1
|
Weaver SR, Torres HM, Arnold KM, Zars EL, Peralta-Herrera E, Taylor EL, Yu K, Marron Fernandez de Velasco E, Wickman K, McGee-Lawrence ME, Bradley EW, Westendorf JJ. Girk3 deletion increases osteoblast maturation and bone mass accrual in adult male mice. JBMR Plus 2024; 8:ziae108. [PMID: 39228688 PMCID: PMC11370632 DOI: 10.1093/jbmrpl/ziae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
Osteoporosis and other metabolic bone diseases are prevalent in the aging population. While bone has the capacity to regenerate throughout life, bone formation rates decline with age and contribute to reduced bone density and strength. Identifying mechanisms and pathways that increase bone accrual in adults could prevent fractures and accelerate healing. G protein-gated inwardly rectifying K+ (GIRK) channels are key effectors of G protein-coupled receptor signaling. Girk3 was recently shown to regulate endochondral ossification. Here, we demonstrate that deletion of Girk3 increases bone mass after 18 weeks of age. Male 24-week-old Girk3 -/- mice have greater trabecular bone mineral density and bone volume fraction than wildtype (WT) mice. Osteoblast activity is moderately increased in 24-week-old Girk3 -/- mice compared to WT mice. In vitro, Girk3-/- bone marrow stromal cells (BMSCs) are more proliferative than WT BMSCs. Calvarial osteoblasts and BMSCs from Girk3 -/- mice are also more osteogenic than WT cells, with altered expression of genes that regulate the wingless-related integration site (Wnt) family. Wnt inhibition via Dickkopf-1 (Dkk1) or β-catenin inhibition via XAV939 prevents enhanced mineralization, but not proliferation, in Girk3 -/- BMSCs and slows these processes in WT cells. Finally, selective ablation of Girk3 from cells expressing Cre recombinase from the 2.3 kb-Col1a1 promoter, including osteoblasts and osteocytes, is sufficient to increase bone mass and bone strength in male mice at 24 weeks of age. Taken together, these data demonstrate that Girk3 regulates progenitor cell proliferation, osteoblast differentiation, and bone mass accrual in adult male mice.
Collapse
Affiliation(s)
- Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | - Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | - Elizabeth L Zars
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | | | | | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| | - Elizabeth W Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
2
|
Wang L, Zheng G, Yuan Y, Wang Z, Wang Q, Sun M, Wu J, Liu C, Liu Y, Zhang B, Zhang H, Yang N, Lian L. circRUNX2.2, highly expressed in Marek's disease tumor tissues, functions in cis to regulate parental gene RUNX2 expression. Poult Sci 2024; 103:104045. [PMID: 39094493 PMCID: PMC11345620 DOI: 10.1016/j.psj.2024.104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Marek's disease (MD), an immunosuppression disease induced by Marek's disease virus (MDV), is one of the significant diseases affecting the health and productive performance of poultry. The roles of circular RNAs (circRNAs) in MD development were poorly understood. In this study, we found a circRNA derived from exon 6 of RUNX family transcription factor 2 (RUNX2) gene, named circRUNX2.2, was highly expressed in chicken tumorous spleens (TS) induced by MDV. Through fluorescence in situ hybridization and nuclear-cytoplasmic separation assay, we determined circRUNX2.2 was mainly located in the nucleus. Knockout experiments confirmed that the flanking complementary sequences (RCMs) mediated its circularization. Gain of function assay and dual luciferase reporter gene assay revealed that circRUNX2.2 could promote the expression of RUNX2 via binding with its promoter region. RNA antisense purification assay and mass spectrometry assay showed circRUNX2.2 could recruit proteins such as CHD9 protein. Knocking down CHD9 expression decreased the expression of RUNX2 gene, which confirmed the positive regulation that circRUNX2.2 on RUNX2 expression was probably facilitated via recruiting CHD9 protein. Functional experiments showed that circRUNX2.2 promoted the proliferation of the MD lymphoma-derived chicken cell line, MDCC-MSB1, which confirmed the potential oncogenic role of circRNX2.2 in tumor development. In conclusion, we found that the RUNX2-derived circRUNX2.2 can positively regulate the transcription of the parental gene RUNX2 in a cis-acting manner. The high expression of circRUNX2.2 in MD tumor tissues indicated that it might mediate MD lymphoma progression.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gang Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiming Yuan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ziyi Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qinyuan Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meng Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junfeng Wu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Bo Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ling Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Zakaria M, Matta J, Honjol Y, Schupbach D, Mwale F, Harvey E, Merle G. Decoding Cold Therapy Mechanisms of Enhanced Bone Repair through Sensory Receptors and Molecular Pathways. Biomedicines 2024; 12:2045. [PMID: 39335558 PMCID: PMC11429201 DOI: 10.3390/biomedicines12092045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Applying cold to a bone injury can aid healing, though its mechanisms are complex. This study investigates how cold therapy impacts bone repair to optimize healing. Cold was applied to a rodent bone model, with the physiological responses analyzed. Vasoconstriction was mediated by an increase in the transient receptor protein channels (TRPs), transient receptor potential ankyrin 1 (TRPA1; p = 0.012), and transient receptor potential melastatin 8 (TRPM8; p < 0.001), within cortical defects, enhancing the sensory response and blood flow regulation. Cold exposure also elevated hypoxia (p < 0.01) and vascular endothelial growth factor expression (VEGF; p < 0.001), promoting angiogenesis, vital for bone regeneration. The increased expression of osteogenic proteins peroxisome proliferator-activated receptor gamma coactivator (PGC-1α; p = 0.039) and RNA-binding motif protein 3 (RBM3; p < 0.008) suggests that the reparative processes have been stimulated. Enhanced osteoblast differentiation and the presence of alkaline phosphatase (ALP) at day 5 (three-fold, p = 0.021) and 10 (two-fold, p < 0.001) were observed, along with increased osteocalcin (OCN) at day 10 (two-fold, p = 0.019), indicating the presence of mature osteoblasts capable of mineralization. These findings highlight cold therapy's multifaceted effects on bone repair, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Matthew Zakaria
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
| | - Justin Matta
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
| | - Yazan Honjol
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
| | - Drew Schupbach
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada
| | - Fackson Mwale
- Lady Davis Institute for Medical Research, Lady Davies Institute Jewish General Hospital, 3755 Cote-St. Catherine Road, Room 602, Montréal, QC H3T 1E2, Canada;
| | - Edward Harvey
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada
| | - Geraldine Merle
- Surgical and Interventional Sciences Division, Faculty of Medicine, McGill University, Montreal, QC H3A 2B2, Canada; (M.Z.); (J.M.); (Y.H.); (D.S.); (E.H.)
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
4
|
Zhu X, Liu H, Mei C, Chen F, Guo M, Wei C, Wang D, Luo M, Hu X, Zhao Y, Hao F, Shi C, Li W. A composite hydrogel loaded with the processed pyritum promotes bone repair via stimulate the osteogenic differentiation of BMSCs. BIOMATERIALS ADVANCES 2024; 160:213848. [PMID: 38581745 DOI: 10.1016/j.bioadv.2024.213848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Tissue engineering shows promise in repairing extensive bone defects. The promotion of proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by biological scaffolds has a significant impact on bone regeneration outcomes. In this study we used an injectable hydrogel, known as aminated mesoporous silica gel composite hydrogel (MSNs-NH2@GelMA), loaded with a natural drug, processed pyritum (PP), to promote healing of bone defects. The mechanical properties of the composite hydrogel were significantly superior to those of the blank hydrogel. In vitro experiments revealed that the composite hydrogel stimulated the osteogenic differentiation of BMSCs, and significantly increased the expression of type I collagen (Col 1), runt-related transcription factor 2 (Runx 2), alkaline phosphatase (ALP), osteocalcin (OCN). In vivo experiments showed that the composite hydrogel promoted the generation of new bones. These findings provide evidence that the composite hydrogel pyritum-loaded holds promise as a biomaterial for bone repair.
Collapse
Affiliation(s)
- Xingyu Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China; Jiangsu College of Nursing, Huai'an 223001, China
| | - Huanjin Liu
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Changzhou 213003, China
| | - Chunmei Mei
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Fugui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Mengyu Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Chenxu Wei
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Jiangyin, 214400, China
| | - Dan Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100000, China
| | - Meimei Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Xiaofang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Yuwei Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Fangyu Hao
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Changcan Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China.
