1
|
Ramirez G, Okpara C, Arnett M, Segvich DM, Deosthale P, González PO, Kritikos AE, Melo JB, Sanz N, Pin F, Wallace JM, Plotkin LI. Independent contribution of gonads and sex chromosomes to sex differences in bone mass and strength in the four-core genotypes mouse model. J Bone Miner Res 2024; 39:1659-1672. [PMID: 39255371 PMCID: PMC11523188 DOI: 10.1093/jbmr/zjae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
Vertebrate sexual dimorphism is ascribed to the presence of testes or ovaries, and, hence, to the secretion of gonad-specific hormones. However, mounting evidence indicates that sex differences in tissues and organs also stem from the presence of sex chromosomes (XX or XY). To tease out the contribution of gonads from sex chromosomes to the musculoskeletal system, we used the Four-Core Genotypes (FCG) mouse model, in which the Sry gene, which dictates testis formation, was either deleted from the Y chromosome, resulting in XY mice with ovaries (XY-SryO), or overexpressed in XX mice, resulting in XX mice with testes (XXT), together with gonadal males with XY-SryT (Sry deletion and overexpression of the Sry transgene in chromosome 3) and females with XXO. The FCG mice are generated by crossing XXO with XY-SryT mice, all of C57BL/6 J background. We now show that the musculoskeletal phenotype of 2- to 4-mo-old FCG mice varies based on both gonads and sex chromosomes, depending on the age and the organ/tissue/cell analyzed. The effect of sex chromosomes on body weight, fat and lean/skeletal muscle mass, and bone mass and structure is minor in 2-/3-mo-old mice, soon after sexual maturation. The contribution of sex chromosomes (XX vs XY-Sry in mice with the same gonads and sex hormones) to several of our measurements becomes apparent in adult 4-mo-old mice. The contribution of 1X and 1Y-Sry vs 2X chromosomes varies among different measurements in gonadal males or females, and mice with XY-Sry chromosomes might have higher or lower values that XX mice. Our study shows XX vs XY-Sry chromosome contribution to the musculoskeletal phenotype, which becomes more evident as the animals reach peak bone mass, suggesting that although gonadal sex has a major role, sex chromosomes are also an unrecognized contributor to musculoskeletal mass and bone strength.
Collapse
Affiliation(s)
- Gabriel Ramirez
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Chiebuka Okpara
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Matthew Arnett
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Dyann M Segvich
- Department of Biomedical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Padmini Deosthale
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Paola Ortiz González
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Alexander E Kritikos
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Julian Balanta Melo
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Dentistry Unit, Universidad del Valle School of Dentistry, Cali, Valle de Cauca 760042, Colombia
| | - Natasha Sanz
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Bone Biology Laboratory. School of Medicine, Rosario National University, Rosario, Santa Fe 2000, Argentina
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, United States
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, United States
| |
Collapse
|
2
|
Luo Y, Zheng S, Xiao W, Zhang H, Li Y. Pannexins in the musculoskeletal system: new targets for development and disease progression. Bone Res 2024; 12:26. [PMID: 38705887 PMCID: PMC11070431 DOI: 10.1038/s41413-024-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
3
|
Plotkin LI, Asad I, Kritikos AE, Sanz N. Role of Cx43 on the Bone Cell Generation, Function, and Survival. Bioelectricity 2023; 5:188-195. [PMID: 37746312 PMCID: PMC10517329 DOI: 10.1089/bioe.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
The presence of gap junction intercellular communication structures in bone cells has been known since the early 1970s, further confirmed by Doty and Marotti at the structural level in the 1980-1990s. Work by Civitelli, Donahue, and others showed the expression of Cx43 at the mRNA and protein levels in all bone cell types: osteoclasts (bone resorbing cells), osteoblasts (bone forming cells), and osteocytes (mature osteoblasts embedded in the bone matrix that regulate the function of both osteoclasts and osteoblasts). While Cx45, Cx46, and Cx37 were also shown to be expressed in bone cells, most studies have focused on Cx43, the most abundant member of the connexin (Cx) family of proteins expressed in bone. The role of Cx43 has been shown to be related to the formation of gap junction intercellular channels, to unopposed hemichannels, and to channel independent functions of the molecule. Cx43 participates in the response of bone cells to pharmacological, hormonal, and mechanical stimuli, and it is involved in the skeletal phenotype with old age. Human and murine studies have shown that mutations of Cx43 lead to oculodentodigital dysplasia and craniometaphyseal dysplasia, both conditions associated with abnormalities in the skeleton. However, whereas substantial advances have been made on the skeletal role of Cx43, further research is needed to understand the basis for the effects of mutated Cx43 and potential ways to prevent the effects of these mutations on bone.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA
