, Guangdong Medical University, Zhanjiang, 524023, China
| | - Wen-Guang He
- School of Information Engineering, Guangdong Medical University, Zhanjiang, 524023, China
| | - Long Wang
- School of Information Engineering, Guangdong Medical University, Zhanjiang, 524023, China
| | - Ke Zhou
- School of Information Engineering, Guangdong Medical University, Zhanjiang, 524023, China
| | - Tian-Xiu Wu
- School of Basic Medical Science, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
29
|
Schmidt FN, Zimmermann EA, Walsh F, Plumeyer C, Schaible E, Fiedler IAK, Milovanovic P, Rößle M, Amling M, Blanchet C, Gludovatz B, Ritchie RO, Busse B. On the Origins of Fracture Toughness in Advanced Teleosts: How the Swordfish Sword's Bone Structure and Composition Allow for Slashing under Water to Kill or Stun Prey. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900287. [PMID: 31380168 PMCID: PMC6662059 DOI: 10.1002/advs.201900287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/21/2019] [Indexed: 05/05/2023]
Abstract
The osseous sword of a swordfish (Xiphias gladius) is specialized to incapacitate prey with stunning blows. Considering the sword's growth and maturation pattern, aging from the sword's base to the tip, while missing a mechanosensitive osteocytic network, an in-depth understanding of its mechanical properties and bone quality is lacking. Microstructural, compositional, and nanomechanical characteristics of the bone along the sword are investigated to reveal structural mechanisms accounting for its exceptional mechanical competence. The degree of mineralization, homogeneity, and particle size increase from the base toward the tip, reflecting aging along its length. Fracture experiments reveal that crack-growth toughness vastly decreases at the highly and homogeneously mineralized tip, suggesting the importance of aging effects. Initiation toughness, however, is unchanged suggesting that aging effects on this hierarchical level are counteracted by constant mineral/fibril interaction. In conclusion, the sword of the swordfish provides an excellent model reflecting base-to-tip-wise aging of bone, as indicated by increasing mineralization and decreasing crack-growth toughness toward the tip. The hierarchical, structural, and compositional changes along the sword reflect peculiar prerequisites needed for resisting high mechanical loads. Further studies on advanced teleosts bone tissue may help to unravel structure-function relationships of heavily loaded skeletons lacking mechanosensing cells.
Collapse
Affiliation(s)
- Felix N. Schmidt
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Elizabeth A. Zimmermann
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Flynn Walsh
- Materials Sciences DivisionLawrence Berkeley National LaboratoryDepartment of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Christine Plumeyer
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Eric Schaible
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Imke A. K. Fiedler
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Petar Milovanovic
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Manfred Rößle
- European Molecular Biology LaboratoryHamburg OutstationHamburg22607Germany
| | - Michael Amling
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Clément Blanchet
- European Molecular Biology LaboratoryHamburg OutstationHamburg22607Germany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing EngineeringUNSW SydneyNSW2052Australia
| | - Robert O. Ritchie
- Materials Sciences DivisionLawrence Berkeley National LaboratoryDepartment of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Björn Busse
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
- Forum Medical Technology Health Hamburg (FMTHH)Hamburg22529Germany
| |
Collapse
|
30
|
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone-a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res 2019; 7:15. [PMID: 31123620 PMCID: PMC6531483 DOI: 10.1038/s41413-019-0053-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair. The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone. It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view. Interactions between incident electrons and atoms on the sample surface generate backscattered electrons, secondary electrons, and various other signals including X-rays that relay compositional and topographical information. Through selective removal or preservation of specific tissue components (organic, inorganic, cellular, vascular), their individual contribution(s) to the overall functional competence can be elucidated. With few restrictions on sample geometry and a variety of applicable sample-processing routes, a given sample may be conveniently adapted for multiple analytical methods. While a conventional SEM operates at high vacuum conditions that demand clean, dry, and electrically conductive samples, non-conductive materials (e.g., bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope. This review highlights important insights gained into bone microstructure and pathophysiology, bone response to implanted biomaterials, elemental analysis, SEM in paleoarchaeology, 3D imaging using focused ion beam techniques, correlative microscopy and in situ experiments. The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum, the SEM lends itself to many unique and diverse applications, which attest to the versatility and user-friendly nature of this instrument for studying bone. Significant technological developments are anticipated for analysing bone using the SEM.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Beresheim AC, Pfeiffer SK, Grynpas MD, Alblas A. Use of backscattered scanning electron microscopy to quantify the bone tissues of mid‐thoracic human ribs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:262-278. [DOI: 10.1002/ajpa.23716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amy C. Beresheim
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
| | - Susan K. Pfeiffer
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
- Department of ArchaeologyUniversity of Cape Town Rondebosch Cape Town South Africa
- Department of Anthropology and Center for Advanced Study of Human PaleobiologyGeorge Washington University Washington, D.C
| | - Marc D. Grynpas
- Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai Hospital Toronto Ontario Canada
| | - Amanda Alblas
- Division of Anatomy and Histology, Department of Biomedical SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
32
|