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China.
| |
Collapse
|
5
|
Bartold M, Ivanovski S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000 2024. [PMID: 38243683 DOI: 10.1111/prd.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/21/2024]
Abstract
Wound healing is a complex and iterative process involving myriad cellular and biologic processes that are highly regulated to allow satisfactory repair and regeneration of damaged tissues. This review is intended to be an introductory chapter in a volume focusing on the use of platelet concentrates for tissue regeneration. In order to fully appreciate the clinical utility of these preparations, a sound understanding of the processes and factors involved in soft and hard tissue healing. This encompasses an appreciation of the cellular and biological mediators of both soft and hard tissues in general as well as specific consideration of the periodontal tissues. In light of good advances in this basic knowledge, there have been improvements in clinical strategies and therapeutic management of wound repair and regeneration. The use of platelet concentrates for tissue regeneration offers one such strategy and is based on the principles of cellular and biologic principles of wound repair discussed in this review.
Collapse
Affiliation(s)
- Mark Bartold
- University of Queensland, Brisbane, Queensland, Australia
| | - Saso Ivanovski
- University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Arteaga A, Biguetti CC, Chandrashekar B, La Fontaine J, Rodrigues DC. Revolutionizing fracture fixation in diabetic and non-diabetic rats: High mobility group box 1-based coating for enhanced osseointegration. Bone 2023; 177:116917. [PMID: 37739297 PMCID: PMC11292581 DOI: 10.1016/j.bone.2023.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Chronic inflammation and hyperglycemia in diabetic patients increase the risk of implant failure and impaired fracture healing. We previously developed and characterized a titanium (Ti) coating strategy using an imidazolium-based ionic liquid (IonL) with a fully reduced, non-oxidizable High Mobility Group Box 1 (HMGB1) isoform (Ti-IonL-HMGB1) to immunomodulate tissue healing. In this study, we used an open reduction fracture fixation (ORIF) model in non-diabetic (ND) and diabetic (D) rats to further investigate the effectiveness of this Ti-IonL-HMGB1 coating on orthopedic applications. Ninety male Lewis rats (12-15 weeks) were divided into D (n = 45) and ND (n = 45) groups that were distributed into three subgroups based on the type of local treatment received: Ti (uncoated Ti), Ti-IonL, and Ti-IonL-HMGB1 implants. Fracture healing and osseointegration were evaluated using microtomographic, histological, and immunohistochemical analysis of proliferating cell nuclear antigen (PCNA), Runt-related transcription factor 2 (RUNX2), and HMGB1 markers at 2, 10, and 21 days post-ORIF. Scanning Electron Microscopy verified the coating stability after placement. Microtomographic and histological analysis demonstrated increased fracture healing and osseointegration for ND rats in all treatment groups at 10 days, with impaired healing for D rats. Immunohistochemical analysis exhibited elevated PCNA+ and RUNX2+ cells for D animals treated with Ti-IonL-HMGB1 at 21 days compared to all other groups. The immunohistochemical marker HMGB1 was elevated at all time points for D animals in comparison to ND animals, yet was lowered for D tissues near the Ti-IonL-HMGB1 treated implant. Improved osseous healing was demonstrated in D animals with Ti-IonL-HMGB1 treatment by 21 days, compared to D animals with other treatments. To the best of our knowledge, this is the first study analyzing Ti-IonL-HMGB1 implantation in an injury site through ORIF procedures in ND and D rats. This surface approach has potential for improving implanted biomaterials in diabetic environments.
Collapse
Affiliation(s)
- Alexandra Arteaga
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Claudia Cristina Biguetti
- Department of Surgery and Biomechanics, School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | | | - Javier La Fontaine
- Department of Surgery and Biomechanics, School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
7
|
Redhead Y, Gibbins D, Lana-Elola E, Watson-Scales S, Dobson L, Krause M, Liu KJ, Fisher EMC, Green JBA, Tybulewicz VLJ. Craniofacial dysmorphology in Down syndrome is caused by increased dosage of Dyrk1a and at least three other genes. Development 2023; 150:dev201077. [PMID: 37102702 PMCID: PMC10163349 DOI: 10.1242/dev.201077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023]
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes.
Collapse
Affiliation(s)
- Yushi Redhead
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | | | | | | | - Lisa Dobson
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Karen J. Liu
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | | - Jeremy B. A. Green
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | |
Collapse
|
8
|
Shanmugavadivu A, Balagangadharan K, Selvamurugan N. Angiogenic and Osteogenic Effects of Flavonoids in Bone Regeneration. Biotechnol Bioeng 2022; 119:2313-2330. [PMID: 35718883 DOI: 10.1002/bit.28162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
Bone is a highly vascularised tissue that relies on a close spatial and temporal interaction between blood vessels and bone cells. As a result, angiogenesis is critical for bone formation and healing. The vascular system supports bone regeneration by delivering oxygen, nutrients, and growth factors, as well as facilitating efficient cell-cell contact. Most clinical applications of engineered bone grafts are hampered by insufficient vascularization after implantation. Over the last decade, a number of flavonoids have been reported to have osteogenic-angiogenic potential in bone regeneration because of their excellent bioactivity, low cost, availability, and minimal in vivo toxicity. During new bone formation, the osteoinductive nature of certain flavonoids is involved in regulating multiple signaling pathways contributing toward the osteogenic-angiogenic coupling. This review briefly outlines the osteogenic-angiogenic potential of those flavonoids and the mechanisms of their action in promoting bone regeneration. However, further studies are needed to investigate their delivery strategies and establish their clinical efficacy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
9
|
Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, Wang C, Ding J, Chen X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11:317-338. [PMID: 34977434 PMCID: PMC8671106 DOI: 10.1016/j.bioactmat.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
The development of interdisciplinary biomedical engineering brings significant breakthroughs to the field of cartilage regeneration. However, cartilage defects are considerably more complicated in clinical conditions, especially when injuries occur at specific sites (e.g., osteochondral tissue, growth plate, and weight-bearing area) or under inflammatory microenvironments (e.g., osteoarthritis and rheumatoid arthritis). Therapeutic implantations, including advanced scaffolds, developed growth factors, and various cells alone or in combination currently used to treat cartilage lesions, address cartilage regeneration under abnormal conditions. This review summarizes the strategies for cartilage regeneration at particular sites and pathological microenvironment regulation and discusses the challenges and opportunities for clinical transformation.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
10
|
McClure PK, Franzone JM, Herzenberg JE. Congenital Pseudarthrosis of the Tibia Associated With Cleidocranial Dysostosis: Case Report and Literature Review. JBJS Case Connect 2021; 11:01709767-202112000-00042. [PMID: 34735385 DOI: 10.2106/jbjs.cc.21.00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CASE We describe a case of 2 individually rare diseases existing comorbidly in the form of congenital pseudarthrosis of the tibia (CPT) coincident with cleidocranial dysostosis and provide a review of the literature, including the sole preexisting documented coincidence. CONCLUSION Understanding, treatment, and surgical protocol of CPT have changed considerably since this comorbidity was last reported. Updates include synostosis, periosteal grafting, the use of bone morphogenetic protein, and bisphosphonates. Our case varies from the previous in associated disorder and family history. The relationship between CBFA1 and RUNX2 genes may hold the key, but further study is needed.
Collapse
Affiliation(s)
- Philip K McClure
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
| | - Jeanne M Franzone
- Department of Orthopaedic Surgery, AI Dupont Hospital for Children, Wilmington, Delaware
| | - John E Herzenberg
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
| |
Collapse
|
11
|
Genetic profiling of human bone marrow and adipose tissue-derived mesenchymal stem cells reveals differences in osteogenic signaling mediated by graphene. J Nanobiotechnology 2021; 19:285. [PMID: 34551771 PMCID: PMC8459567 DOI: 10.1186/s12951-021-01024-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In the last decade, graphene surfaces have consistently supported osteoblast development of stem cells, holding promise as a therapeutic implant for degenerative bone diseases. However, until now no study has specifically examined the genetic changes when stem cells undergo osteogenic differentiation on graphene. RESULTS In this study, we provide a detailed overview of gene expressions when human mesenchymal stem cells (MSCs) derived from either adipose tissue (AD-MSCs) or bone marrow (BM-MSCs), are cultured on graphene. Genetic expressions were measured using osteogenic RT2 profiler PCR arrays and compared either over time (7 or 21 days) or between each cell source at each time point. Genes were categorized as either transcriptional regulation, osteoblast-related, extracellular matrix, cellular adhesion, BMP and SMAD signaling, growth factors, or angiogenic factors. Results showed that both MSC sources cultured on low oxygen graphene surfaces achieved osteogenesis by 21 days and expressed specific osteoblast markers. However, each MSC source cultured on graphene did have genetically different responses. When compared between each other, we found that genes of BM-MSCs were robustly expressed, and more noticeable after 7 days of culturing, suggesting BM-MSCs initiate osteogenesis at an earlier time point than AD-MSCs on graphene. Additionally, we found upregulated angiogenic markers in both MSCs sources, suggesting graphene could simultaneously attract the ingrowth of blood vessels in vivo. Finally, we identified several novel targets, including distal-less homeobox 5 (DLX5) and phosphate-regulating endopeptidase homolog, X-linked (PHEX). CONCLUSIONS Overall, this study shows that graphene genetically supports differentiation of both AD-MSCs and BM-MSCs but may involve different signaling mechanisms to achieve osteogenesis. Data further demonstrates the lack of aberrant signaling due to cell-graphene interaction, strengthening the application of specific form and concentration of graphene nanoparticles in bone tissue engineering.