| | - Iqra Asad
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alex E. Kritikos
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Natasha Sanz
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Zuo T, Liu Y, Duan M, Pu X, Huang M, Zhang D, Xie J. Platelet-derived growth factor PDGF-AA upregulates connexin 43 expression and promotes gap junction formations in osteoblast cells through p-Akt signaling. Biochem Biophys Rep 2023; 34:101462. [PMID: 37025987 PMCID: PMC10070375 DOI: 10.1016/j.bbrep.2023.101462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Gap junctions, which are mainly composed of connexin units, play an indispensable role in cell morphogenesis, proliferation, migration, adhesion and differentiation of osteoblast lineage cells, and thus mediate bone development, homeostasis and disease occurrence. Platelet-derived growth factor-AA (PDGF-AA) is proved to have a great influence on osteoblast cell lines and is widely applied in the field of bone defect and wound healing. However, the role of PDGF-AA on gap junction formation in the osteoblast lineage remains elusive. In the current study, we aimed to investigate the impact of PDGF-AA on gap junction formation and cell-to-cell communication in the osteoblast lineage and explore its underlying biomechanism. We first found that PDGF-AA promoted cell proliferation and thus increased gap junction formations in living primary osteoblasts and MC3T3-E1 cells through scrape loading and dye transfer (SL/DT) assay. We then confirmed that PDGF-AA enhanced gap junction formations through up-regulation of connexin 43 (Cx43). We next detected the activation of p-Akt signaling in primary osteoblasts and MC3T3-E1 cells that were induced by PDGF-AA. Through inhibitory experiments, we further confirmed that PDGF-AA-mediated gap junction formation occurred via the activation of PI3K/Akt signaling. Taking together, our results provided evidences that PDGF-AA promoted gap junction formation in the osteoblast lineage through p-Akt signaling, which helped to understand the role of PDGF-AA in bone regeneration and diseases.
Collapse
Affiliation(s)
- Tao Zuo
- Orthopedics Department, First Clinical College, Xuzhou Medical University, Jiangsu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Deosthale P, Balanta-Melo J, Creecy A, Liu C, Marcial A, Morales L, Cridlin J, Robertson S, Okpara C, Sanchez DJ, Ayoubi M, Lugo JN, Hernandez CJ, Wallace JM, Plotkin LI. Fragile X Messenger Ribonucleoprotein 1 (FMR1), a novel inhibitor of osteoblast/osteocyte differentiation, regulates bone formation, mass, and strength in young and aged male and female mice. Bone Res 2023; 11:25. [PMID: 37193680 PMCID: PMC10188597 DOI: 10.1038/s41413-023-00256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 05/18/2023] Open
Abstract
Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene mutations lead to fragile X syndrome, cognitive disorders, and, in some individuals, scoliosis and craniofacial abnormalities. Four-month-old (mo) male mice with deletion of the FMR1 gene exhibit a mild increase in cortical and cancellous femoral bone mass. However, consequences of absence of FMR1 in bone of young/aged male/female mice and the cellular basis of the skeletal phenotype remain unknown. We found that absence of FMR1 results in improved bone properties with higher bone mineral density in both sexes and in 2- and 9-mo mice. The cancellous bone mass is higher only in females, whereas, cortical bone mass is higher in 2- and 9-mo males, but higher in 2- and lower in 9-mo female FMR1-knockout mice. Furthermore, male bones show higher biomechanical properties at 2mo, and females at both ages. Absence of FMR1 increases osteoblast/mineralization/bone formation and osteocyte dendricity/gene expression in vivo/ex vivo/in vitro, without affecting osteoclasts in vivo/ex vivo. Thus, FMR1 is a novel osteoblast/osteocyte differentiation inhibitor, and its absence leads to age-, site- and sex-dependent higher bone mass/strength.
