1
|
Yang SB, Yuan ZD, Yu BY, Wang TT, Wang W, Li T, Wang Y, Huang J, Yuan FL, Dong WF. Sound Wave-Activated Self-Powered Adhesive Dressing for Accelerated Wound Healing. Adv Healthc Mater 2025:e2405155. [PMID: 40159778 DOI: 10.1002/adhm.202405155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Self-powered wound dressings are effective in treating chronic wounds because of their low toxicity and convenience. However, current self-powered dressings rely on the bending movements of the skin or additional large ultrasonic devices. Herein, a flexible adhesive self-powered wound dressing (FASW) that promotes skin regeneration through daily sound wave driving without relying on skin bending or external sound devices is proposed. The FASW dressing consists of a bioadhesive film (BAF), a unidirectional fluorinated conductive film (UFCF), and a liquid metal (LM) interlayer. Benefiting from the cross-linking of chitosan, the dressing exhibits excellent properties, such as biocompatibility, stretchability, tissue adhesion, and recyclability. In vivo experiments show that the FASW dressing reduced inflammation and stimulated hair follicle regeneration. This wound dressing utilizes previously overlooked natural energies for the treatment of chronic wounds, thereby enhancing the therapeutic effect of traditional self-powered dressings on individuals with movement disorders.
Collapse
Affiliation(s)
- Shuo-Bing Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Bai-Yang Yu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Tong-Tong Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei-Fu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
2
|
Liu W, Xu Y, Hu W, Zhang L, Wang C, Wang F, Zai Z, Qian X, Peng X, Chen F. Succinate dehydrogenase mediated ROS production contributes to ASIC1a-induced chondrocyte pyroptosis in rheumatoid arthritis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167585. [PMID: 39586503 DOI: 10.1016/j.bbadis.2024.167585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Our previous study showed that acidic stimuli activate acid-sensitive ion channel 1a (ASIC1a), resulting in chondrocyte destruction associated with rheumatoid arthritis (RA). However, the exact underlying processes remain unclear. Recent evidence suggests that the production of reactive oxygen species (ROS) mediated by succinate dehydrogenase (SDH), contributes to chondrocyte damage. The objective of this study was to investigate the involvement of SDH in ASIC1a-induced chondrocyte destruction in RA and to explore the associated mechanisms both in vivo and in vitro. Our findings revealed that the cartilage of mice with collagen-induced arthritis (CIA) and acid-treated chondrocytes exhibited a substantial increase in SDH expression. Furthermore, SDH inhibition attenuates acidosis-induced pyroptosis in chondrocytes. Notably, ASIC1a activation through acid stimuli increases SDH activity and pyroptosis through the Ca2+/CaMKK2/AMPK pathway in chondrocytes. Mechanistically, SDH assembly factor 2 (SDHAF2) was identified as a key modulator of SDH activity induced by ASIC1a in acid-stressed chondrocytes. Moreover, the expression of SDH in CIA mouse chondrocytes decreased and the histological characteristics of ankle joint damage were reduced by the ASIC1a-particular blocker PcTx-1. Overall, these observations suggest that ASIC1a activation under acidic conditions increases SDH activity and modulates SDHAF2, thereby promoting chondrocyte pyroptosis through the Ca2+/CaMKK2/AMPK pathway.
Collapse
Affiliation(s)
- Wenqiang Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Yayun Xu
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Weirong Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Longbiao Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Cheng Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Fengshuo Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Zhuoyan Zai
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Xuewen Qian
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Xiaoqing Peng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Wu JJ, Wu JJ, Ren YL, Li X. Comment: Concentrated Deoiled Fat: A Novel Method of Fat Processing to Improve Fat Graft Survival-A Basic Research. Aesthetic Plast Surg 2025:10.1007/s00266-025-04675-5. [PMID: 39966151 DOI: 10.1007/s00266-025-04675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025]
Abstract
Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Jing-Jing Wu
- Wuxi Institute of Integrated traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Jun-Jie Wu
- Wuxi Institute of Integrated traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Yi-Ling Ren
- Wuxi Institute of Integrated traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, 214041, Jiangsu, China.
| |
Collapse
|
4
|
Fu YF, Shi SW, Wu JJ, Yuan ZD, Wang LS, Nie H, Zhang ZY, Wu X, Chen YC, Ti HB, Zhang KY, Mao D, Ye JX, Li X, Yuan FL. Osteoclast Secretes Stage-Specific Key Molecules for Modulating Osteoclast-Osteoblast Communication. J Cell Physiol 2025; 240:e31484. [PMID: 39606839 DOI: 10.1002/jcp.31484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
In most cases of bone metabolic disorders, such as osteoporosis and osteomalacia, these conditions are often attributed to dysfunctional osteoclasts, leading to their common characterization as "destructors." In addition to the widely documented regulatory process where osteoblasts direct osteoclastic bone resorption, there is increasing evidence suggesting that osteoclasts also in turn influence osteoblastic bone formation through direct and indirect mechanisms. It is well-known that differentiation of osteoclasts involves several stages, each characterized by specific cellular features and functions. Stage-specific key molecules secreted during these stages play a critical role in mediating osteoclast-osteoblast communication. In this review, we described the different stages of osteoclast differentiation and reviewed stage-specific key molecules involved in osteoclasts-osteoblasts communication. We highlighted that a detailed understanding of these processes and molecular mechanism could facilitate the development of novel treatments for bone metabolic disorders.
Collapse
Affiliation(s)
- Yi-Fei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Shu-Wen Shi
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Lei-Sheng Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hao Nie
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xian Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Yue-Chun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hui-Bo Ti
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Ke-Yue Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Jun-Xing Ye
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xia Li
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Li X, Zhang KW, Zhang ZY, Wu JJ, Yuan ZD, Yuan FL, Chen J. Inhibiting dipeptidyl peptidase 4 positive fibroblasts using zinc sulfide cellulose nanofiber scaffolds to achieve scarless healing. Int J Biol Macromol 2024; 282:137525. [PMID: 39537047 DOI: 10.1016/j.ijbiomac.2024.137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Wound regeneration with integral function and cutaneous appendages remains challenging in wound dressing applications. Cellulose nanofibers (CNF) exhibit remarkable characteristics in wound dressing applications; however, their utility in the wound healing process is limited by insufficient scar inhibition and regenerative healing. Herein, inspired by fibroblast heterogeneity mediating wound healing and skin regeneration, we developed a CNF scaffold designed to block Dipeptidyl Peptidase 4 positive (DPP4+) fibroblasts for regenerative healing. CNF encapsulated sitagliptin (SITA) and zinc sulfide nanoparticles (NZnS), namely CNF@SITA@NZnS, to fabricate a novel biomaterial for scar reduction and regenerative healing. The scaffold promoted scarless healing and hair follicle regeneration in rats. In vivo experiments, the wounds in the scaffold showed less skin fibrosis, a better collagen ratio and more new hair follicles. In vitro experiments showed that the scaffold material promoted scarless healing, possibly by inhibiting the secretion of extracellular matrix and fibroblast-to-myofibroblast conversion. The promotion of hair follicle regeneration by the scaffold material may be due to promotion of the migration and proliferation of human hair follicle papilla cells. RNA sequencing is performed to explore the underlying mechanisms, which can activate ECM-receptor interaction pathway in favor of the wound healing process. The inhibiting effect of CNF@SITA@NZnS scaffold on DPP4+ fibroblasts can be a potential target to reduce scarring and promote skin regeneration.
Collapse
Affiliation(s)
- Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Kai-Wen Zhang
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Zheng-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China.
| | - Jinghua Chen
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Vimalraj S, Govindarajan D, Sudhakar S, Suresh R, Palanivel P, Sekaran S. Chitosan derived chito-oligosaccharides promote osteoblast differentiation and offer anti-osteoporotic potential: Molecular and morphological evidence from a zebrafish model. Int J Biol Macromol 2024; 259:129250. [PMID: 38199551 DOI: 10.1016/j.ijbiomac.2024.129250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
This study delves into the potential of chito-oligosaccharides (COS) to promote osteoblast differentiation and prevent osteoporosis, utilizing experiments with mouse MSCs and the zebrafish model. The preliminary biocompatibility study affirms the non-toxic nature of COS across various concentrations. In the osteoblast differentiation study, COS enhances ALP activity and calcium deposition at the cellular level. Moreover, COS induces the upregulation of molecular markers, including Runx2, Type I collagen, ALP, osteocalcin, and osteonectin in mouse MSCs. Zebrafish studies further demonstrate COS's anti-osteoporotic effects, showcasing its ability to expedite fin fracture repair, vertebral mineralization, and bone mineralization in dexamethasone-induced osteoporosis models. The scale regenerative study reveals that COS mitigates the detrimental effects of dexamethasone induced osteoclastic activity, reducing TRAP and hydroxyproline levels while elevating the expression of Runx2a MASNA isoform, collagen2α, OC, and ON mRNAs. Additionally, COS enhances calcium and phosphorus levels in regenerated scales, impacting the bone-healthy calcium-to‑phosphorus ratio. The study also suggests that COS modulates the MMP3-Osteopontin-MAPK signaling pathway. Overall, this comprehensive investigation underscores the potential of COS to prevent and treat osteoporosis. Its multifaceted cellular and molecular effects, combined with in vivo bone regeneration and repair, propose that COS may be effective in addressing osteoporosis and related bone disorders. Nonetheless, further research is imperative to unravel underlying mechanisms and optimize clinical applications.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India; Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Dharunya Govindarajan
- Department of Biotechnology, Stem Cell and Molecular Biology Laboratory, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600 036, Tamil Nadu, India
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Renugaa Suresh
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | | | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
7
|
Sauhta R, Makkar D, Siwach PS. The Sequential Therapy in Osteoporosis. Indian J Orthop 2023; 57:150-162. [PMID: 38107815 PMCID: PMC10721775 DOI: 10.1007/s43465-023-01067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Background Osteoporosis management often involves a sequential treatment approach to optimize patient outcomes and minimize fracture risks. This strategy is tailored to individual patient characteristics, treatment responses, and fracture risk profiles. Methods A thorough literature review was systematically executed using prominent databases, including PubMed and EMBASE. The primary aim was to identify original articles and clinical trials evaluating the effectiveness of sequential therapy with anti-osteoporosis drugs, focusing on the period from 1995 to 2023. The analysis encompassed an in-depth examination of osteoporosis drugs, delineating their mechanisms of action, side effects, and current trends as elucidated in the literature. Results and Discussion Our study yielded noteworthy insights into the optimal sequencing of pharmacologic agents for the long-term treatment of patients necessitating multiple drugs. Notably, the achievement of optimal improvements in bone mass is observed when commencing treatment with an anabolic medication, followed by the subsequent utilization of an antiresorptive drug. This stands in contrast to initiating therapy with a bisphosphonate, which may potentially diminish outcomes in the post-anabolic intervention period. Furthermore, it has been discerned that caution should be exercised against transitioning from denosumab to PTH homologs due to the adverse effects of heightened bone turnover and sustained weakening of bone structure. Despite the absence of fracture data substantiating the implementation of integrated anabolic/antiresorptive pharmacotherapy, the incorporation of denosumab and teriparatide presents a potential avenue worthy of consideration for individuals at a heightened vulnerability to fragility fractures. Conclusions A judiciously implemented sequential treatment strategy in osteoporosis offers a flexible and tailored approach to address diverse clinical scenarios, optimizing fracture prevention and patient outcomes.