Collapse
|
12
|
Xue F, Zhao Z, Gu Y, Han J, Ye K, Zhang Y. 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. eLife 2021; 10:e64872. [PMID: 34227467 PMCID: PMC8285109 DOI: 10.7554/elife.64872] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Imbalances in bone formation and resorption cause osteoporosis. Mounting evidence supports that brain-derived neurotrophic factor (BDNF) implicates in this process. 7,8-Dihydroxyflavone (7,8-DHF), a plant-derived small molecular TrkB agonist, mimics the functions of BDNF. We show that both BDNF and 7,8-DHF promoted the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. These effects might be attributed to the activation of the Wnt/β-catenin signaling pathway as the expression of cyclin D1, phosphorylated-glycogen synthase kinase-3β (p-GSK3β), β-catenin, Runx2, Osterix, and osteoprotegerin (OPG) was all significantly up-regulated. Knockdown of β-catenin restrained the up-regulation of Runx2 and Osterix stimulated by 7,8-DHF. In particular, blocking TrkB by its specific inhibitor K252a suppressed 7,8-DHF-induced osteoblastic proliferation, differentiation, and expression of osteoblastogenic genes. Moreover, BDNF and 7,8-DHF repressed osteoclastic differentiation of RAW264.7 cells. The transcription factor c-fos and osteoclastic genes such as tartrate-resistant acid phosphatase (TRAP), matrix metalloprotein-9 (MMP-9), Adamts5 were inhibited by 7,8-DHF. More importantly, 7,8-DHF attenuated bone loss, improved trabecular microarchitecture, tibial biomechanical properties, and bone biochemical indexes in an ovariectomy (OVX) rat model. The current work highlights the dual regulatory effects that 7,8-DHF exerts on bone remodeling.
Collapse
Affiliation(s)
- Fan Xue
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Zhenlei Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Yanpei Gu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Jianxin Han
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineAtlantaUnited States
| | - Ying Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| |
Collapse
|
13
|
Tian X, Lu Z, Ma C, Wu M, Zhang C, Yuan Y, Yuan X, Xie D, Liu C, Guo J. Antimicrobial hydroxyapatite and its composites for the repair of infected femoral condyle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111807. [PMID: 33579451 DOI: 10.1016/j.msec.2020.111807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022]
Abstract
Orthopedic implant-associated infection constitutes one of the most devastating and challenging symptoms in the clinic. Implants without antimicrobial properties may become the harbourage for microbial colonization and biofilm formation, thus hindering normal bone regeneration processes. We had previously developed tannin modified HA (THA) as well as silver and tannin modified hydroxyapatite (HA) (Ag-THA) via a facile one-step and scalable process, and proven their antimicrobial performance in vitro. Herein, by compositing with non-antimicrobial polyurethane (PU), the in vivo anti-bacterial activity, osteoconductivity and osteoinductivity of PU/Ag-THA composite were investigated using an infected femoral condyle defect model on rat. PU/Ag-THA exhibited excellent in vivo antimicrobial activity, with the calculated bacteria fraction being reduced to lower than 3% at week 12 post operation. Meanwhile, PU/Ag-THA is also promising for bone regeneration under the bacteria challenge, evidenced by a final bone mineral density (BMD) ~0.6 times higher than that of the blank control at week 12. A continuous increase in BMD over time was observed in the PU/Ag-THA group, but not in the blank control and its non- or weak-antimicrobial counterparts (PU/HA and PU/THA), in which the growth rate of BMD declined after 8 weeks of operation. The enhanced osteoinductivity of PU/Ag-THA relative to blank control, PU/HA and PU/THA was also confirmed by the Runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) immunohistochemical staining. The above findings suggest that antimicrobial Ag-THA may serve as a promising and easy-to-produce antimicrobial mineral for the development of antimicrobial orthopedic composite implants to address the challenges in orthopedic surgeries, especially where infection may become a challenging condition to treat.
Collapse
Affiliation(s)
- Xinggui Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China; Department of Orthopedics, The Affiliated Hospital of Southwest Medical University Luzhou, Sichuan 646000, PR China; University Hospital for Orthopedics and Accident Surgery (OUC), Carl Gustav Carus Dresden University Hospital, TU Dresden, Institute of Public Law of the Free State of Saxony, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Zhihui Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Chuying Ma
- Aleo BME, Inc., 200 Innovation Blvd, Suite 210A, State College, PA 16803, USA
| | - Min Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Chengfei Zhang
- Department of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yuping Yuan
- Department of Material Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaowei Yuan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Chao Liu
- Aleo BME, Inc., 200 Innovation Blvd, Suite 210A, State College, PA 16803, USA.
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Wagner JM, Schmidt SV, Dadras M, Wallner C, Huber J, Sogorski A, Sacher M, Reinkemeier F, Dittfeld S, Becerikli M, Becker K, Rauch N, Lehnhardt M, Behr B. TNF-α modulation via Etanercept restores bone regeneration of atrophic non-unions. Bone 2020; 141:115569. [PMID: 32745691 DOI: 10.1016/j.bone.2020.115569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Treatment of atrophic non-unions, especially in long bones is a challenging problem in orthopedic surgery due to the high revision and failure rate after surgical intervention. Subsequently, there is a certain need for a supportive treatment option besides surgical treatment. In our previous study we gained first insights into the dynamic processes of atrophic non-union formation and observed a prolonged inflammatory reaction with upregulated TNF-α levels and bone resorption. In this study we aimed to improve bone regeneration of atrophic non-unions via TNF-α modulation in a previously established murine femoral segmental defect model. Animals that developed atrophic non-unions of the femur after 5 and 10 weeks were treated systemically for 10 and 5 weeks with Etanercept, a soluble TNF-α antibody. μCT scans and histology revealed bony bridging of the fracture gap in the treatment group, while bone formation in control animals without treatment was not evident. Moreover, osteoclasts were markedly decreased via modulation of the RANKL/OPG axis due to Etanercept treatment. Additionally, immunomodulatory effects via Etanercept could be observed as further inflammatory agents, such as TGF-β, IL6, MMP9 and 13 were decreased in both treatment groups. This study is the first showing beneficial effects of Etanercept treatment on bone regeneration of atrophic non-union formation. Moreover, the results of this study provide a new and promising therapeutic option which might reduce the failure rate of revision surgeries of atrophic non-unions.
Collapse
Affiliation(s)
| | | | - Mehran Dadras
- University Hospital BG Bergmannsheil Bochum, Germany
| | | | - Julika Huber
- University Hospital BG Bergmannsheil Bochum, Germany
| | | | - Maxi Sacher
- University Hospital BG Bergmannsheil Bochum, Germany
| | | | | | | | | | | | | | - Björn Behr
- University Hospital BG Bergmannsheil Bochum, Germany.
| |
Collapse
|
15
|
Han H, Liu L, Chen M, Liu Y, Wang H, Chen L. The optimal compound reference genes for qRT-PCR analysis in the developing rat long bones under physiological conditions and prenatal dexamethasone exposure model. Reprod Toxicol 2020; 98:242-251. [DOI: 10.1016/j.reprotox.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
|
16
|
Schupbach D, Comeau-Gauthier M, Harvey E, Merle G. Wnt modulation in bone healing. Bone 2020; 138:115491. [PMID: 32569871 DOI: 10.1016/j.bone.2020.115491] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Genetic studies have been instrumental in the field of orthopaedics for finding tools to improve the standard management of fractures and delayed unions. The Wnt signaling pathway that is crucial for development and maintenance of many organs also has a very promising pathway for enhancement of bone regeneration. The Wnt pathway has been shown to have a direct effect on stem cells during bone regeneration, making Wnt a potential target to stimulate bone repair after trauma. A more complete view of how Wnt influences animal bone regeneration has slowly come to light. This review article provides an overview of studies done investigating the modulation of the canonical Wnt pathway in animal bone regeneration models. This not only includes a summary of the recent work done elucidating the roles of Wnt and β-catenin in fracture healing, but also the results of thirty transgenic studies, and thirty-eight pharmacological studies. Finally, we discuss the discontinuation of sclerostin clinical trials, ongoing clinical trials with lithium, the results of Dkk antibody clinical trials, the shift into combination therapies and the future opportunities to enhance bone repair and regeneration through the modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Drew Schupbach
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Marianne Comeau-Gauthier
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Edward Harvey
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada.