Collapse
Affiliation(s)
- Padmini Deosthale
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
| | - Julián Balanta-Melo
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
- Universidad del Valle School of Dentistry, Cali, 760043, Colombia
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 46202, Indianapolis, IN, 46202, USA
| | - Chongshan Liu
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Alejandro Marcial
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Laura Morales
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Julita Cridlin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sylvia Robertson
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chiebuka Okpara
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David J Sanchez
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mahdi Ayoubi
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joaquín N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joseph M Wallace
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 46202, Indianapolis, IN, 46202, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Zhao D, Wu J, Acosta FM, Xu H, Jiang JX. Connexin 43 hemichannels and prostaglandin E 2 release in anabolic function of the skeletal tissue to mechanical stimulation. Front Cell Dev Biol 2023; 11:1151838. [PMID: 37123401 PMCID: PMC10133519 DOI: 10.3389/fcell.2023.1151838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Bone adapts to changes in the physical environment by modulating remodeling through bone resorption and formation to maintain optimal bone mass. As the most abundant connexin subtype in bone tissue, connexin 43 (Cx43)-forming hemichannels are highly responsive to mechanical stimulation by permitting the exchange of small molecules (<1.2 kDa) between bone cells and the extracellular environment. Upon mechanical stimulation, Cx43 hemichannels facilitate the release of prostaglandins E2 (PGE2), a vital bone anabolic factor from osteocytes. Although most bone cells are involved in mechanosensing, osteocytes are the principal mechanosensitive cells, and PGE2 biosynthesis is greatly enhanced by mechanical stimulation. Mechanical stimulation-induced PGE2 released from osteocytic Cx43 hemichannels acts as autocrine effects that promote β-catenin nuclear accumulation, Cx43 expression, gap junction function, and protects osteocytes against glucocorticoid-induced osteoporosis in cultured osteocytes. In vivo, Cx43 hemichannels with PGE2 release promote bone formation and anabolism in response to mechanical loading. This review summarizes current in vitro and in vivo understanding of Cx43 hemichannels and extracellular PGE2 release, and their roles in bone function and mechanical responses. Cx43 hemichannels could be a significant potential new therapeutic target for treating bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dezhi Zhao
- School of Medicine, Northwest University, Xi’an, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jiawei Wu
- School of Medicine, Northwest University, Xi’an, China
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
7
|
Dudakovic A, Jerez S, Deosthale PJ, Denbeigh JM, Paradise CR, Gluscevic M, Zan P, Begun DL, Camilleri ET, Pichurin O, Khani F, Thaler R, Lian JB, Stein GS, Westendorf JJ, Plotkin LI, van Wijnen AJ. MicroRNA-101a enhances trabecular bone accrual in male mice. Sci Rep 2022; 12:13361. [PMID: 35922466 PMCID: PMC9349183 DOI: 10.1038/s41598-022-17579-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
High-throughput microRNA sequencing was performed during differentiation of MC3T3-E1 osteoblasts to develop working hypotheses for specific microRNAs that control osteogenesis. The expression data show that miR-101a, which targets the mRNAs for the epigenetic enzyme Ezh2 and many other proteins, is highly upregulated during osteoblast differentiation and robustly expressed in mouse calvaria. Transient elevation of miR-101a suppresses Ezh2 levels, reduces tri-methylation of lysine 27 in histone 3 (H3K27me3; a heterochromatic mark catalyzed by Ezh2), and accelerates mineralization of MC3T3-E1 osteoblasts. We also examined skeletal phenotypes of an inducible miR-101a transgene under direct control of doxycycline administration. Experimental controls and mir-101a over-expressing mice were exposed to doxycycline in utero and postnatally (up to 8 weeks of age) to maximize penetrance of skeletal phenotypes. Male mice that over-express miR-101a have increased total body weight and