Butscheidt S, Moritz M, Gehrke T, Püschel K, Amling M, Hahn M, Rolvien T. Incorporation and Remodeling of Structural Allografts in Acetabular Reconstruction: Multiscale, Micro-Morphological Analysis of 13 Pelvic Explants. J Bone Joint Surg Am 2018; 100:1406-1415. [PMID: 30106822 PMCID: PMC6133218 DOI: 10.2106/jbjs.17.01636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Total hip arthroplasty (THA) is frequently accompanied by acetabular bone loss, which constitutes a major challenge in revision procedures. Structural allografts can be implanted to restore a stable osseous foundation for the acetabular prosthesis. As previous studies were limited to clinical data or included very few cases, the extent to which the graft bone is incorporated over time has remained unclear. METHODS Thirteen acetabula were retrieved post mortem, and the incorporation properties of the bone allografts were analyzed using a hierarchical approach of imaging techniques including contact radiography, high-resolution peripheral quantitative computed tomography (HR-pQCT), histological analysis of undecalcified specimens, and quantitative backscattered electron imaging (qBEI). The distance between the current allograft bone and host bone borders (i.e., current overlap) as well as the distance between the original allograft bone and host bone borders (i.e., total ingrowth) were assessed. RESULTS In 10 of 13 cases, the complete interface (100%) was characterized by direct contact and additional overlap of the allograft bone and host bone, while the remaining 3 cases demonstrated direct contact along 25% to 80% of the interface. The allograft bone showed an intact trabecular structure and significantly higher mineralization compared with the host bone. The mean current overlap (and standard deviation) was 2.3 ± 1.0 mm, with a maximum of 5.3 ± 2.4 mm. Importantly, the total ingrowth reached much further, to a mean of 7.2 ± 2.3 mm (maximum, 10.5 ± 4.0 mm). Neither the time that the allograft was in situ nor the degree of contact between the host and allograft bone correlated with the current overlap and the time in situ did not correlate with total ingrowth. CONCLUSIONS This study showed bone remodeling with subsequent interconnection of the host and allograft bone along the majority of the interface, leading to adequate incorporation of the allograft. The lack of complete incorporation of the graft did not lead to graft collapse up to 22 years after revision surgery. CLINICAL RELEVANCE Our study provides the first systematic multiscale evaluation of successfully implanted structural allografts and forms the scientific basis for their clinical use in revision THA.
Collapse
Affiliation(s)
- Sebastian Butscheidt
- Departments of Osteology and Biomechanics (S.B., M.M., M.A., M.H., and T.R.), Legal Medicine (K.P.), and Orthopaedic Surgery (T.R.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Menard Moritz
- Departments of Osteology and Biomechanics (S.B., M.M., M.A., M.H., and T.R.), Legal Medicine (K.P.), and Orthopaedic Surgery (T.R.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Klaus Püschel
- Departments of Osteology and Biomechanics (S.B., M.M., M.A., M.H., and T.R.), Legal Medicine (K.P.), and Orthopaedic Surgery (T.R.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Departments of Osteology and Biomechanics (S.B., M.M., M.A., M.H., and T.R.), Legal Medicine (K.P.), and Orthopaedic Surgery (T.R.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany,E-mail address for M. Amling:
| | - Michael Hahn
- Departments of Osteology and Biomechanics (S.B., M.M., M.A., M.H., and T.R.), Legal Medicine (K.P.), and Orthopaedic Surgery (T.R.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Departments of Osteology and Biomechanics (S.B., M.M., M.A., M.H., and T.R.), Legal Medicine (K.P.), and Orthopaedic Surgery (T.R.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Rolvien T, Vom Scheidt A, Stockhausen KE, Milovanovic P, Djonic D, Hubert J, Hawellek T, Wacker A, Jebens V, Püschel K, Zimmermann EA, Djuric M, Amling M, Busse B. Inter-site variability of the osteocyte lacunar network in the cortical bone underpins fracture susceptibility of the superolateral femoral neck. Bone 2018; 112:187-193. [PMID: 29679732 DOI: 10.1016/j.bone.2018.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/02/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The osteocytic lacunar network is considered to be an integral player in the regulation of bone homeostasis, and reduction in osteocytes is associated with reduced bone strength. Here, we analyzed site-specific patterns in osteocyte characteristics and matrix composition in the cortical compartment of the femoral neck to reveal the structural basis of its fragility. METHODS Cross-sections of the human femoral neck - one of the most common fracture sites - were acquired from 12 female cadavers (age 34-86 years) and analyzed with backscattered scanning electron microscopy and high-resolution micro-computed tomography (μ-CT). The 2D/3D density and size of the osteocyte lacunae as well as bone mineral density distribution (BMDD) were measured in two regions subject to different biomechanical loads in vivo: the inferomedial (medial) region (habitually highly loaded in compression) and the superolateral (lateral) region (lower habitual loading intensity). Using quantitative polarized light microscopy, collagen fiber orientation was quantified in these two regions, accordingly. RESULTS In 2D measurements, the inferomedial region displayed lower mineralization heterogeneity, 19% higher osteocyte lacunar density (p = 0.005), but equal lacunar size compared to the superolateral region. 3D measurements confirmed a significantly higher osteocyte lacunar density in the inferomedial region (p = 0.015). Osteocyte lacunar density decreased in aged individuals, and inter-site differences were reduced. Site-specific osteocyte characteristics were not accompanied by changes in collagen fiber orientation. CONCLUSIONS Since osteocyte characteristics may provide valuable insights into bone mechanical competence, the variations in osteocyte properties might reflect the increased fracture susceptibility of the superolateral neck.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
| | - Kilian E Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
| | - Petar Milovanovic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
| | - Danijela Djonic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
| | - Jan Hubert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Thelonius Hawellek
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Alexander Wacker
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Volker Jebens
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529 Hamburg, Germany
| | - Elizabeth A Zimmermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
| | - Marija Djuric
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany.