Collapse
Affiliation(s)
- Ravi Sauhta
- Department Orthopedics and Joint
Replacement, Artemis Hospitals, Gurgaon, India
| | | | | |
Collapse
|
8
|
Lu H, Gong J, Zhang T, Jiang Z, Dong W, Dai J, Ma F. Leonurine pretreatment protects the heart from myocardial ischemia-reperfusion injury. Exp Biol Med (Maywood) 2023; 248:1566-1578. [PMID: 37873701 PMCID: PMC10676124 DOI: 10.1177/15353702231198066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 10/25/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R), an important complication of reperfusion therapy for myocardial infarction, is characterized by hyperactive oxidative stress and inflammatory response. Leonurine (4-guanidino-n-butyl syringate, SCM-198), an alkaloid extracted from Herbaleonuri, was previously found to be highly cardioprotective both in vitro and in vivo. Our current study aimed to investigate the effect of SCM-198 preconditioning on myocardial I/R injury in vitro and in vivo, respectively, as well as to decipher the mechanism involved. Rats were pretreated with SCM-198 before subjected to 45 min of myocardial ischemia, which was followed by 24 h of reperfusion. Primary neonatal rat cardiac ventricular myocytes (NRCMs) were exposed to hypoxia (95% N2 + 5% CO2) for 12 h, and then to 12 h reoxygenation so as to mimic I/R. The enzymatic measurements demonstrated that SCM-198 reduced the release of infarction-related enzymes, and the hemodynamic and echocardiography measurements showed that SCM-198 restored cardiac functions, which suggested that SCM-198 could significantly reduce infarct size, maintaining cardiomyocyte morphology, and that SCM-198 pretreatment could significantly reduce cardiomyocytes apoptosis. Moreover, we demonstrated that SCM-198 could exert a cardioprotective effect by reducing reactive oxygen species (ROS) level and Akt phosphorylation while reducing the phosphorylation of p38 and JNK. In addition, the upregulation of p-Akt, Bcl-2/Bax induced by SCM-198 treatment were blocked by PI3K inhibitor LY294002, and the total protein level of Akt was not affected by SCM-198 pretreatment. Our experimental results indicated that SCM-198 could have a cardioprotective effect on I/R injury, which confirmed the utility of SCM-198 preconditioning as a strategy to prevent I/R injury.
Collapse
Affiliation(s)
- Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tongtong Zhang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhe Jiang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenmin Dong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Shijiazhuang 050017, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
9
|
Wu KJ, Liu PP, Chen MY, Zhou MX, Liu X, Yang Q, Xu L, Gong Z. The Hepatoprotective Effect of Leonurine Hydrochloride Against Alcoholic Liver Disease Based on Transcriptomic and Metabolomic Analysis. Front Nutr 2022; 9:904557. [PMID: 35873419 PMCID: PMC9301321 DOI: 10.3389/fnut.2022.904557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive alcohol consumption can eventually progress to alcoholic liver disease (ALD). The underlying mechanism of ALD toxicity is primarily associated with oxidative damage. Many alkaloids have been reported to possess potential antioxidative efficacy, while the mechanism of their hepatoprotective activity against ALD is still not clear. In this study, eight alkaloids were selected from a monomer library of Traditional Chinese Medicine and evaluated for their antioxidant activity against ALD by the evaluation of Glutathione (GSH) and Malondialdehyde (MDA). The result suggested that Leonurine hydrochloride (LH) was a potent antioxidant that could reduce alcoholic liver damage. To further investigate the underlying mechanism of LH against ALD, the molecular pathway induced by LH was identified by RNA-seq analyses. Transcriptome data revealed the principal mechanism for the protective effect of LH against ALD might be attributed to the differentially expressed genes (DEGs) of PI3K-AKT, AMPK, and HIF-1 signaling pathways involved in the lipid metabolism. Given the hepatoprotective mechanism of LH is involved in lipid metabolism, the lipid metabolism induced by LH was further analyzed by UHPLC-MS/MS. Metabolome analysis indicated that LH significantly regulated glycerophospholipid metabolism including phosphatidylcholine, 1-acyl-sn-glycero-3-phosphocholine, phosphatidylethanolamine and 1-acyl-sn-glycero-3-phosphoethanolamine in the liver. Overall, this study revealed that the hepatoprotective mechanism of LH against alcoholic liver damage might be associated with the genes involved in glycerophospholipid metabolism.
Collapse
|
10
|
Leonurine Protects Bone Mesenchymal Stem Cells from Oxidative Stress by Activating Mitophagy through PI3K/Akt/mTOR Pathway. Cells 2022; 11:cells11111724. [PMID: 35681421 PMCID: PMC9179429 DOI: 10.3390/cells11111724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/08/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis bears an imbalance between bone formation and resorption, which is strongly related to oxidative stress. The function of leonurine on bone marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress is still unclear. Therefore, this study was aimed at identifying the protective effect of leonurine on H2O2 stimulated rat BMSCs. We found that leonurine can alleviate cell apoptosis and promote the differentiation ability of rat BMSCs induced by oxidative stress at an appropriate concentration at 10 μM. Meanwhile, the intracellular ROS level and the level of the COX2 and NOX4 mRNA decreased after leonurine treatment in vitro. The ATP level and mitochondrial membrane potential were upregulated after leonurine treatment. The protein level of PINK1 and Parkin showed the same trend. The mitophage in rat BMSCs blocked by 3-MA was partially rescued by leonurine. Bioinformatics analysis and leonurine-protein coupling provides a strong direct combination between leonurine and the PI3K protein at the position of Asp841, Glu880, Val882. In conclusion, leonurine protects the proliferation and differentiation of BMSCs from oxidative stress by activating mitophagy, which depends on the PI3K/Akt/mTOR pathway. The results showed that leonurine may have potential usage in osteoporosis and bone defect repair in osteoporosis patients.
Collapse
|
11
|
Ma M, Fan AY, Liu Z, Yang LQ, Huang JM, Pang ZY, Yin F. Baohuoside I Inhibits Osteoclastogenesis and Protects Against Ovariectomy-Induced Bone Loss. Front Pharmacol 2022; 13:874952. [PMID: 35571086 PMCID: PMC9092047 DOI: 10.3389/fphar.2022.874952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Bone-resorbing osteoclasts are essential for skeletal remodelling, and the hyperactive formation and function of osteoclasts are common in bone metabolic diseases, especially postmenopausal osteoporosis. Therefore, regulating the osteoclast differentiation is a major therapeutic target in osteoporosis treatment. Icariin has shown potential osteoprotective effects. However, existing studies have reported limited bioavailability of icariin, and the material basis of icariin for anti-osteoporosis is attributed to its metabolites in the body. Here, we compared the effects of icariin and its metabolites (icariside I, baohuoside I, and icaritin) on osteoclastogenesis by high-content screening followed by TRAP staining and identified baohuoside I (BS) with an optimal effect. Then, we evaluated the effects of BS on osteoclast differentiation and bone resorptive activity in both in vivo and in vitro experiments. In an in vitro study, BS inhibited osteoclast formation and bone resorption function in a dose-dependent manner, and the elevated osteoclastic-related genes induced by RANKL, such as NFATc1, cathepsin K, RANK, and TRAP, were also attenuated following BS treatment. In an in vivo study, OVX-induced bone loss could be prevented by BS through interrupting the osteoclast formation and activity in mice. Furthermore, mechanistic investigation demonstrated that BS inhibited osteoclast differentiation by ameliorating the activation of the MAPK and NF-kB pathways and reducing the expression of uPAR. Our study demonstrated that baohuoside I could inhibit osteoclast differentiation and protect bone loss following ovariectomy.
Collapse
Affiliation(s)
- Min Ma
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ao-Yuan Fan
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zheng Liu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Qing Yang
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun-Ming Huang
- Department of Orthopaedic, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi-Ying Pang
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Shanghai Clinical Research Centre for Ageing and Medicine, Shanghai, China
| |
Collapse
|
12
|
Li X, Xu R, Ye JX, Yuan FL. Suppression of bone remodeling associated with long-term bisphosphonate treatment is mediated by microRNA-30a-5p. Bioengineered 2022; 13:9741-9753. [PMID: 35412438 PMCID: PMC9161941 DOI: 10.1080/21655979.2022.2060584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Oral bisphosphonates (BPs) are a first-line treatment for osteoporosis. It is becoming a hot topic to identify new indicators for the early prediction of therapeutic effects and adverse reactions during the long-term use of BPs. To determine whether microRNA (miRNA) expression is modulated by long-term BPs treatment, we performed miRNA expression profiling analysis in patients receiving long-term BP treatment for postmenopausal OP. To assess the effect of BPs on miRNA expression, we used an Affymetrix Genechip miRNA array to analyze serum samples obtained from postmenopausal OP patients on long-term BP treatment and healthy controls. MiRNAs affected by BPs and their predicted targets were examined. We also investigated the effects of miRNA on osteoblast differentiation in vitro and on ovariectomy-induced bone loss in vivo. We observed that the level of miR-30a-5p was significantly increased in patients receiving long-term BP treatment for postmenopausal OP. Furthermore, miR-30a-5p was negatively correlated with bone formation. Consistent with this, in vitro osteoblast activity and matrix mineralization were increased by an antagomir of miR-30a-5p and decreased by an agomir of miR-30a-5p. We also found that miR-30a-5p directly targeted RUNX1 to inhibit osteoblastic differentiation. Consistent with the in vitro results, miR-30a-5p antagomir administration promoted bone formation in ovariectomized mice. Our findings identified miR-30a-5p as a novel mediator of long-term BP treatment that regulates bone formation in postmenopausal OP patients.
Collapse
Affiliation(s)
- Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Ruisheng Xu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China.,Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China.,Department of Orthopaedics, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Xu X, Li Y, Shi L, He K, Sun Y, Ding Y, Meng B, Zhang J, Xiang L, Dong J, Liu M, Zhang J, Xiang L, Xiang G. Myeloid-derived growth factor (MYDGF) protects bone mass through inhibiting osteoclastogenesis and promoting osteoblast differentiation. EMBO Rep 2022; 23:e53509. [PMID: 35068044 PMCID: PMC8892248 DOI: 10.15252/embr.202153509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Whether bone marrow regulates bone metabolism through endocrine and paracrine mechanism remains largely unknown. Here, we found that (i) myeloid cell-specific myeloid-derived growth factor (MYDGF) deficiency decreased bone mass and bone strength in young and aged mice; (ii) myeloid cell-specific MYDGF restoration prevented decreases in bone mass and bone strength in MYDGF knockout mice; moreover, myeloid cell-derived MYDGF improved the progress of bone defects healing, prevented ovariectomy (OVX)-induced bone loss and age-related osteoporosis; (iii) MYDGF inhibited osteoclastogenesis and promoted osteoblast differentiation in vivo and in vitro; and (iv) PKCβ-NF-κB and MAPK1/3-STAT3 pathways were involved in the regulation of MYDGF on bone metabolism. Thus, we concluded that myeloid cell-derived MYDGF is a positive regulator of bone homeostasis by inhibiting bone resorption and promoting bone formation. MYDGF may become a potential novel therapeutic drug for osteoporosis, and bone marrow may become a potential therapeutic target for bone metabolic disorders.