longer femora. MicroCT analysis indicate that these mice have increased trabecular bone volume fraction, trabecular number and trabecular thickness with reduced trabecular spacing as compared to controls. Histomorphometric analysis demonstrates a significant reduction in osteoid volume to bone volume and osteoid surface to bone surface. Remarkably, while female mice also exhibit a significant increase in bone length, no significant changes were noted by microCT (trabecular bone parameters) and histomorphometry (osteoid parameters). Hence, miR-101a upregulation during osteoblast maturation and the concomitant reduction in Ezh2 mediated H3K27me3 levels may contribute to the enhanced trabecular bone parameters in male mice. However, the sex-specific effect of miR-101a indicates that more intricate epigenetic mechanisms mediate physiological control of bone formation and homeostasis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Padmini J Deosthale
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Pengfei Zan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L Roudebush VA Medical Center, Indianapolis, IN, USA.
| | | |
Collapse
|
8
|
Zweifler LE, Koh AJ, Daignault-Newton S, McCauley LK. Anabolic actions of PTH in murine models: two decades of insights. J Bone Miner Res 2021; 36:1979-1998. [PMID: 34101904 PMCID: PMC8596798 DOI: 10.1002/jbmr.4389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Parathyroid hormone (PTH) is produced by the parathyroid glands in response to low serum calcium concentrations where it targets bones, kidneys, and indirectly, intestines. The N-terminus of PTH has been investigated for decades for its ability to stimulate bone formation when administered intermittently (iPTH) and is used clinically as an effective anabolic agent for the treatment of osteoporosis. Despite great interest in iPTH and its clinical use, the mechanisms of PTH action remain complicated and not fully defined. More than 70 gene targets in more than 90 murine models have been utilized to better understand PTH anabolic actions. Because murine studies utilized wild-type mice as positive controls, a variety of variables were analyzed to better understand the optimal conditions under which iPTH functions. The greatest responses to iPTH were in male mice, with treatment starting later than 12 weeks of age, a treatment duration lasting 5-6 weeks, and a PTH dose of 30-60 μg/kg/day. This comprehensive study also evaluated these genetic models relative to the bone formative actions with a primary focus on the trabecular compartment revealing trends in critical genes and gene families relevant for PTH anabolic actions. The summation of these data revealed the gene deletions with the greatest increase in trabecular bone volume in response to iPTH. These included PTH and 1-α-hydroxylase (Pth;1α(OH)ase, 62-fold), amphiregulin (Areg, 15.8-fold), and PTH related protein (Pthrp, 10.2-fold). The deletions with the greatest inhibition of the anabolic response include deletions of: proteoglycan 4 (Prg4, -9.7-fold), low-density lipoprotein receptor-related protein 6 (Lrp6, 1.3-fold), and low-density lipoprotein receptor-related protein 5 (Lrp5, -1.0-fold). Anabolic actions of iPTH were broadly affected via multiple and diverse genes. This data provides critical insight for future research and development, as well as application to human therapeutics. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Laura E Zweifler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Pathology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Isojima T, Sims NA. Cortical bone development, maintenance and porosity: genetic alterations in humans and mice influencing chondrocytes, osteoclasts, osteoblasts and osteocytes. Cell Mol Life Sci 2021; 78:5755-5773. [PMID: 34196732 PMCID: PMC11073036 DOI: 10.1007/s00018-021-03884-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Cortical bone structure is a crucial determinant of bone strength, yet for many years studies of novel genes and cell signalling pathways regulating bone strength have focused on the control of trabecular bone mass. Here we focus on mechanisms responsible for cortical bone development, growth, and degeneration, and describe some recently described genetic-driven modifications in humans and mice that reveal how these processes may be controlled. We start with embryonic osteogenesis of preliminary bone structures preceding the cortex and describe how this structure consolidates