| |
Collapse
|
34
|
Milovanovic P, Vom Scheidt A, Mletzko K, Sarau G, Püschel K, Djuric M, Amling M, Christiansen S, Busse B. Bone tissue aging affects mineralization of cement lines. Bone 2018; 110:187-193. [PMID: 29427789 DOI: 10.1016/j.bone.2018.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
Cement lines are known as thin peripheral boundaries of the osteons. With a thickness below 5 μm their composition of inorganic and organic compounds has been a matter of debate. Here, we hypothesized that cement lines become hypermineralized and their degree of mineralization is not constant but related to the tissue age of the osteon. Therefore, we analyzed the calcium content of osteons and their corresponding cement lines in a range of different tissue ages reflected by osteonal mineralization levels in femoral cortical bone of both postmenopausal women with osteoporosis and bisphosphonate-treated cases. Quantitative backscattered electron imaging (qBEI) showed that cement lines are hypermineralized entities with consistently higher calcium content than their corresponding osteons (mean calcium content: 29.46 ± 0.80 vs. 26.62 ± 1.11 wt%; p < 0.001). Micro-Raman spectroscopy complemented the qBEI data by showing a significantly higher phosphate/amide I ratio in the cement lines compared to the osteonal bone (8.78 ± 0.66 vs. 6.33 ± 0.58, p < 0.001), which was both due to an increased phosphate peak and a reduced amide I peak in cement lines. A clear positive correlation of cement line mineralization and the mineralization of the osteon was observed (r = 0.839, p = 0.003). However, the magnitude of the difference between cement line and osteonal calcium content decreased with increased osteonal calcium content (r = -0.709, p < 0.001), suggesting diverging mineralization dynamics in these osseous entities. The number of mineralized osteocyte lacunae per osteon bone area correlated positively with both osteonal and cement line calcium content (p < 0.01). The degree of mineralization of cement lines may represent another tissue-age related phenomenon, given that it strongly relates to the osteonal mineralization level. Understanding of the cement lines' mineralization and their changes in aging and disease states is important for predicting crack propagation pathways and fracture resistance mechanisms in human cortical bone.
Collapse
Affiliation(s)
- Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany; Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade, Serbia
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Kathrin Mletzko
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - George Sarau
- Institute of Optics, Information and Photonics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr 7/B2, 91058 Erlangen, Germany; Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Marija Djuric
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade, Serbia
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Silke Christiansen
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin, Germany; Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany.
| |
Collapse
|
35
|
Hendrickx G, Borra VM, Steenackers E, Yorgan TA, Hermans C, Boudin E, Waterval JJ, Jansen IDC, Aydemir TB, Kamerling N, Behets GJ, Plumeyer C, D’Haese PC, Busse B, Everts V, Lammens M, Mortier G, Cousins RJ, Schinke T, Stokroos RJ, Manni JJ, Van Hul W. Conditional mouse models support the role of SLC39A14 (ZIP14) in Hyperostosis Cranialis Interna and in bone homeostasis. PLoS Genet 2018; 14:e1007321. [PMID: 29621230 PMCID: PMC5903675 DOI: 10.1371/journal.pgen.1007321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/17/2018] [Accepted: 03/19/2018] [Indexed: 01/19/2023] Open
Abstract
Hyperostosis Cranialis Interna (HCI) is a rare bone disorder characterized by progressive intracranial bone overgrowth at the skull. Here we identified by whole-exome sequencing a dominant mutation (L441R) in SLC39A14 (ZIP14). We show that L441R ZIP14 is no longer trafficked towards the plasma membrane and excessively accumulates intracellular zinc, resulting in hyper-activation of cAMP-CREB and NFAT signaling. Conditional knock-in mice overexpressing L438R Zip14 in osteoblasts have a severe skeletal phenotype marked by a drastic increase in cortical thickness due to an enhanced endosteal bone formation, resembling the underlying pathology in HCI patients. Remarkably, L438R Zip14 also generates an osteoporotic trabecular bone phenotype. The effects of osteoblastic overexpression of L438R Zip14 therefore mimic the disparate actions of estrogen on cortical and trabecular bone through osteoblasts. Collectively, we reveal ZIP14 as a novel regulator of bone homeostasis, and that manipulating ZIP14 might be a therapeutic strategy for bone diseases.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Center of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Vere M. Borra
- Center of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Ellen Steenackers
- Center of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Timur A. Yorgan
- Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christophe Hermans
- Center for Oncological Research Antwerp (CORE), University of Antwerp, Antwerp, Belgium
| | - Eveline Boudin
- Center of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Jérôme J. Waterval
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ineke D. C. Jansen