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Yixiang Li
- Department of Hematology and Medical OncologySchool of MedicineEmory UniversityAtlantaGAUSA
| | - Lingfeng Shi
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Kaiyue He
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Ying Sun
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Yan Ding
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Biying Meng
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Jiajia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Lin Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Jing Dong
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Min Liu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Junxia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Lingwei Xiang
- Centers for Surgery and Public HealthBrigham and Women's HospitalBostonMAUSA
| | - Guangda Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
14
|
Wang J, Wei J, Zhou Y, Chen G, Ren L. Leonurine hydrochloride-a new drug for the treatment of menopausal syndrome: Synthesis, estrogen-like effects and pharmacokinetics. Fitoterapia 2022; 157:105108. [PMID: 34954263 DOI: 10.1016/j.fitote.2021.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/18/2022]
Abstract
This research aimed to investigate the estrogen-like effects of Leonurine hydrochloride (Leo). First, we developed a total synthesis of Leo from 3,4,5-trimethoxy-benzoic acid and the structure was confirmed through 1H NMR and mass spectrometry (MS). Then the estrogenic activity of Leo in vitro and in vivo was studied. The proliferation and proliferation inhibitory effects of Leo on MCF-7 cells and MDA-MB-231 cells indicate that Leo exerts estrogen-like effects through estrogen receptor α (ERα) and estrogen receptor β((ERβ) in vitro. Uterotrophic assay in juvenile mice showed that Leo has an estrogen-like effect in vivo, as it can promote the development of the uterus of juvenile mice, increase its uterine coefficient and the size of the uterine cavity, as well as the increased number of uterine glands and the thickened uterine wall. For further research, cyclophosphamide (CTX) was used to establish a mouse model of ovarian function decline. Through this model, we found that Leo can restore the estrous cycle of mice, increase the number of primordial and primary follicles in the ovaries of mice, and regulate the disordered hypothalamic-pituitary-ovarian (HPOA) axis of mice. Finally, the pharmacokinetics of Leo was studied and oral bioavailability of Leo was calculated to be 2.21%. Leo was synthesized and the estrogen-like effect in vitro and in vivo was confirmed as well as its pharmacokinetics.
Collapse
Affiliation(s)
- Jin Wang
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 21009, China
| | - Jie Wei
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 21009, China
| | - Yaxin Zhou
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 21009, China
| | - Guoguang Chen
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 21009, China.
| | - Lili Ren
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 21009, China; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Yang J, Gao J, Gao F, Zhao Y, Deng B, Mu X, Xu L. Extracellular vesicles-encapsulated microRNA-29b-3p from bone marrow-derived mesenchymal stem cells promotes fracture healing via modulation of the PTEN/PI3K/AKT axis. Exp Cell Res 2022; 412:113026. [PMID: 35026284 DOI: 10.1016/j.yexcr.2022.113026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are well-established as vital regulators of fracture healing, whereas angiogenesis is one of the critical processes during the course of bone healing. Accordingly, the current study sought to determine the functions of microRNA (miR)-29b-3p from BM-MSCs-derived extracellular vesicles (EVs) on the angiogenesis of fracture healing via the PTEN/PI3K/AKT axis. Firstly, BM-MSCs-EVs were extracted and identified. The lentiviral protocol was adopted to construct miR-29b-3pKD-BMSCs or miR-negative control-BMSCs, which were then co-cultured with human umbilical vein endothelial cells (HUVECs) in vitro to determine the roles of EVs-encapsulated miR-29b-3p on the proliferation, migration, and angiogenesis of HUVECs in vitro with the help of a CCK-8 assay, scratch test, and tube formation assay. Subsequent database prediction, luciferase activity assay, RT-qPCR, and Western blot assay findings identified the downstream target gene of miR-29b-3p, PTEN, and a signaling pathway, PI3K/AKT. Furthermore, the application of si-PTEN attenuated the effects induced by miR-29b-3pKD-EVs. Finally, a mouse model of femoral fracture was established with a locally instilled injection of equal volumes of BM-MSCs-EVs and miR-29b-3pKD-BM-MSCs-EVs. Notably, the mice treated with BMSC-EVs presented with enhanced neovascularization at the fracture site, in addition to increased bone volume (BV), BV/tissue volume, and mean bone mineral density; whereas miR-29b-3pKD-BMSCs-EVs-treated mice exhibited decreased vessel density with poor fracture healing capacity. Collectively, our findings elicited that BM-MSCs-EVs carrying miR-29b-3p were endocytosed by HUVECs, which consequently suppressed the PTEN expression and activated the PI3K/AKT pathway, thereby promoting HUVEC proliferation, migration, and angiogenesis, and ultimately facilitating fracture healing.
Collapse
Affiliation(s)
- Jizhou Yang
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jian Gao
- Mckelvey School of Engineering at Washington University in St. Louis, University City, Missouri, 63130, USA
| | - Feng Gao
- Department of Surgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Tongzhou District, Beijing, 101121, China
| | - Yi Zhao
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Bowen Deng
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaohong Mu
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Lin Xu
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
16
|
Zhang P, Ye J, Dai J, Wang Y, Chen G, Hu J, Hu Q, Fei J. Gallic acid inhibits osteoclastogenesis and prevents ovariectomy-induced bone loss. Front Endocrinol (Lausanne) 2022; 13:963237. [PMID: 36601012 PMCID: PMC9807166 DOI: 10.3389/fendo.2022.963237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis is a common metabolic bone disease with a rapidly increasing prevalence, characterized by massive bone loss because of excessive osteoclast formation. Gallic acid (GA), a phenolic acid isolated from Cornus officinalis, has anti-inflammatory and anti-oxidant effects, but its effect on osteoclast formation has not been confirmed. In our study, we demonstrated that GA significantly inhibited RANKL-induced osteoclast formation and function of osteoclast in bone marrow monocytes (BMMs) and RAW264.7 cells in a dose-dependent manner without cytotoxicity. For molecular mechanisms, GA repressed osteoclastogenesis by blocking Akt, ERK, and JNK pathways, and suppressed osteoclastogenesis-related marker expression, including nuclear factor of the activated T-cell cytoplasmic 1 (NFATc1), c-Fos, and cathepsin K (CTSK). In addition, we further assessed the effect of GA in an ovariectomized mouse model, which indicated that GA has a notable effect on preventing bone loss. In conclusion, GA exerts notable effects in inhibiting osteoclastogenesis and preventing ovariectomy-induced bone loss, suggesting that GA is a potential agent in osteoporosis treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Jiekai Ye
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Jiale Dai
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Wang
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Genjun Chen
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Jinping Hu
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Qimiao Hu
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qimiao Hu, ; Jun Fei,
| | - Jun Fei
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
- *Correspondence: Qimiao Hu, ; Jun Fei,
| |
Collapse
|
17
|
Xu Q, Cao Z, Xu J, Dai M, Zhang B, Lai Q, Liu X. Effects and mechanisms of natural plant active compounds for the treatment of osteoclast-mediated bone destructive diseases. J Drug Target 2021; 30:394-412. [PMID: 34859718 DOI: 10.1080/1061186x.2021.2013488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bone-destructive diseases, caused by overdifferentiation of osteoclasts, reduce bone mass and quality, and disrupt bone microstructure, thereby causes osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis. Osteoclasts, the only multinucleated cells with bone resorption function, are derived from haematopoietic progenitors of the monocyte/macrophage lineage. The regulation of osteoclast differentiation is considered an effective target for the treatment of bone-destructive diseases. Natural plant-derived products have received increasing attention in recent years due to their good safety profile, the preference of natural compounds over synthetic drugs, and their potential therapeutic and preventive activity against osteoclast-mediated bone-destructive diseases. In this study, we reviewed the research progress of the potential antiosteoclast active compounds extracted from medicinal plants and their molecular mechanisms. Active compounds from natural plants that inhibit osteoclast differentiation and functions include flavonoids, terpenoids, quinones, glucosides, polyphenols, alkaloids, coumarins, lignans, and limonoids. They inhibit bone destruction by downregulating the expression of osteoclast-specific marker genes (CTSK, MMP-9, TRAP, OSCAR, DC-STAMP, V-ATPase d2, and integrin av3) and transcription factors (c-Fos, NFATc1, and c-Src), prevent the effects of local factors (ROS, LPS, and NO), and suppress the activation of various signalling pathways (MAPK, NF-κB, Akt, and Ca2+). Therefore, osteoclast-targeting natural products are of great value in the prevention and treatment of bone destructive diseases.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyou Cao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - JiaQiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Dai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuqiang Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning. PLoS One 2021; 16:e0257343. [PMID: 34555052 PMCID: PMC8459994 DOI: 10.1371/journal.pone.0257343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/29/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Smoking is a significant independent risk factor for postmenopausal osteoporosis, leading to genome variations in postmenopausal smokers. This study investigates potential biomarkers and molecular mechanisms of smoking-related postmenopausal osteoporosis (SRPO). MATERIALS AND METHODS The GSE13850 microarray dataset was downloaded from Gene Expression Omnibus (GEO). Gene modules associated with SRPO were identified using weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, and pathway and functional enrichment analyses. Feature genes were selected using two machine learning methods: support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF). The diagnostic efficiency of the selected genes was assessed by gene expression analysis and receiver operating characteristic curve. RESULTS Eight highly conserved modules were detected in the WGCNA network, and the genes in the module that was strongly correlated with SRPO were used for constructing the PPI network. A total of 113 hub genes were identified in the core network using topological network analysis. Enrichment analysis results showed that hub genes were closely associated with the regulation of RNA transcription and translation, ATPase activity, and immune-related signaling. Six genes (HNRNPC, PFDN2, PSMC5, RPS16, TCEB2, and UBE2V2) were selected as genetic biomarkers for SRPO by integrating the feature selection of SVM-RFE and RF. CONCLUSION The present study identified potential genetic biomarkers and provided a novel insight into the underlying molecular mechanism of SRPO.