then matures to a dense, vascularised cortex containing an increasing proportion of lamellar bone. These processes include modelling-induced, and load-dependent, asymmetric cortical expansion, which enables the cortex's transition from a highly porous woven structure to a consolidated and thickened highly mineralised lamellar bone structure, infiltrated by vascular channels. Sex-specific differences emerge during this process. With aging, the process of consolidation reverses: cortical pores enlarge, leading to greater cortical porosity, trabecularisation and loss of bone strength. Each process requires co-ordination between bone formation, bone mineralisation, vascularisation, and bone resorption, with a need for locational-, spatial- and cell-specific signalling pathways to mediate this co-ordination. We will discuss these processes, and a number of cell-signalling pathways identified in both murine and human genetic studies to regulate cortical bone mass, including signalling through gp130, STAT3, PTHR1, WNT16, NOTCH, NOTUM and sFRP4.
Collapse
Affiliation(s)
- Tsuyoshi Isojima
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3122, Australia
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3122, Australia.
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
10
|
Wang L, Liu L, Sun S, Xiao L, Jiang Q, Ding H. Effects of Parathyroid Hormone on Osteoporotic Fracture Healing in Mice via Non-Phospholipases C-Dependent Protein Kinase C Signaling Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objectives: This study was aimed to explore the effects of parathyroid hormone (PTH) on osteoporotic fracture healing in mice and the underlying mechanisms. Methods: Microarray analysis was conducted to analyze the gene expression level in MC3T3-E1 cells. Carboxyfluorescein
succinimidyl ester (CFSE) staining and flow cytometry was adopted to analyze the proliferation and apopto-sis of MC3T3-E1 cells. qRT-PCR was used to analyze the mRNA expression level. Fluorescence resonance energy transfer (FRET) assay was conducted to detect PKC activity. The bone mineral
density (BMD) and bone volume (BV)/total volume (TV) were determined via enzyme-linked immunosorbent assay (ELISA) and microscopic computed tomography (micro-CT). Results: ERK1/2 was abnormally expressed in MC3T3-E1 cells after GlylArg19hPTH (1-34) + KT5720 treatment. GlylArg19hPTH
(1-34)+ KT5720 treatment promoted cell proliferation, inhibited cell apoptosis, and upregulatedthe expression of osteogenesis-related genes (ALP, OPN, Runx2 and OPG) in MC3T3-E1 cells, which were due to the activation of the non-PLC-dependent PKC signaling pathway and can be blocked by PKC
inhibitor Go6983 or ERK1/2 inhibitor BVD-523. Moreover, the activity of PKC in MC3T3-E1 cells treated with GlylArg19hPTH (1-34) + KT5720 + Go6983 was alleviated by ERK1/2 inhibitor BVD-523. In vivo, specific activation of the non-PLC-dependent PKC signaling pathway increased the serum
levels of APL and OPG in mice with osteoporotic fracture, which were reversed by PKC inhibitor Go6983 and ERK1/2 inhibitor BVD-523. Moreover, PKC inhibitor Go6983 and ERK1/2 inhibitor BVD-523 suppressed the elevation of BV/TV and BMD induced by specific activation of the non-PKC-dependent
signaling pathway. Conclusions: Taken together, PTH stimulates osteoporotic fracture healing in mice through the non-PLC-dependent PKC signaling pathway in which ERK1/2 exerts a vital role.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopaedics, The Zhenjiang First People’s Hospital, Dianli Road 8, Zhenjiang, 212001, Jiangsu Province, China
| | - Linjuan Liu
- Department of Stomatology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 310000, China
| | - Sixin Sun
- Department of Orthopaedics, The Taixing People’s Hospital, ChangZheng Road 1, Taixing, 225400, Jiangsu Province, China
| | - Li Xiao
- Department of Orthopaedics, The Zhenjiang First People’s Hospital, Dianli Road 8, Zhenjiang, 212001, Jiangsu Province, China
| | - Qinyi Jiang
- Department of Orthopaedics, The Zhenjiang First People’s Hospital, Dianli Road 8, Zhenjiang, 212001, Jiangsu Province, China
| | - Hua Ding
- Department of Orthopaedics, The Zhenjiang First People’s Hospital, Dianli Road 8, Zhenjiang, 212001, Jiangsu Province, China
| |
Collapse
|
11
|
Abstract
Skeleton formation and its proper functioning is possible thanks to specialized bone tissue
cells: bone forming osteoblasts, bone resorbing osteoclasts and osteocytes located in bone
cavities.