- Department of Periodontology and Oral Cell Biology, Academic Center of Dentistry Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Tolunay Beker Aydemir
- Food Science and Human Nutrition Department and Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, United States of America
| | - Niels Kamerling
- Department of Neurosurgery, University Hospital Antwerp, Antwerp, Belgium
| | - Geert J. Behets
- Department of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Christine Plumeyer
- Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Björn Busse
- Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vincent Everts
- Department of Periodontology and Oral Cell Biology, Academic Center of Dentistry Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Martin Lammens
- Department of Pathological Anatomy, University Hospital Antwerp, Antwerp, Belgium
| | - Geert Mortier
- Center of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Robert J. Cousins
- Food Science and Human Nutrition Department and Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, United States of America
| | - Thorsten Schinke
- Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert J. Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johannes J. Manni
- Department of Otorhinolaryngology and Head & Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wim Van Hul
- Center of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| |
Collapse
|
36
|
Rolvien T, Schmidt FN, Milovanovic P, Jähn K, Riedel C, Butscheidt S, Püschel K, Jeschke A, Amling M, Busse B. Early bone tissue aging in human auditory ossicles is accompanied by excessive hypermineralization, osteocyte death and micropetrosis. Sci Rep 2018; 8:1920. [PMID: 29382878 PMCID: PMC5789841 DOI: 10.1038/s41598-018-19803-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/09/2018] [Indexed: 01/20/2023] Open
Abstract
Within the mineralized bone, osteocytes form a multifunctional mechanosensitive network orchestrating bone remodelling. A preserved osteocyte population is a crucial determinant of bone quality. In human auditory ossicles, the early decrease in osteocyte numbers but maintained integrity remains an unexplained phenomenon that might serve for sound transmission from air to the labyrinth. Here we analysed the frequency, size and composition of osteocyte lacunae in the auditory ossicles of 22 individuals from early postnatal period to old age. Mineralization of the bone matrix was determined using backscattered electron imaging. No signs of bone remodelling were observed above the age of 1 year. We detected characteristics of early bone tissue aging, such as decrease in osteocytes, lower total lacunar density and lacunar area, as well as high matrix mineralization accompanied by distinct accumulation of micropetrotic lacunae and decreased indentation depths. The majority of these changes took place in the first months and years of life, while afterwards only minor reorganization was present. With osteocyte apoptosis potentially being a consequence of low mechanical stimuli, the early loss of osteocytes without initiation of bone remodelling indicates an adaptive response conserving the architecture of the auditory ossicles and ensuring stable sound transmission throughout life.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katharina Jähn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Riedel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
37
|
Butscheidt S, Rolvien T, Kornak U, Schmidt FN, Schinke T, Amling M, Oheim R. Clinical Significance of DXA and HR-pQCT in Autosomal Dominant Osteopetrosis (ADO II). Calcif Tissue Int 2018; 102:41-52. [PMID: 29018903 DOI: 10.1007/s00223-017-0332-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/21/2017] [Indexed: 12/29/2022]
Abstract
The main hallmark of high bone mass (HBM) disorders is increased bone mineral density, potentially visible in conventional radiographs and quantifiable by other radiographic methods. While one of the most common forms of HBM is CLCN7-related autosomal dominant osteopetrosis type II (ADO II), there is no consensus on diagnostic thresholds. We therefore wanted to assess whether CLCN7-osteopetrosis patients differ from benign HBM cases in terms of (1) bone mineral density, (2) bone structure, and (3) microarchitectural abnormalities. 16 patients meeting the criteria of HBM (DXA T/Z-score ≥ 2.5 at all sites) were included in this retrospective study. Osteologic assessment using dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and serum analyses was performed. The presence of CLCN7 and/or other HBM gene mutations affecting bone mass were tested using a custom designed bone panel. While a DXA threshold for ADO II could be implemented (DXA Z-score ≥ + 6.0), the differences in bone microarchitecture were of lesser extent compared to the benign HBM group. All adult patients with ADO II suffered from elevated fracture rates independent from Z-score. In HR-pQCT, structural alterations, such as bone islets were found only inconsistently. In cases of HBM, a DXA Z-score ≥ 6 may be indicative for an inheritable HBM disorder, such as ADO II. Microarchitectural bone alterations might represent local microfracture repair or accumulation of cartilage remnants due to impaired osteoclast function, but seem not to be correlated with fracture risk.
Collapse
Affiliation(s)
- Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany.