| | - Geraldine Merle
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Department of Chemical Engineering, Polytechnique Montreal, 2500, chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
17
|
Kim WJ, Shin HL, Kim BS, Kim HJ, Ryoo HM. RUNX2-modifying enzymes: therapeutic targets for bone diseases. Exp Mol Med 2020; 52:1178-1184. [PMID: 32788656 PMCID: PMC8080656 DOI: 10.1038/s12276-020-0471-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
RUNX2 is a master transcription factor of osteoblast differentiation. RUNX2 expression in the bone and osteogenic front of a suture is crucial for cranial suture closure and membranous bone morphogenesis. In this manner, the regulation of RUNX2 is precisely controlled by multiple posttranslational modifications (PTMs) mediated by the stepwise recruitment of multiple enzymes. Genetic defects in RUNX2 itself or in its PTM regulatory pathways result in craniofacial malformations. Haploinsufficiency in RUNX2 causes cleidocranial dysplasia (CCD), which is characterized by open fontanelle and hypoplastic clavicles. In contrast, gain-of-function mutations in FGFRs, which are known upstream stimulating signals of RUNX2 activity, cause craniosynostosis (CS) characterized by premature suture obliteration. The identification of these PTM cascades could suggest suitable drug targets for RUNX2 regulation. In this review, we will focus on the mechanism of RUNX2 regulation mediated by PTMs, such as phosphorylation, prolyl isomerization, acetylation, and ubiquitination, and we will summarize the therapeutics associated with each PTM enzyme for the treatment of congenital cranial suture anomalies.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Lim Shin
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Bong-Soo Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Jung Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Mo Ryoo
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
18
|
Zhang XT, Sun M, Zhang L, Dai YK, Wang F. The potential function of miR-135b-mediated JAK2/STAT3 signaling pathway during osteoblast differentiation. Kaohsiung J Med Sci 2020; 36:673-681. [PMID: 32319222 DOI: 10.1002/kjm2.12217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 11/09/2022] Open
Abstract
MC3T3-E1 cells were divided into Blank, miR-135b mimics, miR-135b inhibitors, AG490, and miR-135b inhibitors + AG490 groups. Cell viability was determined by MTT, alkaline phosphatase (ALP) activity by the corresponding kit, and mineralization by alizarin red staining. Furthermore, miR-135b, osteoblast-specific genes, and JAK2/STAT3 were detected through quantitative real-time polymerase chain reaction and Western blotting. MiR-135b downregulation was identified with increased JAK2 during osteoblast differentiation. JAK2 was confirmed as a target gene of miR-135b by dual-luciferase reporter assay. MC3T3-E1 cells in both miR-135b mimics and AG490 groups manifested decrease in cell viability, ALP activity, and mineralized nodes, as well as reductions in osteoblast-specific genes and proteins of JAK2, p-JAK2, and p-STAT3, but increase in cell apoptosis. However, opposite changes of the above factors were shown in cells from miR-135b inhibitors group. Notably, AG490 could reverse promotion effects of miR-135b inhibitors on osteoblast differentiation. Inhibiting miR-135b could activate the JAK2/STAT3 signaling pathway, thereby improving the cell viability and promoting the osteoblast differentiation.
Collapse
Affiliation(s)
- Xiang-Tao Zhang
- Department of Orthopedics, The No.1 Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Min Sun
- Department of Neonatology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Li Zhang
- The second Department of Orthopedics, The Third Hospital of Hebei Medical University & You Yi Branch, Shijiazhuang, Hebei, China
| | - Yi-Ke Dai
- The first Department of Arthrosis, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Wang
- The first Department of Arthrosis, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Yang B, Li S, Chen Z, Feng F, He L, Liu B, He T, Wang X, Chen R, Chen Z, Xie P, Rong L. Amyloid β peptide promotes bone formation by regulating Wnt/β-catenin signaling and the OPG/RANKL/RANK system. FASEB J 2020; 34:3583-3593. [PMID: 31944393 DOI: 10.1096/fj.201901550r] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Amyloid β peptide (Aβ) is involved in osteoporosis, but the effects of Aβ on osteoblast and bone formation remain unclear. In this study, we investigated the effect of Aβ on bone formation. METHODS An animal model of osteoporosis was established by ovariectomy in C57BL/6 mice. The mice received intraperitoneal injection of Aβ. The effect of Aβ on the osteogenic differentiation of human bone marrow stromal stem cells (hBMSCs) and differentiation of both pre-osteoblasts and pre-osteoclasts in a co-culture system were investigated. RESULTS In the animal study, intraperitoneal injection of Aβ for 8 weeks promoted early and late osteogenic differentiation of hBMSCs. Aβ treatment significantly elevated osterix+ (osteoblastic) cells but decreased TRAP+ cells (osteoclasts) in the distal femur bone. In vitro study showed that Aβ treatment significantly enhanced matrix mineralization and osteogenic markers (Runx2 and osteocalcin). Aβ treatment activated Wnt/β-catenin signaling in hBMSCs. The effect of Aβ was blocked by DKK1 (a Wnt/β-catenin inhibitor) treatment. In the co-culture system, Aβ treatment significantly increased the ALP activities of MC3T3-E1 cells (pre-osteoblasts) but reduced the TRAP+ RAW264.7 cells (pre-osteoclasts). Aβ treatment upregulated TCF1 and OPG proteins in MC3T3-E1 cells. Aβ treatment upregulated IκB-α but downregulated NFATc1protein in RAW264.7 cells. These effects were blocked by XAV-939 (a Wnt signaling antagonist), and then rescued by additional Wnt3a (a Wnt agonist). CONCLUSION Aβ treatment simultaneously promoted osteogenic differentiation via Wnt/β-catenin signaling, and inhibited osteoclasts differentiation via the OPG/RANKL/RANK system, suggesting Aβ is a positive regulator of osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Bu Yang
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Shangfu Li
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng Feng
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Lei He
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Bin Liu
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Tianwei He
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Xuan Wang
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Ruiqiang Chen
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zihao Chen
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Peigen Xie
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Limin Rong
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
20
|
Bourgeois Y, Boissinot S. Selection at behavioural, developmental and metabolic genes is associated with the northward expansion of a successful tropical colonizer. Mol Ecol 2019; 28:3523-3543. [PMID: 31233650 DOI: 10.1111/mec.15162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
What makes a species able to colonize novel environments? This question is key to understand the dynamics of adaptive radiations and ecological niche shifts, but the mechanisms that underlie expansion into novel habitats remain poorly understood at a genomic scale. Lizards from the genus Anolis are typically tropical, and the green anole (Anolis carolinensis) constitutes an exception since it expanded into temperate North America from subtropical Florida. Thus, we used the green anole as a model to investigate signatures of selection associated with colonization of a new environment, namely temperate North America. To this end, we analysed 29 whole-genome sequences, covering the entire native range of the species. We used a combination of recent methods to quantify both positive and balancing selection in northern populations, including FST outlier methods, machine learning and ancestral recombination graphs. We naively scanned for genes of interest and assessed the overlap between multiple tests. Strikingly, we identified many genes involved in behaviour, suggesting that the recent successful colonization of northern environments may have been linked to behavioural shifts as well as physiological adaptation. Using a candidate genes strategy, we determined that genes involved in response to cold or behaviour displayed more frequently signals of selection, while controlling for local recombination rate, gene clustering and gene length. In addition, we found signatures of balancing selection at immune genes in all investigated genetic groups, but also at genes involved in neuronal and anatomical development.
Collapse
Affiliation(s)
- Yann Bourgeois
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
21
|
Mattson AM, Begun DL, Molstad DHH, Meyer MA, Oursler MJ, Westendorf JJ, Bradley EW. Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice. J Biol Chem 2019; 294:11772-11784. [PMID: 31189651 DOI: 10.1074/jbc.ra119.007660] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Enhanced osteoclast-mediated bone resorption and diminished formation may promote bone loss. Pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (Phlpp1) regulates protein kinase C (PKC) and other proteins in the control of bone mass. Germline Phlpp1 deficiency reduces bone volume, but the mechanisms remain unknown. Here, we found that conditional Phlpp1 deletion in murine osteoclasts increases their numbers, but also enhances bone mass. Despite elevating osteoclasts, Phlpp1 deficiency did not increase serum markers of bone resorption, but elevated serum markers of bone formation. These results suggest that Phlpp1 suppresses osteoclast formation and production of paracrine factors controlling osteoblast activity. Phlpp1 deficiency elevated osteoclast numbers and size in ex vivo osteoclastogenesis assays, accompanied by enhanced expression of proto-oncogene C-Fms (C-Fms) and hyper-responsiveness to macrophage colony-stimulating factor (M-CSF) in bone marrow macrophages. Although Phlpp1 deficiency increased TRAP+ cell numbers, it suppressed actin-ring formation and bone resorption in these assays. We observed that Phlpp1 deficiency increases activity of PKCζ, a PKC isoform controlling cell polarity, and that addition of a PKCζ pseudosubstrate restores osteoclastogenesis and bone resorption of Phlpp1-deficient osteoclasts. Moreover, Phlpp1 deficiency increased expression of the bone-coupling factor collagen triple helix repeat-containing 1 (Cthrc1). Conditioned growth medium derived from Phlpp1-deficient osteoclasts enhanced mineralization of ex vivo osteoblast cultures, an effect that was abrogated by Cthrc1 knockdown. In summary, Phlpp1 critically regulates osteoclast numbers, and Phlpp1 deficiency enhances bone mass despite higher osteoclast numbers because it apparently disrupts PKCζ activity, cell polarity, and bone resorption and increases secretion of bone-forming Cthrc1.