Gap junctions are transmembrane channels connecting neighboring cell. Thanks to gap junctions
it is possible for signals to be directly transmitted by cells. Gap junction type channels,
and more specifically the connexin proteins that build them, have a key impacton the bone
turnover process, and thus on both bone building and remodeling. A particularly important
connexin in bone tissue is connexin43 (Cx43), which is necessary in the proper course of the
bone formation process and in maintaining bone homeostasis.
The importance of the presence of Cx43 in bones is showed by skeletal defects in diseases
such as ODD syndrome and craniometaphyseal dysplasia caused by mutations in GJA1, the
gene encoding Cx43. The role of Cx43 in the differentiation of stem cells into bone cells,
anti-apoptotic action of bisphosphonates and bone responses to hormonal and mechanical
stimuli have also been demonstrated. In addition to connexin43, the presence of other connexins
such as connexin45, 46 and 37 was also noted in bone tissue.
Collapse
Affiliation(s)
- Krzysztof Łukowicz
- Zakład Biologii i Obrazowania Komórki, Instytut Zoologii i Badań Biomedycznych, Wydział Biologii, Uniwersytet Jagielloński w Krakowie
| | - Karolina Fijał
- Zakład Biologii i Obrazowania Komórki, Instytut Zoologii i Badań Biomedycznych, Wydział Biologii, Uniwersytet Jagielloński w Krakowie
| | - Aleksandra Nowak
- Zakład Biologii i Obrazowania Komórki, Instytut Zoologii i Badań Biomedycznych, Wydział Biologii, Uniwersytet Jagielloński w Krakowie
| | - Anna M. Osyczka
- Zakład Biologii i Obrazowania Komórki, Instytut Zoologii i Badań Biomedycznych, Wydział Biologii, Uniwersytet Jagielloński w Krakowie
| |
Collapse
|
12
|
Davis HM, Deosthale PJ, Pacheco-Costa R, Essex AL, Atkinson EG, Aref MW, Dilley JE, Bellido T, Ivan M, Allen M, Plotkin LI. Osteocytic miR21 deficiency improves bone strength independent of sex despite having sex divergent effects on osteocyte viability and bone turnover. FEBS J 2020; 287:941-963. [PMID: 31532878 PMCID: PMC7396683 DOI: 10.1111/febs.15066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/30/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
Abstract
Osteocytes play a critical role in mediating cell-cell communication and regulating bone homeostasis, and osteocyte apoptosis is associated with increased bone resorption. miR21, an oncogenic microRNA, regulates bone metabolism by acting directly on osteoblasts and osteoclasts, but its role in osteocytes is not clear. Here, we show that osteocytic miR21 deletion has sex-divergent effects in bone. In females, miR21 deletion reduces osteocyte viability, but suppresses bone turnover. Conversely, in males, miR21 deletion increases osteocyte viability, but stimulates bone turnover and enhances bone structure. Further, miR21 deletion differentially alters osteocyte cytokine production in the two sexes. Interestingly, despite these changes, miR21 deletion increases bone mechanical properties in both sexes, albeit to a greater extent in males. Collectively, our findings suggest that miR21 exerts both sex-divergent and sex-equivalent roles in osteocytes, regulating osteocyte viability and altering bone metabolism through paracrine actions on osteoblasts and osteoclasts differentially in males vs females, whereas, influencing bone mechanical properties independent of sex.