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| |
Collapse
|
38
|
Rolvien T, Nagel F, Milovanovic P, Wuertz S, Marshall RP, Jeschke A, Schmidt FN, Hahn M, Witten PE, Amling M, Busse B. How the European eel (Anguilla anguilla) loses its skeletal framework across lifetime. Proc Biol Sci 2017; 283:rspb.2016.1550. [PMID: 27798301 DOI: 10.1098/rspb.2016.1550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
European eels (Anguilla anguilla) undertake an impressive 5 000 km long migration from European fresh waters through the North Atlantic Ocean to the Sargasso Sea. Along with sexual maturation, the eel skeleton undergoes a remarkable morphological transformation during migration, where a hitherto completely obscure bone loss phenomenon occurs. To unravel mechanisms of the maturation-related decay of the skeleton, we performed a multiscale assessment of eels' bones at different life-cycle stages. Accordingly, the skeleton reflects extensive bone loss that is mediated via multinucleated bone-resorbing osteoclasts, while other resorption mechanisms such as osteocytic osteolysis or matrix demineralization were not observed. Preserving mechanical stability and releasing minerals for energy metabolism are two mutually exclusive functions of the skeleton that are orchestrated in eels through the presence of two spatially segregated hard tissues: cellular bone and acellular notochord. The cellular bone serves as a source of mineral release following osteoclastic resorption, whereas the mineralized notochord sheath, which is inaccessible for resorption processes due to an unmineralized cover layer, ensures sufficient mechanical stability as a part of the notochord sheath. Clearly, an eel's skeleton is structurally optimized to meet the metabolic challenge of fasting and simultaneous sexual development during an exhausting journey to spawning areas, while the function of the vertebral column is maintained to achieve this goal.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Florian Nagel
- Gesellschaft für Marine Aquakultur mbh, Hafentörn 3, 25761 Büsum, Germany.,Aller Aqua Research GmbH, Hafentörn 3, 25761 Büsum, Germany
| | - Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany.,Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
| | - Sven Wuertz
- Leibnitz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Robert Percy Marshall
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Michael Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - P Eckhard Witten
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| |
Collapse
|
39
|
Rolvien T, Butscheidt S, Jeschke A, Neu A, Denecke J, Kubisch C, Meisler MH, Pueschel K, Barvencik F, Yorgan T, Oheim R, Schinke T, Amling M. Severe bone loss and multiple fractures in SCN8A-related epileptic encephalopathy. Bone 2017; 103:136-143. [PMID: 28676440 DOI: 10.1016/j.bone.2017.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
Mutations in the SCN8A gene encoding the neuronal voltage-gated sodium channel Nav1.6 are known to be associated with epileptic encephalopathy type 13. We identified a novel de novo SCN8A mutation (p.Phe360Ala, c.1078_1079delTTinsGC, Exon 9) in a 6-year-old girl with epileptic encephalopathy accompanied by severe juvenile osteoporosis and multiple skeletal fractures, similar to three previous case reports. Skeletal assessment using dual energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT) and serum analyses revealed a combined trabecular and cortical bone loss syndrome with elevated bone resorption. Likewise, when we analyzed the skeletal phenotype of 2week-old Scn8a-deficient mice we observed reduced trabecular and cortical bone mass, as well as increased osteoclast indices by histomorphometric quantification. Based on this cumulative evidence the patient was treated with neridronate (2mg/kg body weight administered every 3months), which fully prevented additional skeletal fractures for the next 25months. Taken together, our data provide evidence for a negative impact of SCN8A mutations on bone mass, which can be positively influenced by anti-resorptive treatment.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany; Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Axel Neu
- Department of Neuropediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Denecke
- Department of Neuropediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kubisch
- Department of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Klaus Pueschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany.