Collapse
|
19
|
Mu P, Hu Y, Ma X, Shi J, Zhong Z, Huang L. Total flavonoids of Rhizoma Drynariae combined with calcium attenuate osteoporosis by reducing reactive oxygen species generation. Exp Ther Med 2021; 21:618. [PMID: 33936275 PMCID: PMC8082640 DOI: 10.3892/etm.2021.10050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
In the present study, the effects of total flavonoids of Rhizoma Drynariae (TFRD) and calcium carbonate (CaCO3) on osteoporosis (OP) were assessed in a rat model of OP. For this purpose, 36 Sprague-Dawley rats, aged 3 months, were randomly divided into a group undergoing sham surgery (sham-operated group), model group (OP group), CaCO3 group (OP + CaCO3 group), TFRD group (OP + TFRD group), TFRD combined with CaCO3 group (OP + TFRD + CaCO3 group) and TFRD and CaCO3 combined with N-acetyl cysteine group (OP + TFRD + CaCO3 + NAC group). The rat model of OP was established by bilateral ovariectomy. The changes in bone mineral density (BMD), bone volume parameters and bone histopathology in the rats from each group were observed. The levels of serum reactive oxygen species, superoxide dismutase (SOD), malondialdehyde, glutathione peroxidase (GSH-Px), interleukin (IL)-6, IL-1β, TNF-α, and the levels of bone tissue runt-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), osteocalcin (BGP), PI3K, p-PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR) and p-mTOR were measured in the rats of each group. The induction of OP was associated with a marked decrease in BMD, bone mineral content, bone volume fraction and trabecular thickness, and decreased serum levels of SOD and GSH-Px. Moreover, the expressions of RUNX2, OPG, BGP were downregulated and an upregulation of p-PI3K, p-AKT and p-mTOR were observed in osteoporotic rats. However, treatment with TFRD and CaCO3 restored all the aforementioned parameters to almost normal values. Furthermore, the findings on histopathological evaluation were consistent with the biochemical observations. Taken together, the findings of the present study demonstrated that TFRD and CaCO3 significantly increased the antioxidant capacity in rats with OP, increased BMD and reduced bone mineral loss, and may be useful for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Panyun Mu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Yimei Hu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xu Ma
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Jingru Shi
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Zhendong Zhong
- Laboratory Animal Research Institute of Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Lingyuan Huang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
20
|
Kim GR, Kim EN, Park KJ, Kim KH, Jeong GS. Inhibitory Effect of LGS and ODE Isolated from the Twigs of Syringa oblata subsp. dilatata on RANKL-Induced Osteoclastogenesis in Macrophage Cells. Molecules 2021; 26:molecules26061779. [PMID: 33810014 PMCID: PMC8004897 DOI: 10.3390/molecules26061779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoblasts and osteoclasts play a pivotal role in maintaining bone homeostasis, of which excessive bone resorption by osteoclasts can cause osteoporosis and various bone diseases. However, current osteoporosis treatments have many side effects, and research on new treatments that can replace these treatments is ongoing. Therefore, in this study, the roles of ligustroside (LGS) and oleoside dimethylester (ODE), a natural product-derived compound isolated from Syringa oblata subsp. dilatata as a novel, natural product-derived osteoporosis treatments were investigated. In the results of this study, LGS and ODE inhibited the differentiation of receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced RAW264.7 cells into osteoclasts without cytotoxicity, and down-regulated the activity of TRAP, a specific biomarker of osteoclasts. In addition, it inhibited bone resorption and actin ring formation, which are important functions and features of osteoclasts. Also, the effects of LGS and ODE on the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) and phosphoinositide 3-kinases (PI3K)/ protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) signaling pathways that play important roles in osteoclast differentiation were evaluated. In the results, LGS and ODE downregulated the phosphorylation of RANKL-induced MAPK and PI3K/Akt/mTOR proteins in a concentration-dependent manner, translocation of NF-κB into the nucleus was inhibited. As a result, the compounds LGS and ODE isolated from S. oblate subsp. dilatata effectively regulated the differentiation of RANKL-induced osteoclasts and inhibited the phosphorylation of signaling pathways that play a pivotal role in osteoclast differentiation. Therefore, these results suggest the possibility of LGS and ODE as new natural product treatments for bone diseases caused by excessive osteoclasts.
Collapse
Affiliation(s)
- Ga-Ram Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Korea; (G.-R.K.); (E.-N.K.)
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Korea; (G.-R.K.); (E.-N.K.)
| | - Kyoung Jin Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (K.H.K.); (G.-S.J.)
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Korea; (G.-R.K.); (E.-N.K.)
- Correspondence: (K.H.K.); (G.-S.J.)
| |
Collapse
|
21
|
Zhao B, Peng Q, Poon EHL, Chen F, Zhou R, Shang G, Wang D, Xu Y, Wang R, Qi S. Leonurine Promotes the Osteoblast Differentiation of Rat BMSCs by Activation of Autophagy via the PI3K/Akt/mTOR Pathway. Front Bioeng Biotechnol 2021; 9:615191. [PMID: 33708763 PMCID: PMC7940513 DOI: 10.3389/fbioe.2021.615191] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
Background Leonurine, a major bioactive component from Herba leonuri, has been shown to exhibit anti-inflammatory and antioxidant effects. The aim of this study was to investigate the effect of leonurine on bone marrow-derived mesenchymal stem cells (BMSCs) as a therapeutic approach for treating osteoporosis. Materials and Methods Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were isolated from 4-weeks-old Sprague–Dawley rats. The cytocompatibility of leonurine on rBMSCs was tested via CCK-8 assays and flow cytometric analyses. The effects of leonurine on rBMSC osteogenic differentiation were analyzed via ALP staining, Alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Additionally, autophagy-related markers were examined via qRT-PCR and Western blot analyses of rBMSCs during osteogenic differentiation with leonurine and with or without 3-methyladenine (3-MA) as an autophagic inhibitor. Finally, the PI3K/Akt/mTOR signaling pathway was evaluated during rBMSC osteogenesis. Results Leonurine at 2–100 μM promoted the proliferation of rBMSCs. ALP and Alizarin red staining results showed that 10 μM leonurine promoted rBMSC osteoblastic differentiation, which was consistent with the qRT-PCR and Western blot results. Compared with those of the control group, the mRNA and protein levels of Atg5, Atg7, and LC3 were upregulated in the rBMSCs upon leonurine treatment. Furthermore, leonurine rescued rBMSC autophagy after inhibition by 3-MA. Additionally, the PI3K/AKT/mTOR pathway was activated in rBMSCs upon leonurine treatment. Conclusion Leonurine promotes the osteoblast differentiation of rBMSCs by activating autophagy, which depends on the PI3K/Akt/mTOR pathway. Our results suggest that leonurine may be a potential treatment for osteoporosis.
Collapse
Affiliation(s)
- Bingkun Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Peng
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Enoch Hin Lok Poon
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Zhou
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangwei Shang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds. Pharmacol Ther 2021; 224:107824. [PMID: 33667524 DOI: 10.1016/j.pharmthera.2021.107824] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Traditional Chinese medicines (TCMs) produce chemically diverse functional compounds that are importantly chemical resource for facilitating new drug discovery and development against a diversity of diseases. However, modern exploration of TCM derived functional compounds is significantly hindered by the inefficient elucidation of pharmacological functions over past decades, because conventional research methods are incapable of efficiently elucidating therapeutic potential of TCM conferred by multiple functional compounds. Functional metabolomics has the priority-capacity to characterize systems therapeutic actions of TCM by precisely capturing molecular interactions between disease response metabolite biomarkers (DRMB) and functional compounds (secondary metabolites), which underline pharmacological efficiency and associated therapeutic mechanisms. In this critical review, we innovatively summarize systems therapeutic feature of TCM derived functional compounds from a functional-metabolism perspective, then systems metabolic targets (SMT) identified by functional metabolomics method are strategically proposed to better understanding of therapeutic discovery of TCM derived functional compounds. In addition, we propose the perspective strategy as Spatial Temporal Operative Real Metabolomics (STORM) to considerably improve analytical capacity of functional metabolomics method by selectively incorporating the cutting edge technologies of mass spectrometry imaging, isotope-metabolic fluxomics, synthetic and biosynthetic chemistry, which could considerably enhance the precision and resolution of elucidating pharmacological efficiency and associated therapeutic mechanisms of TCM derived functional compounds. Collectively, such critical review is expected to provide novel perspective-strategy that could significantly improve modern exploration and exploitation of TCM derived functional compounds that further promote new drug discovery and development against the complex diseases.
Collapse
|
23
|
Kalkitoxin Reduces Osteoclast Formation and Resorption and Protects against Inflammatory Bone Loss. Int J Mol Sci 2021; 22:ijms22052303. [PMID: 33669069 PMCID: PMC7956546 DOI: 10.3390/ijms22052303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoclasts, bone-specified multinucleated cells produced by monocyte/macrophage, are involved in numerous bone destructive diseases such as arthritis, osteoporosis, and inflammation-induced bone loss. The osteoclast differentiation mechanism suggests a possible strategy to treat bone diseases. In this regard, we recently examined the in vivo impact of kalkitoxin (KT), a marine product obtained from the marine cyanobacterium Moorena producens (previously Lyngbya majuscula), on the macrophage colony-stimulating factor (M-CSF) and on the receptor activator of nuclear factor κB ligand (RANKL)-stimulated in vitro osteoclastogenesis and inflammation-mediated bone loss. We have now examined the molecular mechanism of KT in greater detail. KT decreased RANKL-induced bone marrow-derived macrophages (BMMs) tartrate-resistant acid phosphatase (TRAP)-multinucleated cells at a late stage. Likewise, KT suppressed RANKL-induced pit area and actin ring formation in BMM cells. Additionally, KT inhibited several RANKL-induced genes such as cathepsin K, matrix metalloproteinase (MMP-9), TRAP, and dendritic cell-specific transmembrane protein (DC-STAMP). In line with these results, RANKL stimulated both genes and protein expression of c-Fos and nuclear factor of activated T cells (NFATc1), and this was also suppressed by KT. Moreover, KT markedly decreased RANKL-induced p-ERK1/2 and p-JNK pathways at different time points. As a result, KT prevented inflammatory bone loss in mice, such as bone mineral density (BMD) and osteoclast differentiation markers. These experiments demonstrated that KT markedly inhibited osteoclast formation and inflammatory bone loss through NFATc1 and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, KT may have potential as a treatment for destructive bone diseases.