Collapse
Affiliation(s)
- Anna M Mattson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - David H H Molstad
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Margaret A Meyer
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901.,Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55901.,Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55901
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901 .,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, Minnesota 55901
| |
Collapse
|
22
|
Zuo Z, Ye F, Liu Z, Huang J, Gong Y. MicroRNA-153 inhibits cell proliferation, migration, invasion and epithelial-mesenchymal transition in breast cancer via direct targeting of RUNX2. Exp Ther Med 2019; 17:4693-4702. [PMID: 31086603 DOI: 10.3892/etm.2019.7470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
A number of microRNAs (miRNAs) are involved in the development and malignant progression of numerous types of human cancer including breast cancer. The underlying regulatory mechanism of miRNA-153 (miR-153) in breast cancer progression remains largely unknown. The present study demonstrated that miR-153 expression levels were significantly reduced in breast cancer tissue samples and cell lines, compared with adjacent healthy tissue samples and normal human breast cell line MCF-10A. In addition, low miR-153 expression was associated with advanced clinical staging and metastasis in patients with breast cancer. However, no association with age, subtype or differentiation was identified. Furthermore, patients with breast cancer with low miR-153 expression had poor prognosis, compared with patients with breast cancer with high miR-153 expression. Overexpression of miR-153 reduced proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in breast cancer SK-BR-3 and BT-549 cells. Runt-related transcription factor 2 (RUNX2), which was revealed to be significantly upregulated in breast cancer, was verified as a target gene of miR-153 in SK-BR-3 and BT-549 cells by luciferase reporter gene assay. High RUNX2 expression was associated with advanced clinical staging as well as distant and lymph node metastasis in patients with breast cancer. However, no association with age, subtype or differentiation was identified. Additionally, an inverse correlation between miR-153 and RUNX2 mRNA expression levels was observed in breast cancer tissues. RUNX2 overexpression reduced the suppressive effects of miR-153 on the proliferation, migration, invasion and EMT of SK-BR-3 and BT-549 cells. The present study indicated that miR-153 may serve a role in breast tumor growth and metastasis via direct targeting of RUNX2. The miR-153/RUNX2 axis may be used as a potential therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Zhongkun Zuo
- Department of Minimal Invasive Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Fei Ye
- Department of Minimal Invasive Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ziru Liu
- Department of Minimal Invasive Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jiangsheng Huang
- Department of Minimal Invasive Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yi Gong
- Department of Minimal Invasive Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
23
|
Srinivasaiah S, Musumeci G, Mohan T, Castrogiovanni P, Absenger-Novak M, Zefferer U, Mostofi S, Bonyadi Rad E, Grün NG, Weinberg AM, Schäfer U. A 300 μm Organotypic Bone Slice Culture Model for Temporal Investigation of Endochondral Osteogenesis. Tissue Eng Part C Methods 2019; 25:197-212. [DOI: 10.1089/ten.tec.2018.0368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Sriveena Srinivasaiah
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Giuseppe Musumeci
- Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Tamilselvan Mohan
- Institute of Chemistry, University of Graz, Graz, Austria
- Laboratory for Characterization and Processing, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Paola Castrogiovanni
- Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Ulrike Zefferer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Sepideh Mostofi
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
| | - Ehsan Bonyadi Rad
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nicole Gabriele Grün
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
| | | | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
24
|
Wang C, Tanjaya J, Shen J, Lee S, Bisht B, Pan HC, Pang S, Zhang Y, Berthiaume EA, Chen E, Da Lio AL, Zhang X, Ting K, Guo S, Soo C. Peroxisome Proliferator-Activated Receptor-γ Knockdown Impairs Bone Morphogenetic Protein-2-Induced Critical-Size Bone Defect Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:648-664. [PMID: 30593824 PMCID: PMC6412314 DOI: 10.1016/j.ajpath.2018.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/13/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
The Food and Drug Administration-approved clinical dose (1.5 mg/mL) of bone morphogenetic protein-2 (BMP2) has been reported to induce significant adverse effects, including cyst-like adipose-infiltrated abnormal bone formation. These undesirable complications occur because of increased adipogenesis, at the expense of osteogenesis, through BMP2-mediated increases in the master regulatory gene for adipogenesis, peroxisome proliferator-activated receptor-γ (PPARγ). Inhibiting PPARγ during osteogenesis has been suggested to drive the differentiation of bone marrow stromal/stem cells toward an osteogenic, rather than an adipogenic, lineage. We demonstrate that knocking down PPARγ while concurrently administering BMP2 can reduce adipogenesis, but we found that it also impairs BMP2-induced osteogenesis and leads to bone nonunion in a mouse femoral segmental defect model. In addition, in vitro studies using the mouse bone marrow stromal cell line M2-10B4 and mouse primary bone marrow stromal cells confirmed that PPARγ knockdown inhibits BMP2-induced adipogenesis; attenuates BMP2-induced cell proliferation, migration, invasion, and osteogenesis; and escalates BMP2-induced cell apoptosis. More important, BMP receptor 2 and 1B expression was also significantly inhibited by the combined BMP2 and PPARγ knockdown treatment. These findings indicate that PPARγ is critical for BMP2-mediated osteogenesis during bone repair. Thus, uncoupling BMP2-mediated osteogenesis and adipogenesis using PPARγ inhibition to combat BMP2's adverse effects may not be feasible.
Collapse
Affiliation(s)
- Chenchao Wang
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China; Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Justine Tanjaya
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Jia Shen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Soonchul Lee
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Bharti Bisht
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Hsin Chuan Pan
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Shen Pang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Yulong Zhang
- Departments of Materials Science and Engineering, and Division of Advanced Prosthodontics, University of California, Los Angeles, Los Angeles, California
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Eric Chen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Andrew L Da Lio
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
25
|
Liu X, Niu Y, Xie W, Wei D, Du Q. Tanshinone IIA promotes osteogenic differentiation of human periodontal ligament stem cells via ERK1/2-dependent Runx2 induction. Am J Transl Res 2019; 11:340-350. [PMID: 30787991 PMCID: PMC6357334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Mesenchymal stem cells (MSCs) of the dental or craniofacial origin include Human periodontal ligament stem cells (hPDLSCs), which are able to readily differentiate into osteoblasts. Tanshinone IIA (TSA) is a diterpene quinone compound that is derived from Danshen (also known as Salvia miltiorrhiza) used frequently in the context of traditional Chinese medicine (TCM). This study sought to assess how TSA affects the osteogenic differentiation of hPDLSCs. We found that TSA promotes both this differentiation and hPDLSC maturation. This was dependent on TSA-mediated activation of the ERK1/2 signaling pathway, and ERK1/2 inhibition disrupted TSA-induced Runx2 expression. From these results, we conclude that TSA can induce hPDLSC osteogenesis through the ERK1/2-Runx2 axis, suggesting that TSA is a viable therapeutic option for regenerative medical approaches aimed at the treatment of periodontitis.
Collapse
Affiliation(s)
- Xin Liu
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Yumei Niu
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Weili Xie
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Daqing Wei
- Harbin Institute of Technology School of Materials Science and EngineeringHarbin, Heilongjiang Province, China
| | - Qing Du
- Harbin Institute of Technology School of Materials Science and EngineeringHarbin, Heilongjiang Province, China
| |
Collapse
|
26
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
27
|
Lotlikar PP, Creanga AG, Singer SR. Clinical and radiological findings in a severe case of cleidocranial dysplasia. BMJ Case Rep 2018; 2018:bcr-2018-226671. [PMID: 30420564 PMCID: PMC6254376 DOI: 10.1136/bcr-2018-226671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 11/04/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is a rare congenital autosomal dominant condition, causing hypoplasia of the clavicle, abnormal formation of teeth, skeletal and craniofacial bones. CCD is caused by the mutation of RUNX2/CBFA1 present in the short arm of chromosome 6 at position 21.1, a transcription factor essential for the formation of teeth, cartilage and bone. Patients with CCD show the classical features of excessive mobility of the shoulder bone, lack of resorption of the deciduous teeth, failure to erupt permanent teeth, multiple impacted and supernumerary teeth, and open fontanelle and sutures of the skull. In this article we report a case of CCD in a 16-year-old male patient, with an aim to highlight the clinical, radiological and recommended treatment guidelines.