| |
Collapse
|
40
|
Rolvien T, Krause M, Jeschke A, Yorgan T, Püschel K, Schinke T, Busse B, Demay MB, Amling M. Vitamin D regulates osteocyte survival and perilacunar remodeling in human and murine bone. Bone 2017; 103:78-87. [PMID: 28666969 DOI: 10.1016/j.bone.2017.06.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023]
Abstract
Osteocytes are the most abundant bone cells and are highly regulated by external stimuli. Vitamin D and osteocytes cooperatively regulate bone remodeling as well as phosphate and calcium homeostasis. However, it is unclear if vitamin D regulates osteocyte number, connectivity or size in the setting of altered bone formation or impaired mineralization. Sixty iliac crest biopsies of patients with varying vitamin D levels were examined to analyze osteocyte number, osteocyte connectivity and osteocyte viability using high-resolution imaging. Osteocyte parameters were also quantified in mice lacking the vitamin D receptor (Vdr-/-) and in wildtype littermates. The cortical and cancellous bone of patients with vitamin D deficiency exhibited a significant decrease in the number of viable osteocytes, as well as increased osteocyte apoptosis and impaired osteocyte connectivity, based on evaluation of the canalicular network. The number of osteocytes was also decreased in Vdr-deficient mice, in comparison to wildtype controls, and this was accompanied by enlargement of osteocyte lacunae. A high calcium diet normalized the osteocyte lacunar area in Vdr-deficient mice, but failed to normalize osteocyte number. Thus, a diet-independent decrease in osteocyte number in Vdr-deficient mice suggests a mechanism that is directly dependent on the VDR, since vitamin D may promote the transition from osteoblasts to osteocytes. The increase in lacunar area the in Vdr-deficient mice, which is normalized by the high calcium diet suggests this phenotype is due to osteocytic osteolysis. These investigations demonstrate that vitamin D plays a role in the regulation of osteocyte number and perilacunar remodeling.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Krause
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Trauma and Reconstructive Surgery, Asklepios Clinic St. Georg, Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
41
|
Friedrich RE, Luebke AM, Amling M, Koehne T. Clinical and Microstructural Findings in Paget Disease of the Entire Mandible. J Oral Maxillofac Surg 2017; 76:336-346. [PMID: 28806539 DOI: 10.1016/j.joms.2017.07.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/28/2022]
Abstract
Paget disease of bone (PDB) is a chronic progressive bone disorder characterized by localized increased bone turnover and focal areas of woven bone formation. Although skull involvement is common, PDB very rarely affects the mandible. This report describes the clinical and histologic findings in a 75-year-old patient with PDB involving the mandible. Microstructural analyses showed an altered quality of the bone microstructure and calcium depletion of the affected bone. Differential diagnosis of PDB affecting the mandible is discussed.
Collapse
Affiliation(s)
- Reinhard E Friedrich
- Professor, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Head, Department of Orthopedic Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department Head, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koehne
- Research Associate, Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Fischer V, Haffner-Luntzer M, Prystaz K, Vom Scheidt A, Busse B, Schinke T, Amling M, Ignatius A. Calcium and vitamin-D deficiency marginally impairs fracture healing but aggravates posttraumatic bone loss in osteoporotic mice. Sci Rep 2017; 7:7223. [PMID: 28775273 PMCID: PMC5543125 DOI: 10.1038/s41598-017-07511-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/29/2017] [Indexed: 01/22/2023] Open
Abstract
Calcium and vitamin-D (Ca/VitD) deficiency is a major risk factor for osteoporosis. It may also contribute to the compromised bone healing frequently observed in osteoporotic patients, since calcium is essential for fracture-callus mineralization. Additionally, clinical data suggest systemic bone loss following fracture, which may aggravate osteoporosis and thus increase the risk for fragility fractures in osteoporotic patients further. However, the role of Ca/VitD in fracture healing and posttraumatic bone turnover has to date been poorly investigated. Here, we studied bone regeneration and posttraumatic bone turnover in C57BL/6 J mice with ovariectomy-induced osteoporosis. Mice were fed a standard or a Ca/VitD-deficient diet. Notably, fracture healing was only marginally disturbed in Ca/VitD-deficient mice. However, deficient mice displayed significantly increased serum parathyroid hormone levels and osteoclast activity, as well as reduced bone mass in the intact skeleton post-fracture, suggesting considerably enhanced calcium mobilization from the intact skeleton during bone regeneration. Ca/VitD supplementation initiated post-fracture prevented posttraumatic bone loss by reducing bone resorption and furthermore improved bone repair. These results imply that adequate Ca/VitD supply post-fracture is essential to provide sufficient calcium for callus-mineralization in order to prevent posttraumatic bone loss and to reduce the risk for secondary fractures in osteoporotic patients with Ca/VitD deficiency.
Collapse
Affiliation(s)
- Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Ulm, Germany
| | - Katja Prystaz
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Ulm, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Ulm, Germany.
| |
Collapse
|
43
|
Rolvien T, Hahn M, Siebert U, Püschel K, Wilke HJ, Busse B, Amling M, Oheim R. Vertebral bone microarchitecture and osteocyte characteristics of three toothed whale species with varying diving behaviour. Sci Rep 2017; 7:1604. [PMID: 28487524 PMCID: PMC5431672 DOI: 10.1038/s41598-017-01926-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Although vertebral bone microarchitecture has been studied in various tetrapods, limited quantitative data are available on the structural and compositional changes of vertebrae in marine mammals. Whales exhibit exceptional swimming and diving behaviour, and they may not be immune to diving-associated bone pathologies. Lumbar vertebral bodies were analysed in three toothed whale species: the sperm whale (Physeter macrocephalus), orca (Orcinus orca) and harbour porpoise (Phocoena phocoena). The bone volume fraction (BV/TV) did not scale with body size, although the trabeculae were thicker, fewer in number and further apart in larger whale species than in the other two species. These parameters had a negative allometric scaling relationship with body length. In sperm whales and orcas, the analyses revealed a central ossification zone (“bone-within-bone”) with an increased BV/TV and trabecular thickness. Furthermore, a large number of empty osteocyte lacunae was observed in the sperm whales. Quantitative backscattered electron imaging showed that the lacunae were significantly smaller and less densely packed. Our results indicate that whales have a unique vertebral bone morphology with an inside-out appearance and that deep diving may result in a small number of viable osteocytes because of diving depth-related osteocyte death.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761, Buesum, Germany
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14 D, 89081, Ulm, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany.