Collapse
|
24
|
Wang W, Wang B. Isofraxidin Inhibits Receptor Activator of Nuclear Factor-κB Ligand-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages Isolated from Sprague-Dawley Rats by Regulating NF-κB/NFATc1 and Akt/NFATc1 Signaling Pathways. Cell Transplant 2021; 30:963689721990321. [PMID: 33573387 PMCID: PMC7883151 DOI: 10.1177/0963689721990321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis is a common bone disease that is characterized by decreased bone mass and fragility fractures. Isofraxidin is a hydroxy coumarin with several biological and pharmacological activities including an anti-osteoarthritis effect. However, the role of isofraxidin in osteoporosis has not yet been investigated. In the present study, we used receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast formation in primary bone marrow macrophages (BMMs). Our results showed that RANKL treatment significantly increased tartrate-resistant acid phosphatase (TRAP) activity, as well as the expression of osteoclastogenesis-related markers including MMP-9, c-Src, and cathepsin K at both mRNA and protein levels; however, these effects were inhibited by isofraxidin in BMMs. In addition, luciferase reporter assay demonstrated that isofraxidin treatment suppressed the RANKL-induced an increase in nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) transcriptional activity. Besides, the decreased expression level of IκBα and increased levels of p-p65, p-IκBα, and p-Akt in RANKL-induced BMMs were attenuated by isofraxidin. Moreover, NFATc1 overexpression rescued the anti-osteoclastogenic effect of isofraxidin with increased expression levels of MMP-9, c-Src, and cathepsin K. Taken together, these findings indicated that isofraxidin inhibited RANKL-induced osteoclast formation in BMMs via inhibiting the activation of NF-κB/NFATc1 and Akt/NFATc1 signaling pathways. Thus, isofraxidin might be a therapeutic agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Kang EY, Kim HK, Jung JY, Kim JH, Woo TK, Choi JI, Kim JH, Ahn C, Lee HG, Go GW. Combined Extract of Leonurus japonicus Houtt, Eclipta prostrata L., and Pueraria lobata Ohwi Improved Hot Flashes and Depression in an Ovariectomized Rat Model of Menopause. Foods 2021; 10:foods10010180. [PMID: 33477405 PMCID: PMC7829883 DOI: 10.3390/foods10010180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Menopause leads to ovarian hormone loss, which causes symptoms such as weight gain, hot flashes, and depression. Exploring nutraceuticals is important for treating menopausal symptoms that extensively impact women's quality of life. We hypothesized that a combination of Leonurus japonicus Houtt, Eclipta prostrata L., and Pueraria lobata Ohwi (LEPE) would alleviate menopausal symptoms in an ovariectomized menopausal rat model. Bilateral ovariectomy was performed and animals were assigned to five groups: (1) Sham, (2) Vehicle, (-) Control, (3) LEPE (100 mg/kg bw), (4) LEPE (200 mg/kg bw), and (5) Estradiol (3 μg/kg bw). LEPE was orally administered daily for 12 weeks. LEPE supplementation did not affect growth performance (body weight and feed intake) or body composition (lean mass and fat in tissue). LEPE did not cause deviations in aspartate aminotransferase, alanine aminotransferase, estradiol, and follicle-stimulating hormone levels, indicating no hepatotoxicity or endocrine disturbance. LEPE decreased type I collagen (CTX-1) but did not affect bone mineral density or osteocalcin. LEPE decreased tail temperature and increased rectal temperature, improving menopause-related vasomotor symptoms. Furthermore, LEPE ameliorated depression-related behavior, including in forced swimming and tail suspension tests. Thus, LEPE may improve menopausal symptoms by enhancing vasomotor symptoms and depression in an ovariectomized rat menopause model.
Collapse
Affiliation(s)
- Eun Young Kang
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Hyun Kyung Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Ji Yeon Jung
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Ji Hyun Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Tan Kyung Woo
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Jeong In Choi
- Research and Development Center, Nong Shim Co., Ltd., Seoul 07057, Korea; (J.I.C.); (J.H.K.); (C.A.)
| | - Jong Hoon Kim
- Research and Development Center, Nong Shim Co., Ltd., Seoul 07057, Korea; (J.I.C.); (J.H.K.); (C.A.)
| | - Changwon Ahn
- Research and Development Center, Nong Shim Co., Ltd., Seoul 07057, Korea; (J.I.C.); (J.H.K.); (C.A.)
| | - Hyeon Gyu Lee
- Korean Living Science Research Center, Hanyang University, Seoul 04763, Korea
- Correspondence: (H.G.L.); (G.-W.G.); Tel.: +82-2-2220-1201 (H.G.L.); +82-2-2220-1206 (G.-W.G.)
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
- Correspondence: (H.G.L.); (G.-W.G.); Tel.: +82-2-2220-1201 (H.G.L.); +82-2-2220-1206 (G.-W.G.)
| |
Collapse
|
26
|
Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Curr Med Chem 2021; 28:1489-1507. [PMID: 32223730 PMCID: PMC7665836 DOI: 10.2174/0929867327666200330142432] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
CDATA[Osteoporosis is a pathological loss of bone mass due to an imbalance in bone remodeling where osteoclast-mediated bone resorption exceeds osteoblast-mediated bone formation resulting in skeletal fragility and fractures. Anti-resorptive agents, such as bisphosphonates and SERMs, and anabolic drugs that stimulate bone formation, including PTH analogues and sclerostin inhibitors, are current treatments for osteoporosis. Despite their efficacy, severe side effects and loss of potency may limit the long term usage of a single drug. Sequential and combinational use of current drugs, such as switching from an anabolic to an anti-resorptive agent, may provide an alternative approach. Moreover, there are novel drugs being developed against emerging new targets such as Cathepsin K and 17β-HSD2 that may have less side effects. This review will summarize the molecular mechanisms of osteoporosis, current drugs for osteoporosis treatment, and new drug development strategies.
Collapse
Affiliation(s)
- Hanxuan Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - L. Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
27
|
Mohamad NV, Ima-Nirwana S, Chin KY. Self-emulsified annatto tocotrienol improves bone histomorphometric parameters in a rat model of oestrogen deficiency through suppression of skeletal sclerostin level and RANKL/OPG ratio. Int J Med Sci 2021; 18:3665-3673. [PMID: 34790038 PMCID: PMC8579289 DOI: 10.7150/ijms.64045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Menopause is the leading cause of osteoporosis for elderly women due to imbalanced bone remodelling in the absence of oestrogen. The ability of tocotrienol in reversing established bone loss due to oestrogen deficiency remains unclear despite the plenitude of evidence showcasing its preventive effects. This study aimed to investigate the effects of self-emulsified annatto tocotrienol (SEAT) on bone histomorphometry and remodelling in ovariectomised rats. Female Sprague Dawley rats (n=36) were randomly assigned into baseline, sham, ovariectomised (OVX) control, OVX-treated with annatto tocotrienol (AT) (60 mg/kg), SEAT (60 mg/kg) and raloxifene (1 mg/kg). Daily treatment given through oral gavage was started two months after castration. The rats were euthanised after eight weeks of treatment. Blood was collected for bone biomarkers. Femur and lumbar bones were collected for histomorphometry and remodelling markers. The results showed that AT and SEAT improved osteoblast numbers and trabecular mineralisation rate (p<0.05 vs untreated OVX). AT also decreased skeletal sclerostin expression in OVX rats (p<0.05 vs untreated OVX). Similar effects were observed in the raloxifene-treated group. Only SEAT significantly increased bone formation rate and reduced RANKL/OPG ratio (p<0.05 vs untreated OVX). However, no changes in osteoclast-related parameters were observed among the groups (p>0.05). In conclusion, SEAT exerts potential skeletal anabolic properties by increasing bone formation, suppressing sclerostin expression and reducing RANKL/OPG ratio in rats with oestrogen deficiency.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Chakraborty D, Gupta K, Biswas S. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review. Biomed Pharmacother 2020; 133:111039. [PMID: 33254019 DOI: 10.1016/j.biopha.2020.111039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Assessment of the potential therapeutic benefits offered by naturally occurring phytoestrogens necessitate inspection of their potency and sites of action in impeding the chronic, systemic, autoimmune, joint destructing disorder Rheumatoid arthritis (RA). Possessing structural and functional similarity with human estrogen, phytoestrogen promisingly replaces the use of hormone therapy in eradicating RA symptoms with their anti-inflammatory, anti-oxidative, anti-proliferative, anti-angiogenesis, immunomodulatory, joint protection properties abolishing the harmful side effects of synthetic drugs. Scientific evidences revealed that use of phytoestrogens from different chemical categories including flavonoids, alkaloids, stilbenoids derived from different plant species manifest beneficial effects on RA through various cellular mechanisms including suppression of pro-inflammatory cytokines in particular tumor necrosis factor (TNF-α), interleukin(IL-6) and nuclear factor kappa B (NF-κB) and destructive metalloproteinases, inhibition of oxidative stress, suppressing inflammatory signalling pathways, attenuating osteoclastogenesis ameliorating cartilage degradation and bone erosion. This review summarizes the evidences of different phytoestrogen treatment and their pharmacological mechanisms in both in vitro and in vivo studies along with discussing clinical evaluations in RA patients showing phytoestrogen as a promising agent for RA therapy. Further investigations and more clinical trials are mandatory to clarify the utility of these plant derived compounds in RA prevention and in managing oestrogen deficient diseases in patients.
Collapse
Affiliation(s)
- Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kriti Gupta
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India.
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
29
|
Song M, Jia F, Cao Z, Zhang H, Liu M, Gao L. Ginsenoside Rg3 Attenuates Aluminum-Induced Osteoporosis Through Regulation of Oxidative Stress and Bone Metabolism in Rats. Biol Trace Elem Res 2020; 198:557-566. [PMID: 32173789 DOI: 10.1007/s12011-020-02089-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aluminum (Al)-induced bone metabolism disorder is a primary cause of osteoporosis. Ginsenoside Rg3 (Rg3) has demonstrated therapeutic properties in the treatment of osteoporosis. The present study aimed to identify potential bone protection mechanisms of Rg3 against Al-induced osteoporosis in rats. In this study, forty healthy male Sprague-Dawley rats were randomly allocated into groups in which they were treated with AlCl3 (64 mg/kg/day) and/or Rg3 (20 mg/kg/day). AlCl3 was given orally to rats for 120 days, and from the 91st day, treated orally with Rg3 for 30 days. Rg3 attenuated AlCl3-induced accumulation of Al by decreasing the bone mineral density in the lumbar spines, femoral metaphysis, and tibia, and inhibited AlCl3-induced oxidative stress in rat bone by decreasing the levels of reactive oxygen species and malondialdehyde, while increasing glutathione peroxidase and superoxide dismutase activity. Rg3 facilitated bone formation by increasing the concentration of calcium, phosphorus, amino-terminal propeptide of type I procollagen, and carboxyl-terminal propeptide of type I procollagen, bone alkaline phosphatase activity in serum, and type I collagen, osteocalcin, and osteopontin protein expressions. Rg3 inhibited bone resorption by decreasing the content of N-terminal cross-linking telopeptide of type I collagen, C-terminal cross-linking telopeptide of type I collagen, and tartrate-resistant acid phosphatase 5b activity in serum. Rg3 promoted the mRNA expression of growth regulation factors by increasing transforming growth factor-β1, bone morphogenetic protein-2, insulin-like growth factor I, and core-binding factor α1. The results demonstrate that Rg3 can significantly attenuate Al accumulation, facilitate bone formation, inhibit bone resorption, resist oxidative stress, and promote the expression of factors that regulate growth. The results indicate that Rg3 is effective in alleviating AlCl3-induced osteoporosis.