Collapse
Affiliation(s)
- Priti P Lotlikar
- Division of Oral and Maxillofacial Radiology, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Adriana G Creanga
- Division of Oral and Maxillofacial Radiology, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Steven R Singer
- Division of Oral and Maxillofacial Radiology, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
28
|
Wu X, Zheng S, Ye Y, Wu Y, Lin K, Su J. Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit. Biomater Sci 2018; 6:1147-1158. [PMID: 29561031 DOI: 10.1039/c8bm00127h] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The reconstruction of bone defects by guiding autologous bone tissue regeneration with artificial biomaterials is a potential strategy in the area of bone tissue engineering. The development of new polymers with good biocompatibility, favorable mechanical properties, and osteoinductivity is of vital importance. Graphene and its derivatives have attracted extensive interests due to the exceptional physiochemical and biological properties of graphene. In this study, poly(lactic-co-glycolic acid) (PLGA) films incorporated by graphene nanoplates were fabricated. The results indicated that the incorporation of proper graphene nanoplates into poly(lactic-co-glycolic acid) film could enhance the adhesion and proliferation of rat bone marrow-derived mesenchymal stem cells (rBMSCs). The augmentation of alkaline phosphatase activity, calcium mineral deposition, and the expression level of osteogenic-related genes of rBMSCs on the composite films were observed. Moreover, the incorporation of graphene might activate the PI3K/Akt/GSK-3β/β-catenin signaling pathway, which appeared to be the mechanism behind the osteoinductive properties of graphene. Moreover, the in vivo furcation defect implantation results revealed better guiding bone regeneration properties in the graphene-incorporated group. Thus, we highlight this graphene-incorporated film as a promising platform for the growth and osteogenic differentiation of BMSCs that can achieve application in bone regeneration.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| | - Shang Zheng
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| | - Yuanzhou Ye
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| | - Yuchen Wu
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| | - Kaili Lin
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China and Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jiansheng Su
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| |
Collapse
|
29
|
Betz VM, Kochanek S, Rammelt S, Müller PE, Betz OB, Messmer C. Recent advances in gene-enhanced bone tissue engineering. J Gene Med 2018; 20:e3018. [PMID: 29601661 DOI: 10.1002/jgm.3018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/18/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022] Open
Abstract
The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene-enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost-effective manner, allowing translation from bench to bedside. Several promising methods based on the intra-operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene-enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene-enhanced bone tissue engineering will become a clinical reality within the next few years.
Collapse
Affiliation(s)
- Volker M Betz
- Department of Gene Therapy, University of Ulm, Ulm, Germany.,Center for Rehabilitation, RKU - University and Rehabilitation Hospitals Ulm, Ulm, Germany
| | | | - Stefan Rammelt
- University Center of Orthopedics and Traumatology and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - Peter E Müller
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver B Betz
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carolin Messmer
- Center for Rehabilitation, RKU - University and Rehabilitation Hospitals Ulm, Ulm, Germany
| |
Collapse
|
30
|
Liu X, Wang Y, Zhang L, Xu Z, Chu Q, Xu C, Sun Y, Gao Y. Combination of Runx2 and Cbfβ upregulates Amelotin gene expression in ameloblasts by directly interacting with cis‑enhancers during amelogenesis. Mol Med Rep 2018; 17:6068-6076. [PMID: 29436627 DOI: 10.3892/mmr.2018.8564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 11/05/2022] Open
Abstract
Amelotin (Amtn) is a recently identified enamel protein secreted by ameloblasts at late stage of enamel development. Runt‑related transcription factor 2 (Runx2) in combination with the coactivator core‑binding factor β (Cbfβ) regulates the early stages of tooth development. The aim of the present study was to investigate the role of Runx2 in the regulation of Amtn gene expression in ameloblasts. Immunohistochemistry was performed and the results revealed that Runx2 protein was predominantly expressed in the nuclei of ameloblasts during the transition stage and the maturation stage of enamel development, whereas Cbfβ was expressed in ameloblasts from the secretory stage to the maturation stage. Reverse transcription‑quantitative polymerase chain reaction results demonstrated that Runx2 knockdown decreased Amtn expression in ameloblast‑lineage cells and co‑expression of Runx2 and Cbfβ in ameloblast lineage cells induced an upregulation in Amtn gene expression. Two putative Runx2‑binding sites within the Amtn promoter were identified using bioinformatics analysis. Results of an electrophoretic mobility shift assay and chromatin immunoprecipitation indicated that Runx2/Cbfβ bound to specific DNA sequences. Site‑directed mutagenesis of the Runx2 binding sites within the Amtn promoter resulted in decreased basal promoter activity and did not affect the overexpressed Runx2/Cbfβ. The results of the present study suggest that Runx2 upregulates Amtn gene expression via binding directly to Runx2 sites within the Amtn promoter during amelogenesis.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Oral Biology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yumin Wang
- Department of Pediatric Dentistry, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Li Zhang
- Department of Pediatric Dentistry, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhenzhen Xu
- Department of Pediatric Dentistry, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qing Chu
- Department of Pediatric Dentistry, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Chang Xu
- Department of Pediatric Dentistry, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yan Sun
- Department of Oral Biology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuguang Gao
- Department of Oral Biology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
31
|
Feigenson M, Shull LC, Taylor EL, Camilleri ET, Riester SM, van Wijnen AJ, Bradley EW, Westendorf JJ. Histone Deacetylase 3 Deletion in Mesenchymal Progenitor Cells Hinders Long Bone Development. J Bone Miner Res 2017; 32:2453-2465. [PMID: 28782836 PMCID: PMC5732041 DOI: 10.1002/jbmr.3236] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/19/2017] [Accepted: 08/03/2017] [Indexed: 01/21/2023]
Abstract
Long bone formation is a complex process that requires precise transcriptional control of gene expression programs in mesenchymal progenitor cells. Histone deacetylases (Hdacs) coordinate chromatin structure and gene expression by enzymatically removing acetyl groups from histones and other proteins. Hdac inhibitors are used clinically to manage mood disorders, cancers, and other conditions but are teratogenic to the developing skeleton and increase fracture risk in adults. In this study, the functions of Hdac3, one of the enzymes blocked by current Hdac inhibitor therapies, in skeletal mesenchymal progenitor cells were determined. Homozygous deletion of Hdac3 in Prrx1-expressing cells prevented limb lengthening, altered pathways associated with endochondral and intramembranous bone development, caused perinatal lethality, and slowed chondrocyte and osteoblast differentiation in vitro. Transcriptomic analysis revealed that Hdac3 regulates vastly different pathways in mesenchymal cells expressing the Prxx1-Cre driver than those expressing the Col2-CreERT driver. Notably, Fgf21 was elevated in Hdac3-CKOPrrx1 limbs as well as in chondrogenic cells exposed to Hdac3 inhibitors. Elevated expression of Mmp3 and Mmp10 transcripts was also observed. In conclusion, Hdac3 regulates distinct pathways in mesenchymal cell populations and is required for mesenchymal progenitor cell differentiation and long bone development. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marina Feigenson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lomeli Carpio Shull
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Earnest L Taylor
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Ren H, Shen G, Tang J, Qiu T, Zhang Z, Zhao W, Yu X, Huang J, Liang D, Yao Z, Yang Z, Jiang X. Promotion effect of extracts from plastrum testudinis on alendronate against glucocorticoid-induced osteoporosis in rat spine. Sci Rep 2017; 7:10617. [PMID: 28878388 PMCID: PMC5587701 DOI: 10.1038/s41598-017-10614-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Alendronate (ALN) is a key therapeutic used to treat glucocorticoid-induced osteoporosis (GIOP), but may induce severe side effects. We showed earlier that plastrum testudinis extracts (PTE) prevented and treated GIOP in vivo. However, clinically, PTE is seldom used alone. Herein, we reveal the synergistic effect of ALN and PTE can treat GIOP of the rat spine and define the mechanism. Sprague-Dawley rats were randomly assigned to four groups: a vehicle group, a GIOP group, an ALN group, and an ALN+PTE group. Each group was further divided into two experimental phases, including dexamethasone (DXM) intervention and withdrawal. Bone mass, microarchitecture, biomechanics, bone-turnover markers, and histomorphology were evaluated. The mRNA and protein expression levels of CTSK and Runx2 were detemined. We found that ALN+PTE improved bone quantity and quality, bone strength, bone turnover; and mitigated histological damage during glucocorticoid intervention and withdrawal. The therapeutic effect was better than that afforded by ALN alone. ALN+PTE reduced CTSK protein expression, promoted Runx2 mRNA and protein expression to varying extents, and more strongly inhibited bone resorption than did ALN alone. Overall, the synergistic effect mediated by ALN+PTE reversed GIOP during DXM intervention and withdrawal via affecting CTSK and Runx2 expression at mRNA and protein levels.