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| |
Collapse
|
44
|
Berli M, Borau C, Decco O, Adams G, Cook RB, García Aznar JM, Zioupos P. Localized tissue mineralization regulated by bone remodelling: A computational approach. PLoS One 2017; 12:e0173228. [PMID: 28306746 PMCID: PMC5357005 DOI: 10.1371/journal.pone.0173228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/18/2017] [Indexed: 11/18/2022] Open
Abstract
Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent-material density curve. Numerical results are discussed pointing to potential clinical applications.
Collapse
Affiliation(s)
- Marcelo Berli
- Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta 11, Oro Verde, Entre Ríos, República Argentina
| | - Carlos Borau
- Departamento de Ingeniería Mecánica, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, España
| | - Oscar Decco
- Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta 11, Oro Verde, Entre Ríos, República Argentina
| | - George Adams
- Musculoskeletal & Medicolegal Research Group, Cranfield Forensic Institute, DA of the UK, Shrivenham, United Kingdom
| | - Richard B. Cook
- nCATS, University of Southampton, Highfield, Southampton, United Kingdom
| | - José Manuel García Aznar
- Departamento de Ingeniería Mecánica, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, España
| | - Peter Zioupos
- Musculoskeletal & Medicolegal Research Group, Cranfield Forensic Institute, DA of the UK, Shrivenham, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Rolvien T, Koehne T, Kornak U, Lehmann W, Amling M, Schinke T, Oheim R. A Novel ANO5 Mutation Causing Gnathodiaphyseal Dysplasia With High Bone Turnover Osteosclerosis. J Bone Miner Res 2017; 32:277-284. [PMID: 27541832 DOI: 10.1002/jbmr.2980] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
Gnathodiaphyseal dysplasia (GDD) is a rare skeletal syndrome that involves an osteopetrosis-like sclerosis of the long bones and fibrous dysplasia-like cemento-osseous lesions of the jawbone. Although the genetic analysis of the respective patients has revealed mutations in the ANO5 gene as an underlying cause, there is still no established consensus regarding the bone status of GDD patients. We report a new case of GDD in a 13-year-old boy with recurrent diaphyseal fractures of the femur, in whom we identified a novel de novo missense mutation in the ANO5 gene, causing a p.Ser500Phe substitution at the protein level. After confirming the presence of GDD-characteristic abnormalities within the jaw bones, we focused on a full osteologic assessment using dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and serum analyses. We thereby identified increased trabecular bone mass accompanied by elevated serum markers of bone formation and bone resorption. The high turnover bone pathology was further confirmed through the analysis of an iliac crest biopsy, where osteoblast and osteoclast indices were remarkably increased. Taken together, our findings provide evidence for a critical and generalized role of anoctamin-5 (the protein encoded by the ANO5 gene) in skeletal biology. As it is reasonable to speculate that modifying the function of anoctamin-5 might be useful for therapeutically activating bone remodeling, it is now required to analyze its function at a molecular level, for instance in mouse models. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Lehmann
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
46
|
Riedel C, Zimmermann EA, Zustin J, Niecke M, Amling M, Grynpas M, Busse B. The incorporation of fluoride and strontium in hydroxyapatite affects the composition, structure, and mechanical properties of human cortical bone. J Biomed Mater Res A 2016; 105:433-442. [DOI: 10.1002/jbm.a.35917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Christoph Riedel
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| | - Elizabeth A. Zimmermann
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| | - Jozef Zustin
- Department of Pathology; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg 20246 Germany
| | - Manfred Niecke
- Institute of Experimental Physics, University of Hamburg; Luruper Chaussee 149 Hamburg 22761 Germany
| | - Michael Amling
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital; 25 Orde Street Toronto Ontario M5T 3H7 Canada
| | - Björn Busse
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Lottestrasse 55A Hamburg 22529 Germany
| |
Collapse
|
47
|
Machine learning based analytics of micro-MRI trabecular bone microarchitecture and texture in type 1 Gaucher disease. J Biomech 2016; 49:1961-1968. [DOI: 10.1016/j.jbiomech.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/29/2016] [Accepted: 04/07/2016] [Indexed: 11/21/2022]
|
48
|
Koehne T, Markmann S, Schweizer M, Muschol N, Friedrich RE, Hagel C, Glatzel M, Kahl-Nieke B, Amling M, Schinke T, Braulke T. Mannose 6-phosphate-dependent targeting of lysosomal enzymes is required for normal craniofacial and dental development. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1570-80. [PMID: 27239697 DOI: 10.1016/j.bbadis.2016.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/04/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Mucolipidosis II (MLII) is a severe systemic genetic disorder caused by defects in mannose 6-phosphate-dependent targeting of multiple lysosomal hydrolases and subsequent lysosomal accumulation of non-degraded material. MLII patients exhibit marked facial coarseness and gingival overgrowth soon after birth, accompanied with delayed tooth eruption and dental infections. To examine the pathomechanisms of early craniofacial and dental abnormalities, we analyzed mice with an MLII patient mutation that mimic the clinical and biochemical symptoms of MLII patients. The mouse data were compared with clinical and histological data of gingiva and teeth from MLII patients. Here, we report that progressive thickening and porosity of calvarial and mandibular bones, accompanied by elevated bone loss due to 2-fold higher number of osteoclasts cause the characteristic craniofacial phenotype in MLII. The analysis of postnatal tooth development by microcomputed tomography imaging and histology revealed normal dentin and enamel formation, and increased cementum thickness accompanied with accumulation of storage material in cementoblasts of MLII mice. Massive accumulation of storage material in subepithelial cells as well as disorganization of collagen fibrils led to gingival hypertrophy. Electron and immunofluorescence microscopy, together with (35)S-sulfate incorporation experiments revealed the accumulation of non-degraded material, non-esterified cholesterol and glycosaminoglycans in gingival fibroblasts, which was accompanied by missorting of various lysosomal proteins (α-fucosidase 1, cathepsin L and Z, Npc2, α-l-iduronidase). Our study shows that MLII mice closely mimic the craniofacial and dental phenotype of MLII patients and reveals the critical role of mannose 6-phosphate-dependent targeting of lysosomal proteins for alveolar bone, cementum and gingiva homeostasis.