Collapse
Affiliation(s)
- Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Fubo Jia
- Liaoning Agricultural College, Yingkou, 115009, China
| | - Zheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Haiyang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Menglin Liu
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
30
|
Shen P, Jiao Y, Miao L, Chen J, Momtazi‐Borojeni AA. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J Cell Mol Med 2020; 24:12234-12245. [PMID: 32969153 PMCID: PMC7687014 DOI: 10.1111/jcmm.15803] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome designated by synovial joint inflammation leading to cartilage degradation and bone damage as well as progressive disability. Synovial inflammation is promoted through the infiltration of mononuclear immune cells, dominated by CD4+ T cells, macrophages and dendritic cells (DCs), together with fibroblast-like synoviocytes (FLS), into the synovial compartment. Berberine is a bioactive isoquinoline alkaloid compound showing various pharmacological properties that are mainly attributed to immunomodulatory and anti-inflammatory effects. Several lines of experimental study have recently investigated the therapeutic potential of berberine and its underlying mechanisms in treating RA condition. The present review aimed to clarify determinant cellular and molecular targets of berberine in RA and found that berberine through modulating several signalling pathways involved in the joint inflammation, including PI3K/Akt, Wnt1/β-catenin, AMPK/lipogenesis and LPA/LPA1 /ERK/p38 MAPK can inhibit inflammatory proliferation of FLS cells, suppress DC activation and modulate Th17/Treg balance and thus prevent cartilage and bone destruction. Importantly, these molecular targets may explore new therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Peng Shen
- Department of StomatologyClinical Department of Aerospace CityNorthern Beijing Medical DistrictChinese PLA General HospitalBeijingChina
| | - Yang Jiao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
- Outpatient Department of PLA Macao GarrisonMacaoChina
| | - Li Miao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Ji‐hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Oral DiseasesDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | | |
Collapse
|
31
|
Chen Y, Lu J, Li S, Zhang C, Yang Q, Hu B, Zhou C, Hong J, Jiang G, Yan S. Carnosol attenuates RANKL-induced osteoclastogenesis in vitro and LPS-induced bone loss. Int Immunopharmacol 2020; 89:106978. [PMID: 33039968 DOI: 10.1016/j.intimp.2020.106978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/02/2023]
Abstract
Osteolysis is characterized by the imbalance of bone remodeling triggered by excessive activation of osteoclasts, which ultimately leads to pathological bone destruction. Diseases caused by overactive osteoclasts, such as osteolysis around the prosthesis, periodontitis and osteoporosis, are clinically common but lack effective treatment. Therefore, exploring regimens that could specifically impair the formation and function of osteoclasts has become a breakthrough in the treatment of these diseases. Carnosol is a natural phenolic diterpene with anti-inflammatory, antibacterial, anti-tumor and antioxidant properties. In this study, we found that carnosol can impede RANKL-induced osteoclastogenesis via modulating the activation of NF-κb and JNK signaling pathways in vitro. Additionally, we confirmed that carnosol could alleviate bone loss in amurine model of LPS-induced inflammatory bone erosion in vivo. Thence, these findings demonstrate that carnosol may be a potentially effective regent for the treatment of osteoclast-related disorders.
Collapse
Affiliation(s)
- Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Sihao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Caihua Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Quanming Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Bin Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
32
|
Li Y, Li N, Zhao X, Zhang B, Yang L, Liu J, Snooks H, Hu C, Ma X. Beneficial effect of 2'-acetylacteoside on ovariectomized mice via modulating the function of bone resorption. Biomed Pharmacother 2020; 131:110747. [PMID: 32932047 DOI: 10.1016/j.biopha.2020.110747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
2'-Acetylacteoside-(2'-AA), a bioactive constituent isolated from Cistanche deserticola, has been proven to possess a variety of important pharmacological effects, thus brought an increased amount of scientists' attention. As the extract of C. deserticola exhibited significant anti-osteoporotic bioactivity in our previous study, we proposed that 2'-AA maybe one of the responsibilities. As a result, 2'-AA (10, 20 and 40 mg/kg body weight/day) exhibited significant anti-osteoporotic effects on ovariectomized (OVX) mice after 12 weeks of oral administration, confirmed by the increased bone mineral density, enhanced bone strength and improved trabecular bone micro-architecture including bone mineral content, tissue mineral content, trabecular number, and trabecular separation of OVX mice. Moreover, the properties of bone resorption markers including cathepsin K, TRAP and deoxypyridinoline were significantly suppressed, whereas the activities of bone formation index like ALP and BGP as well as the weights of the body, uterus, and vagina were seemingly not influenced by 2'-AA intervention. Mechanistically, the above therapeutic effect of 2'-AA on bone resorption of OVX mice operated maybe mainly through RANKL/RANK/TRAF6-mediated NF-κB/NFATc1 pathway, which was confirmed by the down-regulated expressions of RANK, TRAF6, IκB kinase β, NF-κB and NFATc1. Summarily, 2'-AA exhibited significant anti-osteoporotic activity and may be regarded as a promising anti-osteoporotic candidate for future clinical trial.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Nan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojun Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Bo Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jingjing Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Hunter Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Caroline A & T State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Caroline A & T State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
33
|
Qian Z, Zhong Z, Ni S, Li D, Zhang F, Zhou Y, Kang Z, Qian J, Yu B. Cytisine attenuates bone loss of ovariectomy mouse by preventing RANKL-induced osteoclastogenesis. J Cell Mol Med 2020; 24:10112-10127. [PMID: 32790170 PMCID: PMC7520284 DOI: 10.1111/jcmm.15622] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/07/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Postmenopausal Osteoporosis (PMOP) is oestrogen withdrawal characterized of much production and activation by osteoclast in the elderly female. Cytisine is a quinolizidine alkaloid that comes from seeds or other plants of the Leguminosae (Fabaceae) family. Cytisine has been shown several potential pharmacological functions. However, its effects on PMOP remain unknown. This study designed to explore whether Cytisine is able to suppress RANKL-induced osteoclastogenesis and prevent the bone loss induced by oestrogen deficiency in ovariectomized (OVX) mice. In this study, we investigated the effect of Cytisine on RAW 264.7 cells and bone marrow monocytes (BMMs) derived osteoclast culture system in vitro and observed the effect of Cytisine on ovariectomized (OVX) mice model to imitate postmenopausal osteoporosis in vivo. We found that Cytisine inhibited F-actin ring formation and tartrate-resistant acid phosphatase (TRAP) staining in dose-dependent ways, as well as bone resorption by pit formation assays. For molecular mechanism, Cytisine suppressed RANK-related trigger RANKL by phosphorylation JNK/ERK/p38-MAPK, IκBα/p65-NF-κB, and PI3K/AKT axis and significantly inhibited these signalling pathways. However, the suppression of PI3K-AKT-NFATc1 axis was rescued by AKT activator SC79. Meanwhile, Cytisine inhibited RANKL-induced RANK-TRAF6 association and RANKL-related gene and protein markers such as NFATc1, Cathepsin K, MMP-9 and TRAP. Our study indicated that Cytisine could suppress bone loss in OVX mouse through inhibited osteoclastogenesis. All data provide the evidence that Cytisine may be a promising agent in the treatment of osteoclast-related diseases such as osteoporosis.
Collapse
Affiliation(s)
- Zhi Qian
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
- Department of Orthopaedic SurgeryZhangye People's Hospital affiliated to Hexi UniversityZhangye CityChina
| | - Zeyuan Zhong
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Shuo Ni
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Dejian Li
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Fangxue Zhang
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Ying Zhou
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Zhanrong Kang
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Jun Qian
- Department of Orthopaedic SurgeryZhangye People's Hospital affiliated to Hexi UniversityZhangye CityChina
| | - Baoqing Yu
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| |
Collapse
|
34
|
Chen C, Yang M, Chen Y, Wang Y, Wang K, Li T, Hu Q, Zhang W, Xia J. Astilbin-induced inhibition of the PI3K/AKT signaling pathway decelerates the progression of osteoarthritis. Exp Ther Med 2020; 20:3078-3083. [PMID: 32855675 PMCID: PMC7444333 DOI: 10.3892/etm.2020.9048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Degeneration and destruction of articular cartilage are the key characteristics of osteoarthritis (OA). In recent studies, the use of astilbin (AST), the primary active ingredient of Astilbe chinensis, has been shown to correlate with a reduction in inflammatory disease symptoms. The present study aimed to investigate the effects and mechanisms of AST on OA. A rat model of OA was constructed and in vivo experiments were performed using the AST, PBS, OA and control groups. The cartilage tissues of each group were assessed by hematoxylin and eosin and toluidine blue staining. The gene expression levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, AKT, PI3K and other related proteins were analyzed by reverse transcription-quantitative PCR and western blot analysis. AST was found to significantly inhibit IL-1β and TNF-α protein expression; this further confirmed that IL-1β, TNF-α and PI3K mRNA expression was downregulated, indicating that the protective mechanism of AST is associated with the PI3K/AKT pathway. Overall, the results of the present study demonstrate that AST can improve OA symptoms by downregulating the PI3K/AKT signaling pathway, and may therefore be a potential therapeutic option for patients with OA.
Collapse
Affiliation(s)
- Chunlin Chen
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Mao Yang
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Yujiang Chen
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Yaoyao Wang
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Kun Wang
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Tengxian Li
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Qing Hu
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Wenjing Zhang
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Jingfu Xia
- Miao Medicine Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
35
|
Wei J, Li Y, Liu Q, Lan Y, Wei C, Tian K, Wu L, Lin C, Xu J, Zhao J, Yang Y. Betulinic Acid Protects From Bone Loss in Ovariectomized Mice and Suppresses RANKL-Associated Osteoclastogenesis by Inhibiting the MAPK and NFATc1 Pathways. Front Pharmacol 2020; 11:1025. [PMID: 32733253 PMCID: PMC7358641 DOI: 10.3389/fphar.2020.01025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoclasts with elevated bone resorption are commonly present in postmenopausal osteoporosis, and other osteolytic pathologies. Therefore, suppressing osteoclast generation and function has been the main focus of osteoporosis treatment. Betulinic acid (BA) represents a triterpenoid mainly purified from the bark of Betulaceae. BA shows multiple biological activities, including antitumor and anti-HIV properties, but its effect on osteolytic conditions is unknown. Here, BA suppressed receptor activator of nuclear factor‐κB ligand (RANKL)‐associated osteoclastogenesis and bone resorptive function, as assessed by tartrate‐resistant acid phosphatase (TRAP) staining, fibrous actin ring generation, and hydroxyapatite resorption assays. Mechanistically, BA downregulated the expression of osteoclastic-specific genes. Western blot analysis revealed that BA significantly interrupted ERK, JNK and p38 MAPK activation as well as intracellular reactive oxygen species (ROS) production, thus altering c-Fos and NFATc1 activation. Corroborating the above findings in cell-based assays, BA prevented ovariectomy-associated bone loss in an animal model. In conclusion, these findings suggest that BA can inhibit osteoclast generation and function as well as the RANKL signaling pathway, and might be used for treating osteoclast-related osteoporosis.