Collapse
Affiliation(s)
- Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, Guangzhou, 510405, China
| | - Gengyang Shen
- Guangzhou University of Chinese Medicine Guangzhou , Guangzhou, 510405, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, Guangzhou, 510405, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine Guangzhou , Guangzhou, 510405, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine Guangzhou , Guangzhou, 510405, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine Guangzhou , Guangzhou, 510405, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine Guangzhou , Guangzhou, 510405, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine Guangzhou , Guangzhou, 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, Guangzhou, 510405, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, Guangzhou, 510405, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, Guangzhou, 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, Guangzhou, 510405, China. .,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
33
|
Samsonraj RM, Dudakovic A, Zan P, Pichurin O, Cool SM, van Wijnen AJ. A Versatile Protocol for Studying Calvarial Bone Defect Healing in a Mouse Model. Tissue Eng Part C Methods 2017; 23:686-693. [PMID: 28537529 DOI: 10.1089/ten.tec.2017.0205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal models are vital tools for the preclinical development and testing of therapies aimed at providing solutions for several musculoskeletal disorders. For bone tissue engineering strategies addressing nonunion conditions, rodent models are particularly useful for studying bone healing in a controlled environment. The mouse calvarial defect model permits evaluation of drug, growth factor, or cell transplantation efficacy, together with offering the benefit of utilizing genetic models to study intramembranous bone formation within defect sites. In this study, we describe a detailed methodology for creating calvarial defects in mouse and present our results on bone morphogenetic protein-2-loaded fibrin scaffolds, thus advocating the utility of this functional orthotopic mouse model for the evaluation of therapeutic interventions (such as growth factors or cells) intended for successful bone regeneration therapies.
Collapse
Affiliation(s)
| | - Amel Dudakovic
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Pengfei Zan
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Oksana Pichurin
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Simon M Cool
- 2 Glycotherapeutics Group, Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore .,3 Department of Orthopaedic Surgery, National University of Singapore , Singapore
| | - Andre J van Wijnen
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota.,4 Department of Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota.,5 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
34
|
Yu M, Chen L, Peng Z, Nüssler AK, Wu Q, Liu L, Yang W. Mechanism of deoxynivalenol effects on the reproductive system and fetus malformation: Current status and future challenges. Toxicol In Vitro 2017; 41:150-158. [PMID: 28286114 DOI: 10.1016/j.tiv.2017.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 11/16/2022]
Abstract
Deoxynivalenol (DON) is a toxic fungal secondary metabolite produced by molds of the Fusarium genus, and it is known to cause a spectrum of diseases both in humans and animals, such as emesis, diarrhea, anorexia, immunotoxicity, hematological disorders, impairment of maternal reproduction, and fetal development. The recently revealed teratogenic potential of DON has received much attention. In various animal models, it has been shown that DON led to skeletal deformities of the fetus. However, the underlying mechanisms are not yet fully understood, and toxicological data are also scarce. Several animal research studies highlight the potential link between morphological abnormalities and changes of autophagy in the reproductive system. Because autophagy is involved in fetal development, maintenance of placental function, and bone remodeling, this mechanism has become a high priority for future research. The general aim of the present review is to deliver a comprehensive overview of the current state of knowledge of DON-induced reproductive toxicity in different animal models and to provide some prospective ideas for further research. The focus of the current review is to summarize toxic and negative effects of DON exposure on the reproductive system and the potential underlying molecular mechanisms in various animal models.
Collapse
Affiliation(s)
- Miao Yu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
35
|
Abstract
OBJECTIVE This study investigated the effects of combined ovariectomy with dexamethasone treatment on rat lumbar vertebrae in comparison with osteoporosis induced via ovariectomy or dexamethasone alone, and analysis of the associated molecular mechanism. METHODS Sixty-two female Sprague-Dawley rats (3 months' old) were randomly divided into five treatment groups: an untreated baseline (BL) group; those receiving a sham operation (SHAM); those receiving a dexamethasone injection alone (DEXA); those undergoing bilateral ovariectomy (OVX); and those subjected to both ovariectomy and dexamethasone injection (OVX-DEXA). Animals in the BL group were euthanized at the beginning of the experiment, whereas animals in the remaining groups were euthanized at the end of the first month (M1), second month (M2), or third month (M3). Bone mineral density, bone microarchitecture, biomechanical properties of vertebrae, and serum levels of estrogen, amino-terminal propeptide of type I collagen (PINP), and β-C-telopeptide of type I collagen (β-CTX) were measured. In addition, we examined biglycan, runt-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), lipoprotein receptor-related protein-5 (LRP-5), cathepsin K (CTSK), and sclerostin mRNA expression. RESULTS Bone mineral content and bone mineral density were markedly lower in the OVX-DEXA group compared with the OVX group at all time points examined. The relative bone surface (BS/TV, mm(-1), relative bone volume (BV/TV,%), and trabecular number (Tb.N, 1/mm) were markedly lower in the OVX-DEXA group compared with the remaining groups, whereas trabecular separation (Tb.Sp, mm) was markedly higher in the OVX-DEXA group compared with the remaining groups at M2 or M3. The OVX-DEXA group showed lower compressive strength and lower stiffness compared with the other groups at M2 and M3. Compressive displacement and energy absorption capacity were also markedly lower in the OVX-DEXA group compared with the OVX group at M3. Estradiol levels were markedly lower in the OVX-DEXA group compared with the other groups. Biglycan, runt-related transcription factor 2, osteoprotegerin, and lipoprotein receptor-related protein-5 were down-regulated in the DEXA, OVX, and OVX-DEXA groups compared with the BL and SHAM groups, whereas cathepsin K and sclerostin were up-regulated in the OVX-DEXA group compared with the DEXA and OVX groups. CONCLUSIONS Ovariectomy combined with dexamethasone induced more serious osteoporosis in the rat lumbar spine than either ovariectomy or dexamethasone alone. The combined effect may be due to a combination of suppressed bone formation and increased bone resorption related to an estradiol deficit.
Collapse
|
36
|
Evidence for Altered Canonical Wnt Signaling in the Trabecular Bone of Elderly Postmenopausal Women with Fragility Femoral Fracture. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8169614. [PMID: 27999816 PMCID: PMC5143692 DOI: 10.1155/2016/8169614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/07/2016] [Accepted: 10/30/2016] [Indexed: 01/07/2023]
Abstract
Wnt signaling, a major regulator of bone formation and homeostasis, might be involved in the bone loss of osteoporotic patients and the consequent impaired response to fracture. Therefore we analyzed Wnt-related, osteogenic, and adipogenic genes in bone tissue of elderly postmenopausal women undergoing hip replacement for either femoral fracture or osteoarthritis. Bone specimens derived from the intertrochanteric region of the femurs of 25 women with fracture (F) and 29 with osteoarthritis without fracture (OA) were analyzed. Specific miRNAs were analyzed in bone and in matched blood samples. RUNX2, BGP, and OPG showed lower expression in F than in OA samples, while OSX, OPN, BSP, and RANKL were not different. Inhibitory genes of Wnt pathway were lower in F versus OA. β-Catenin protein levels were higher in F versus OA, whereas its cotranscriptional regulator (Lef1) was lower in F group. miR-204, which targets RUNX2, and miR-130a, which inhibits PPARγ, were lower and higher, respectively, in F versus OA serum samples. The present study showed an inefficient Wnt signal transduction in F group despite higher β-catenin protein levels, consistent with the expected overall postfracture systemic activation towards osteogenesis. This transcriptional inefficiency could contribute to the osteoporotic bone fragility.