Collapse
Affiliation(s)
- Till Koehne
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Osteology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandra Markmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michaela Schweizer
- ZMNH, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicole Muschol
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Amling
- Department of Osteology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
49
|
Uluçkan Ö, Jimenez M, Karbach S, Jeschke A, Graña O, Keller J, Busse B, Croxford AL, Finzel S, Koenders M, van den Berg W, Schinke T, Amling M, Waisman A, Schett G, Wagner EF. Chronic skin inflammation leads to bone loss by IL-17–mediated inhibition of Wnt signaling in osteoblasts. Sci Transl Med 2016; 8:330ra37. [DOI: 10.1126/scitranslmed.aad8996] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/02/2016] [Indexed: 12/11/2022]
|
50
|
Farlay D, Armas LAG, Gineyts E, Akhter MP, Recker RR, Boivin G. Nonenzymatic Glycation and Degree of Mineralization Are Higher in Bone From Fractured Patients With Type 1 Diabetes Mellitus. J Bone Miner Res 2016; 31:190-5. [PMID: 26234180 PMCID: PMC4876148 DOI: 10.1002/jbmr.2607] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 01/22/2023]
Abstract
Low-energy fractures are frequent complications in type 1 diabetes mellitus patients (T1DM). Modifications of bone intrinsic composition might be a potential cause of fragility observed in diabetic subjects. Advanced glycation end products (AGEs) were found in numerous connective tissues from T1DM patients. However, whether AGEs are present at high levels in bone matrix from diabetic subjects is unknown. Moreover, whether elevated AGEs in the bone matrix impair mineralization has not been addressed in humans. The purposes of this study were 1) to determine whether bone matrix from fracturing and nonfracturing T1DM contained more AGEs than bone from healthy patients (CTL), and 2) to compare the degree of mineralization of bone and hardness between fracturing and nonfracturing T1DM versus CTL. We analyzed iliac crest bone biopsies from 5 fracturing T1DM patients, 5 nonfracturing T1DM patients, and 5 healthy subjects, all age- and sex-matched. AGEs (pentosidine) in bone matrix was measured by high-performance liquid chromatography separately in trabecular and cortical bone. The degree of mineralization of bone (DMB) was assessed by digitized microradiography, and mechanical properties by micro- and nanohardness tests. Trabecular bone from fracturing T1DM exhibited significantly higher levels of pentosidine than CTL (p = 0.04) and was more mineralized than nonfracturing T1DM (p = 0.04) and CTL (p = 0.04). Trabecular bone was not significantly different in pentosidine between nonfracturing T1DM and CTL. Cortical bone from nonfracturing T1DM was not significantly different from CTL. Positive correlations were found between HbA1c and pentosidine (r' = 0.79, p < 0.003) and between HbA1c and DMB (r' = 0.64, p < 0.02). Both modifications could lead to less flexible bone (reduced modulus of elasticity) and a tendency toward low-energy fractures in T1DM patients.
Collapse
Affiliation(s)
- Delphine Farlay
- INSERM, UMR 1033, Lyon, France.,Université de Lyon, Lyon, France
| | - Laura A G Armas
- Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, NE, USA
| | - Evelyne Gineyts
- INSERM, UMR 1033, Lyon, France.,Université de Lyon, Lyon, France
| | - Mohammed P Akhter
- Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, NE, USA
| | - Robert R Recker
- Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, NE, USA
| | - Georges Boivin
- INSERM, UMR 1033, Lyon, France.,Université de Lyon, Lyon, France
| |
Collapse
|