Collapse
Affiliation(s)
- Jiyong Wei
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Department of Orthopedics, The First People's Hospital of Nanning, Nanning, China
| | - Yicheng Li
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yanni Lan
- Department of Pharmacy, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chengming Wei
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Kun Tian
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Liwei Wu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Chunbo Lin
- Orthopaedics, Langdong Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Jiake Xu
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Yuan Yang
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, China.,Orthopaedics, Langdong Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| |
Collapse
|
36
|
Chen Y, Wang Y, Hu J, Tang Y, Tian Z, Hu W, Zeng F, Tan J, Dai Q, Hou Z, Luo F, Xu J, Dong S. Epothilone B prevents lipopolysaccharide-induced inflammatory osteolysis through suppressing osteoclastogenesis via STAT3 signaling pathway. Aging (Albany NY) 2020; 12:11698-11716. [PMID: 32527985 PMCID: PMC7343516 DOI: 10.18632/aging.103337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Inflammatory osteolysis is a common osteolytic specificity that occurs during infectious orthopaedic surgery and is characterized by an imbalance in bone homeostasis due to excessive osteoclast bone resorption activity. Epothilone B (Epo B) induced α-tubulin polymerization and enhanced microtubule stability, which also played an essential role in anti-inflammatory effect on the regulation of many diseases. However, its effects on skeletal system have rarely been investigated. Our study demonstrated that Epo B inhibited osteoclastogenesis in vitro and prevented inflammatory osteolysis in vivo. Further analysis showed that Epo B also markedly induced mature osteoclasts apoptosis during osteoclastogenesis. Mechanistically, Epo B directly suppressed osteoclastogenesis by the inhibitory regulation of the phosphorylation and activation of PI3K/Akt/STAT3 signaling directly, and the suppressive regulation of the CD9/gp130/STAT3 signaling pathway indirectly. The negative regulatory effect on STAT3 signaling further restrained the translocation of NF-κB p65 and NFATc1 from the cytosol to the nuclei during RANKL stimulation. Additionally, the expression of osteoclast specific genes was also significantly attenuated during osteoclast fusion and differentiation. Taken together, these findings illustrated that Epo B protected against LPS-induced bone destruction through inhibiting osteoclastogenesis via regulating the STAT3 dependent signaling pathway.
Collapse
Affiliation(s)
- Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yiran Wang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junxian Hu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yong Tang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhansong Tian
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fanchun Zeng
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
- The Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
37
|
Zhi X, Wang L, Chen H, Fang C, Cui J, Hu Y, Cao L, Weng W, Zhou Q, Qin L, Song H, Wang Y, Wang Y, Jiang H, Li X, Wang S, Chen X, Su J. l-tetrahydropalmatine suppresses osteoclastogenesis in vivo and in vitro via blocking RANK-TRAF6 interactions and inhibiting NF-κB and MAPK pathways. J Cell Mol Med 2020; 24:785-798. [PMID: 31725199 PMCID: PMC6933417 DOI: 10.1111/jcmm.14790] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Bone homeostasis is delicately orchestrated by osteoblasts and osteoclasts. Various pathological bone loss situations result from the overactivated osteoclastogenesis. Receptor activator of nuclear factor κB ligand (RANKL)-activated NF-κB and MAPK pathways is vital for osteoclastogenesis. Here, we for the first time explored the effects of l-tetrahydropalmatine (l-THP), an active alkaloid derived from corydalis, on the formation and function of osteoclasts in vitro and in vivo. In RAW264.7 cells and bone marrow monocytes cells (BMMCs), l-THP inhibited osteoclastic differentiation at the early stage, down-regulated transcription level of osteoclastogenesis-related genes and impaired osteoclasts functions. Mechanically, Western blot showed that l-THP inhibited the phosphorylation of P50, P65, IκB, ERK, JNK and P38, and the electrophoretic mobility shift assay (EMSA) revealed that DNA binding activity of NF-κB was suppressed, ultimately inhibiting the expression of nuclear factor of activated T cells (NFATc1). Besides, Co-immunoprecipitation indicated that l-THP blocked the interactions of RANK and TNF receptor associated factor 6 (TRAF6) at an upstream site. In vivo, l-THP significantly inhibited ovariectomy-induced bone loss and osteoclastogenesis in mice. Collectively, our study demonstrated that l-THP suppressed osteoclastogenesis by blocking RANK-TRAF6 interactions and inhibiting NF-κB and MAPK pathways. l-THP is a promising agent for treating osteoclastogenesis-related diseases such as post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Xin Zhi
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
- Basic Medical School, Naval Military Medical University, Shanghai, China
| | - Lipeng Wang
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Huiwen Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Chao Fang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Jin Cui
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yan Hu
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Weizong Weng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qirong Zhou
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Longjuan Qin
- Orthopedic Basic and Translational Research Center, Jiangyin, China
| | - Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yajun Wang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yao Wang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hao Jiang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiaoqun Li
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
- Basic Medical School, Naval Military Medical University, Shanghai, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
- Department of Chemistry, Fudan University, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
- China-South Korea Bioengineering Center, Shanghai, China
| |
Collapse
|
38
|
Chen X, Wang C, Qiu H, Yuan Y, Chen K, Cao Z, Xiang Tan R, Tickner J, Xu J, Zou J. Asperpyrone A attenuates RANKL-induced osteoclast formation through inhibiting NFATc1, Ca 2+ signalling and oxidative stress. J Cell Mol Med 2019; 23:8269-8279. [PMID: 31612613 PMCID: PMC6850946 DOI: 10.1111/jcmm.14700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022] Open
Abstract
Imbalance of osteoblast and osteoclast in adult leads to a variety of bone-related diseases, including osteoporosis. Thus, suppressing the activity of osteoclastic bone resorption becomes the main therapeutic strategy for osteoporosis. Asperpyrone A is a natural compound isolated from Aspergillus niger with various biological activities of antitumour, antimicrobial and antioxidant. The present study was designed to investigate the effects of Asperpyrone A on osteoclastogenesis and to explore its underlining mechanism. We found that Asperpyrone A inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner when the concentration reached 1 µm, and with no cytotoxicity until the concentration reached to 10 µm. In addition, Asperpyrone A down-regulated the mRNA and protein expression of NFATc1, c-fos and V-ATPase-d2, as well as the mRNA expression of TRAcP and Ctsk. Furthermore, Asperpyrone A strongly attenuated the RNAKL-induced intracellular Ca2+ oscillations and ROS (reactive oxygen species) production in the process of osteoclastogenesis and suppressed the activation of MAPK and NF-κB signalling pathways. Collectively, Asperpyrone A attenuates RANKL-induced osteoclast formation via suppressing NFATc1, Ca2+ signalling and oxidative stress, as well as MAPK and NF-κB signalling pathways, indicating that this compound may become a potential candidate drug for the prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Xi Chen
- School of Sports ScienceWenzhou Medical UniversityWenzhouChina
- School of KinesiologyShanghai University of SportShanghaiChina
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Chao Wang
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Heng Qiu
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Yu Yuan
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouChina
| | - Kai Chen
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Zhen Cao
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesNanjing UniversityNanjingChina
| | - Jennifer Tickner
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jiake Xu
- School of KinesiologyShanghai University of SportShanghaiChina
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jun Zou
- School of KinesiologyShanghai University of SportShanghaiChina
| |
Collapse
|
39
|
Monocytes affect bone mineral density in pre- and postmenopausal women through ribonucleoprotein complex biogenesis by integrative bioinformatics analysis. Sci Rep 2019; 9:17290. [PMID: 31754224 PMCID: PMC6872746 DOI: 10.1038/s41598-019-53843-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is one of the most common metabolic bone disease among pre- and postmenopausal women. As the precursors of osteoclast cells, circulating monocytes play important role in bone destruction and remodeling. The aim of study is to identify potential key genes and pathways correlated with the pathogenesis of osteoporosis. Then we construct novel estimation model closely linked to the bone mineral density (BMD) with key genes. Weighted gene co-expression network analysis (WGCNA) were conducted by collecting gene data set with 80 samples from gene expression omnibus (GEO) database. Besides, hub genes were identified by series of bioinformatics and machine learning algorithms containing protein-protein interaction (PPI) network, receiver operating characteristic curve and Pearson correlation. The direction of correlation coefficient were performed to screen for gene signatures with high BMD and low BMD. A novel BMD score system was put forward based on gene set variation analysis and logistic regression, which was validated by independent data sets. We identified six modules correlated with BMD. Finally 100 genes were identified as the high bone mineral density signatures while 130 genes were identified as low BMD signatures. Besides, we identified the significant pathway in monocytes: ribonucleoprotein complex biogenesis. What's more, our score validated it successfully.
Collapse
|
40
|
Chen C, Zhu Z, Hu N, Liang X, Huang W. Leonurine Hydrochloride Suppresses Inflammatory Responses and Ameliorates Cartilage Degradation in Osteoarthritis via NF-κB Signaling Pathway. Inflammation 2019; 43:146-154. [DOI: 10.1007/s10753-019-01104-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Yang C, Li J, Zhu K, Yuan X, Cheng T, Qian Y, Zhang X. Puerarin Exerts Protective Effects on Wear Particle-Induced Inflammatory Osteolysis. Front Pharmacol 2019; 10:1113. [PMID: 31632268 PMCID: PMC6779862 DOI: 10.3389/fphar.2019.01113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022] Open
Abstract
Wear particle-stimulated inflammatory bone destruction and the consequent aseptic loosening remain major postoperative problems for artificial joints. Studies have indicated that puerarin promotes osteogenesis and alleviates lipopolysaccharide-induced osteoclastogenesis in vitro. However, the underlying molecular mechanism by which puerarin interacts with receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclast formation in vitro and wear particle-stimulated osteolysis in vivo has not been reported. In this work, the protective effects exerted by puerarin on titanium particle-stimulated bone destruction in vivo and on RANKL-induced osteoclast activation in osteoclastic precursor cells in vitro were investigated. As expected, puerarin significantly inhibited wear particle-mediated bone resorption and proinflammatory cytokine productions in a calvarial resorption model. Additionally, puerarin inhibited RANKL-induced osteoclast activation, bone resorption ability, and F-actin ring formation in vitro as puerarin concentration increased. Furthermore, mechanistic investigation indicated that reduced RANKL-stimulated MEK/ERK/NFATc1 signaling cascades might regulate the protective effect of puerarin. Conclusively, these results indicate that puerarin, a type of polyphenol, might serve as a protective agent to prevent osteoclast-related osteolytic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yebin Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
42
|
Wang H, Shen Y. MicroRNA‑20a negatively regulates the growth and osteoclastogenesis of THP‑1 cells by downregulating PPARγ. Mol Med Rep 2019; 20:4271-4276. [PMID: 31545439 DOI: 10.3892/mmr.2019.10676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/09/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to explore the mechanisms through which microRNA (miR)‑20a may be involved in the differentiation of THP‑1 human acute monocytic leukemia cells into osteoclasts. THP‑1 cells were differentiated into macrophages (osteoclast precursors) and subsequently into osteoclast cells. The expression levels of miR‑20a in THP‑1 cells were significantly reduced in a time‑dependent manner during phorbol‑12‑myristate‑13‑acetate (PMA), macrophage colony‑stimulating factor (M‑CSF) and receptor activator of nuclear factor‑κB ligand RANKL‑induced osteoclastogenesis. Following transfection with a miR‑20a mimics, the levels of miR‑20a in PMA‑treated THP‑1 cells increased more than 40‑fold as compared with expression in the control cells. In addition, the overexpression of miR‑20a inhibited proliferation, initiated S phase cell cycle arrest and induced apoptosis of PMA‑treated THP‑1 cells. Additionally, miR‑20a mimics treatment notably decreased the levels of tartrate‑resistant acid phosphatase, nuclear factor of activated T‑cells, cytoplasmic 1 and peroxisome proliferator‑activated receptor γ (PPARγ) during THP‑1 cell further differentiation progress. In summary, miR‑20a may negatively regulate the proliferation and osteoclastogenesis of THP‑1 cells during its osteoclast differentiation progress by downregulating PPARγ.