Collapse
|
37
|
Liang D, Ren H, Qiu T, Shen G, Xie B, Wei Q, Yao Z, Tang J, Zhang Z, Jiang X. Extracts from plastrum testudinis reverse glucocorticoid-induced spinal osteoporosis of rats via targeting osteoblastic and osteoclastic markers. Biomed Pharmacother 2016; 82:151-60. [PMID: 27470350 DOI: 10.1016/j.biopha.2016.04.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 01/13/2023] Open
Abstract
Extracts from plastrum testudinis (PTE), an important traditional Chinese medicine, have been demonstrated promotion of osteoblastic function in vitro. This study aims to investigate the protective effect of PTE on glucocorticoid-induced osteoporosis(GIOP) in vivo and analyze therapeutic targets of PTE on GIOP. SD rats were randomly assigned to two experiments: preventive and therapeutic experiments, in which rats respectively received oral PTE at the same time of glucocorticoid injection or after glucocorticoid injection inducing osteoporosis. BMD, microarchitecture, biomechanics, bone metabolism markers and histomorphology were evaluated. mRNA and protein expression of OPG, Runx2, CTSK and MMP9 were examined.Results showed bone quality and bone quantity were significantly elevated by PTE. Histomorphometry showed thicker and denser bone trabecularsand more osteoblasts and less osteoclasts in group of PTE intervention. The mRNA expression of OPG was significantly upregulated whereas expression of CTSK was significantly downregulatedin different groups of PTE intervention. Stronger immunostaining for Runx2 and weaker immunostaining for CTSK were observed in groups of PTE intervention. This demonstrated that PTE may reverse GIOP in prevention and management via targeting OPG, Runx2 and CTSK in mRNA and protein levels.
Collapse
Affiliation(s)
- De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine,Guangzhou 510405, China.
| | - Hui Ren
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Ting Qiu
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gengyang Shen
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bo Xie
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiushi Wei
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhida Zhang
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine,Guangzhou 510405, China.
| |
Collapse
|
38
|
Newman MR, Benoit DS. Local and targeted drug delivery for bone regeneration. Curr Opin Biotechnol 2016; 40:125-132. [PMID: 27064433 DOI: 10.1016/j.copbio.2016.02.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
While experimental bone regeneration approaches commonly employ cells, technological hurdles prevent translation of these therapies. Alternatively, emulating the spatiotemporal cascade of endogenous factors through controlled drug delivery may provide superior bone regenerative approaches. Surgically placed drug depots have clinical indications. Additionally, noninvasive systemic delivery can be used as needed for poorly healing bone injuries. However, a major hurdle for systemic delivery is poor bone biodistribution of drugs. Thus, peptides, aptamers, and phosphate-rich compounds with specificity toward proteins, cells, and molecules within the regenerative bone microenvironment may enable the design of targeted carriers with bone biodistribution greater than that achieved by drug alone. These carriers, combined with osteoregenerative drugs and/or stimuli-sensitive linkers, may enhance bone regeneration while minimizing off-target tissue effects.
Collapse
Affiliation(s)
- Maureen R Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle Sw Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
39
|
Zhang C, Long F, Wan J, Hu Y, He H. MicroRNA-205 acts as a tumor suppressor in osteosarcoma via targeting RUNX2. Oncol Rep 2016; 35:3275-84. [PMID: 27035764 DOI: 10.3892/or.2016.4700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/12/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRs) are a class of small non-coding RNAs, and negatively regulate gene expression through directly binding to the 3'-untranslational region (UTR) of their target mRNA, which further leads to translational repression or mRNA degradation. Recently, various miRs have been implicated in the development and progression of osteosarcoma (OS). However, the underlying mechanism has not been fully uncovered. Our study aimed to reveal the exact role of miR-205 in OS, as well as the regulatory mechanism. In this study, we found that the expression of miR-205 was significantly reduced in a total of 34 OS tissue specimens compared to their matched adjacent normal tissues. Besides, it was also remarkably downregulated in OS cell lines (Saos-2, U2OS, SW1353, and MG63) compared to human osteoblast hFOB1.19 cells. Overexpression of miR-205 caused a significant decrease in the proliferation, migration and invasion of MG63 and U2OS cells. Runt-related transcription factor 2 (RUNX2) was further identified as a target gene of miR-205. Moreover, the mRNA and protein expression of RUNX2 was reduced after miR-205 overexpression, but increased after knockdown of miR-205 in MG63 and U2OS cells. Furthermore, overexpression of RUNX2 effectively reversed the suppressive effect of miR-205 on the proliferation, migration, and invasion of MG63 and U2OS cells. The RUNX2 level was significantly increased in OS tissues compared to their matched adjacent normal tissues, as well as in OS cell lines compared to hFOB1.19 cells. In addition, the RUNX2 level was reversely correlated with the miR-205 level in OS tissues. Taken together, our data demonstrate that miR-205 acts as a tumor suppressor in OS via directly targeting RUNX2. Therefore, we suggest that the miR-205/RUNX2 axis may serve as a potential target for the treatment of OS.
Collapse
Affiliation(s)
- Can Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Feng Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Wan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yihe Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongbo He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
40
|
Ren H, Liang D, Jiang X, Tang J, Cui J, Wei Q, Zhang S, Yao Z, Shen G, Lin S. Variance of spinal osteoporosis induced by dexamethasone and methylprednisolone and its associated mechanism. Steroids 2015. [PMID: 26216207 DOI: 10.1016/j.steroids.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Glucocorticoid (GC) administration is the most common cause of secondary osteoporosis. Previous studies investigated GCs dose and frequency correlated positively with the side effects of glucocorticoid on bone health, however the impaired effect of various types of GCs on bone has not yet been reported. PURPOSE The aim is to compare the effect of long-acting (dexamethasone) and relatively short-acting glucocorticoid (methylprednisolone) on rat lumbar spine and try to explore the associated mechanism. METHOD Sprague Dawley rats (N=48) were randomly divided into four groups: baseline group (BL), control group (CON), methylprednisolone group (MP) and dexamethasone group (DEXA). BL rats were euthanized to remain as baseline (M0) at the beginning of experiment. CON group were injected daily with vehicle, while the other groups were given a daily subcutaneous injection of 1mg/kg methylprednisolone and were given a subcutaneous injection of 0.6mg/kg dexamethasone per 3days, respectively. CON, MP and DEXA groups were monitored at 4th week (M1), 8th week (M2) and 12th week (M3) after intervention. Dual-energy X-ray, micro-computed tomography, compressive test, enzyme-linked immunosorbent assay have been used for bone mineral density, microarchitecture, biomechanical property of vertebrae and levels of estrogen, PINP and β-CTX, respectively. mRNA expression analysis of Biglycan, Col1a1, MMP9, Cathepsin K, Runx2, OPG, LRP5, Sclerostin were performed. RESULT We found that the bone mineral density (BMD) was significantly lower in DEXA rats at M3 compared with MP rats. The relative surface and trabecular number were significantly lower in DEXA group than that in MP group at M2, while trabecular separation was significantly higher in DEXA group than that in MP group at the same point. The compressive strength was significantly lower in L4 of DEXA than that in MP rats at M2 and M3. The levels of both PINP and estradiol in DEXA group were lower than MP group at M3, even though without statistical significance. The expression of bone formation marker Runx2 was significantly down-regulated at M3 in DEXA group compared with MP, CON and BL groups, while the expression of Col1a1 was significantly up-regulated and biglycan, LRP-5, OPG were significantly down-regulated in GCs intervention groups compared with CON and BL groups. There were no statistical differences in MMP9, Cathepsin K, Sclerostin among CON, MP and DEXA groups. CONCLUSION These results indicate that dexamethasone, the long-acting glucocorticoid, generates more serious osteoporosis of rat lumbar spine than methylprednisolone, which is relatively short-acting glucocorticoid. The discrepancy between the two GCs inducing osteoporosis may be mainly caused by a decrease in bone formation. RUNX2 and Col1a1 may be the two of critical genes inducing the discrepant impairment.
Collapse
Affiliation(s)
- Hui Ren
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jingjing Tang
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jianchao Cui
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiushi Wei
- Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Postdoctoral Programme, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou 510010, China
| | - Shuncong Zhang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gengyang Shen
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shunxin Lin
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
41
|
Kido HW, Brassolatti P, Tim CR, Gabbai‐Armelin PR, Magri AM, Fernandes KR, Bossini PS, Parizotto NA, Crovace MC, Malavazi I, da Cunha AF, Plepis AM, Anibal FF, Rennó AC. Porous poly (
D,L
‐lactide‐
co
‐glycolide) acid/biosilicate
®
composite scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2015; 105:63-71. [DOI: 10.1002/jbm.b.33536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/26/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Hueliton W. Kido
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Patricia Brassolatti
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Carla R. Tim
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | | | - Angela M.P. Magri
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Kelly R. Fernandes
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Paulo S. Bossini
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Nivaldo A. Parizotto
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Murilo C. Crovace
- Department of Materials EngineeringVitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Iran Malavazi
- Department of Genetics and EvolutionFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Anderson F. da Cunha
- Department of Genetics and EvolutionFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Ana M.G. Plepis
- Institute of Chemistry of Sao Carlos, University of São Paulo (USP)São Carlos Sao Paulo Brazil
| | - Fernanda F. Anibal
- Department of Morphology and PathologyFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Ana C.M. Rennó
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| |
Collapse
|