Collapse
Affiliation(s)
- Huining Wang
- Department of Periodontics, Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yuqin Shen
- Department of Periodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
43
|
Hu PF, Sun FF, Qian J. Leonurine Exerts Anti-Catabolic and Anti-Apoptotic Effects via Nuclear Factor kappa B (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) Signaling Pathways in Chondrocytes. Med Sci Monit 2019; 25:6271-6280. [PMID: 31431607 PMCID: PMC6714594 DOI: 10.12659/msm.916039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background Leonurine confers neuroprotection, inhibits myocardial apoptosis, ameliorates endothelial dysfunction, and shows anti-inflammatory effects, and may be beneficial for clinical applications. However, the effects of leonurine on chondrocytes remain unknown. Here, we investigated the protective role of leonurine in rat chondrocytes. Material/Methods To explore the potential therapeutic effect of leonurine against osteoarthritis (OA), rat chondrocytes were treated with IL-1β along with different concentrations of leonurine in vitro. The levels of matrix metalloproteinases (MMPs), ADAMTS, Bax, and Bcl-2 were measured by PCR, ELISA, and Western blotting. Caspase-3 activity in chondrocytes was determined using a caspase-3 activity assay. Western blotting was also performed to examine activation of the NF-κB and mitogen-activated protein kinase (MAPK) pathways to elucidate the likely regulatory mechanisms. Results Leonurine counteracted IL-1β-induced production of MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5. Leonurine treatment reduced both the mRNA and protein levels of Bax and increased the level of Bcl-2. Leonurine also inhibited the activity of caspase-3 in IL-1β-induced chondrocytes. Furthermore, the activation of MAPK and phosphorylation of p65 were suppressed by leonurine. Conclusions The results of this study indicate that leonurine exerts anti-catabolic and anti-apoptotic effects in chondrocytes in vitro via suppression of the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Fang-Fang Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
44
|
Hu B, Wu F, Shi Z, He B, Zhao X, Wu H, Yan S. Dehydrocostus lactone attenuates osteoclastogenesis and osteoclast-induced bone loss by modulating NF-κB signalling pathway. J Cell Mol Med 2019; 23:5762-5770. [PMID: 31225720 PMCID: PMC6653234 DOI: 10.1111/jcmm.14492] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/28/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Osteolysis is characterized by overactivated osteoclast formation and potent bone resorption. It is enhanced in many osteoclast‐related diseases including osteoporosis and periprosthetic osteolysis. The shortage of effective treatments for these pathological processes emphasizes the importance of screening and identifying potential regimens that could attenuate the formation and function of osteoclasts. Dehydrocostus lactone (DHE) is a natural sesquiterpene lactone containing anti‐inflammatory properties. Here, we showed that DHE suppressed receptor activator of nuclear factor‐κB ligand (RANKL)‐induced osteoclast formation and osteoclast marker gene expression. It also inhibited F‐actin ring formation and bone resorption in a dose‐dependent manner in vitro. Moreover, DHE inhibited the RANKL‐induced phosphorylation of NF‐κB, mitigated bone erosion in vivo in lipopolysaccharide‐induced inflammatory bone loss model and particle‐induced calvarial osteolysis model. Together, these results suggest that DHE reduces osteoclast‐related bone loss via the modulation of NF‐κB activation during osteoclastogenesis indicating that it might be a useful treatment for osteoclast‐related skeletal disorders.
Collapse
Affiliation(s)
- Bin Hu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Fengfeng Wu
- Department of Orthopedic Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Zhongli Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Bin He
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Xiang Zhao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Haobo Wu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Shigui Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Protective Effect of Acteoside on Ovariectomy-Induced Bone Loss in Mice. Int J Mol Sci 2019; 20:ijms20122974. [PMID: 31216684 PMCID: PMC6627387 DOI: 10.3390/ijms20122974] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/02/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Acteoside, an active phenylethanoid glycoside compound isolated from herbs of Cistanche, was chosen for the investigation of anti-osteoporotic effect on postmenopausal osteoporosis by using an ovariectomized (OVX) mice model. The results from in vivo experiments showed that after daily oral administration of acteoside (20, 40, and 80 mg/kg body weight/day) for 12 weeks, bone mineral density and bone biomechanical properties of OVX mice were greatly enhanced, with significant improvement in bone microarchitecture. Furthermore, biochemical parameters of bone resorption markers as well as bone formation index, including tartrate-resistant acid phosphatase, cathepsin K, deoxypyridinoline, alkaline phosphatase, and bone gla-protein, were ameliorated by acteoside treatment, whereas the body, uterus, and vagina wet weights were seemingly not impacted by acteoside administration. Acteoside significantly affected osteoclastogenesis by attenuating nuclear factor kappa B (NF-κB) and stimulating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signal pathways through down-regulated levels of tumor-necrosis factor receptor-associated factor 6 (TRAF6), receptor activator of nuclear factor kappa B ligand (RANKL), RANK, NFKBIA, IκB kinase β, nuclear factor of activated T-cells c2 (NFAT2), and up-regulated expressions of PI3K, AKT, and c-Fos. Accordingly, the current research validated our hypothesis that acteoside possesses potent anti-osteoporotic properties and may be a promising agent for the prevention of osteoporosis in the future.
Collapse
|
46
|
Stem cells in Osteoporosis: From Biology to New Therapeutic Approaches. Stem Cells Int 2019; 2019:1730978. [PMID: 31281368 PMCID: PMC6589256 DOI: 10.1155/2019/1730978] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic disease that affects the skeleton, causing reduction of bone density and mass, resulting in destruction of bone microstructure and increased risk of bone fractures. Since osteoporosis is a disease affecting the elderly and the aging of the world's population is constantly increasing, it is expected that the incidence of osteoporosis and its financial burden on the insurance systems will increase continuously and there is a need for more understanding this condition in order to prevent and/or treat it. At present, available drug therapy for osteoporosis primarily targets the inhibition of bone resorption and agents that promote bone mineralization, designed to slow disease progression. Safe and predictable pharmaceutical means to increase bone formation have been elusive. Stem cell therapy of osteoporosis, as a therapeutic strategy, offers the promise of an increase in osteoblast differentiation and thus reversing the shift towards bone resorption in osteoporosis. This review is focused on the current views regarding the implication of the stem cells in the cellular and physiologic mechanisms of osteoporosis and discusses data obtained from stem cell-based therapies of osteoporosis in experimental animal models and the possibility of their future application in clinical trials.
Collapse
|
47
|
Wen Y, Gong L, Wang L, Zhao N, Sun Q, Kamara MO, Ma H, Meng F. Comparative pharmacokinetics study of leonurine and stachydrine in normal rats and rats with cold‐stagnation and blood‐stasis primary dysmenorrhoea after the administration of
Leonurus japonicus
houtt electuary. J Sep Sci 2019; 42:1725-1732. [PMID: 30839168 DOI: 10.1002/jssc.201801257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Yan‐qing Wen
- School of pharmacy China Medical University Shenyang P. R. China
- The Fourth Affiliated Hospital of China Medical University Shenyang P. R. China
| | - Li‐ying Gong
- Department of Laboratory MedicineThe People's Hospital of Liaoning Province Shenyang P. R. China
| | - Lin Wang
- School of pharmacy China Medical University Shenyang P. R. China
| | - Nan Zhao
- School of pharmacy China Medical University Shenyang P. R. China
| | - Qi Sun
- School of pharmacy China Medical University Shenyang P. R. China
| | | | - Hai‐ying Ma
- The Fourth Affiliated Hospital of China Medical University Shenyang P. R. China
| | - Fan‐hao Meng
- School of pharmacy China Medical University Shenyang P. R. China
| |
Collapse
|
48
|
Mahalanobish S, Saha S, Dutta S, Ghosh S, Sil PC. Anti-inflammatory efficacy of some potentially bioactive natural products against rheumatoid arthritis. DISCOVERY AND DEVELOPMENT OF ANTI-INFLAMMATORY AGENTS FROM NATURAL PRODUCTS 2019:61-100. [DOI: 10.1016/b978-0-12-816992-6.00003-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
Yang L, Qiao Y, Liu G, Zhu X, Luo Y, Chen J, Liu X, Ma Z, Shang Y, Gu X. Effects of dietary supplementation with leonurine hydrochloride on growth performance, immune response, antioxidant capacity and blood parameters in male broiler chicks. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1547199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Li Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, People’s Republic of China
| | - Yanjie Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, People’s Republic of China
| | - Gang Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, People’s Republic of China
| | - Xiaoqing Zhu
- College of Animal Science and Technology, Shihezi University, Shihezi, People’s Republic of China
| | - Yan Luo
- College of Animal Science and Technology, Shihezi University, Shihezi, People’s Republic of China
| | - Jie Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, People’s Republic of China
| | - Xiaoting Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, People’s Republic of China
| | - Zhao Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, People’s Republic of China
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Shihezi, People’s Republic of China
| | - Xinli Gu
- College of Animal Science and Technology, Shihezi University, Shihezi, People’s Republic of China
| |
Collapse
|
50
|
Hu ZC, Gong LF, Li XB, Fu X, Xuan JW, Feng ZH, Ni WF. Inhibition of PI3K/Akt/NF-κB signaling with leonurine for ameliorating the progression of osteoarthritis: In vitro and in vivo studies. J Cell Physiol 2018; 234:6940-6950. [PMID: 30417459 DOI: 10.1002/jcp.27437] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is characterized as the degeneration and destruction of articular cartilage. In recent decades, leonurine (LN), the main active component in medical and edible dual purpose plant Herba Leonuri, has been shown associated with potent anti-inflammatory effects in several diseases. In the current study, we examined the protective effects of LN in the inhibition of OA development as well as its underlying mechanism both in vitro and in vivo experiments. In vitro, interleukin-1 beta (IL-1β) induced over-production of prostaglandin E2, nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor alpha were all inhibited significantly by the pretreatment of LN at a dose-dependent manner (5, 10, and 20 µM). Moreover, the expression of thrombospondin motifs 5 (ADAMTS5) and metalloproteinase 13 (MMP13) was downregulated by LN. All these changes led to the IL-1β induced degradation of extracellular matrix. Mechanistically, the LN suppressed IL-1β induced activation of the PI3K/Akt/NF-κB signaling pathway cascades. Meanwhile, it was also demonstrated in our molecular docking studies that LN had strong binding abilities to PI3K. In addition, LN was observed exerting protective effects in a surgical induced model of OA. To sum up, this study indicated LN could be applied as a promising therapeutic agent in the treatment of OA.
Collapse
Affiliation(s)
- Zhi-Chao Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lan-Fang Gong
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First Medical School of the Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Bin Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xin Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jiang-Wei Xuan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhen-Hua Feng
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Wen-Fei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|