Collapse
Affiliation(s)
- Hannah M. Davis
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | | | | | - Alyson L. Essex
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Emily G. Atkinson
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Mohammad W. Aref
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Julian E. Dilley
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Division of Endocrinology Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Mircea Ivan
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Allen
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Lilian I. Plotkin
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| |
Collapse
|
13
|
Aguilar-Perez A, Pacheco-Costa R, Atkinson EG, Deosthale P, Davis HM, Essex AL, Dilley JE, Gomez L, Rupert JE, Zimmers TA, Thompson RJ, Allen MR, Plotkin LI. Age- and sex-dependent role of osteocytic pannexin1 on bone and muscle mass and strength. Sci Rep 2019; 9:13903. [PMID: 31554905 PMCID: PMC6761284 DOI: 10.1038/s41598-019-50444-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Pannexins (Panxs), glycoproteins that oligomerize to form hemichannels on the cell membrane, are topologically similar to connexins, but do not form cell-to-cell gap junction channels. There are 3 members of the family, 1-3, with Panx1 being the most abundant. All Panxs are expressed in bone, but their role in bone cell biology is not completely understood. We now report that osteocytic Panx1 deletion (Panx1Δot) alters bone mass and strength in female mice. Bone mineral density after reaching skeletal maturity is higher in female Panx1Δot mice than in control Panx1fl/fl mice. Further, osteocytic Panx1 deletion partially prevented aging effects on cortical bone structure and mechanical properties. Young 4-month-old female Panx1Δot mice exhibited increased lean body mass, even though pannexin levels in skeletal muscle were not affected; whereas no difference in lean body mass was detected in male mice. Furthermore, female Panx1-deficient mice exhibited increased muscle mass without changes in strength, whereas Panx1Δot males showed unchanged muscle mass and decreased in vivo maximum plantarflexion torque, indicating reduced muscle strength. Our results suggest that osteocytic Panx1 deletion increases bone mass in young and old female mice and muscle mass in young female mice, but has deleterious effects on muscle strength only in males.
Collapse
Affiliation(s)
- Alexandra Aguilar-Perez
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rafael Pacheco-Costa
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Emily G Atkinson
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Padmini Deosthale
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hannah M Davis
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alyson L Essex
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Julian E Dilley
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Leland Gomez
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Joseph E Rupert
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Teresa A Zimmers
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Roger J Thompson
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Matthew R Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA.
| |
Collapse
|
14
|
Davis HM, Essex AL, Valdez S, Deosthale PJ, Aref MW, Allen MR, Bonetto A, Plotkin LI. Short-term pharmacologic RAGE inhibition differentially affects bone and skeletal muscle in middle-aged mice. Bone 2019; 124:89-102. [PMID: 31028960 PMCID: PMC6543548 DOI: 10.1016/j.bone.2019.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/27/2022]
Abstract
Loss of bone and muscle mass are two major clinical complications among the growing list of chronic diseases that primarily affect elderly individuals. Persistent low-grade inflammation, one of the major drivers of aging, is also associated with both bone and muscle dysfunction in aging. Particularly, chronic activation of the receptor for advanced glycation end products (RAGE) and elevated levels of its ligands high mobility group box 1 (HMGB1), AGEs, S100 proteins and Aβ fibrils have been linked to bone and muscle loss in various pathologies. Further, genetic or pharmacologic RAGE inhibition has been shown to preserve both bone and muscle mass. However, whether short-term pharmacologic RAGE inhibition can prevent early bone and muscle loss in aging is unknown. To address this question, we treated young (4-mo) and middle-aged (15-mo) C57BL/6 female mice with vehicle or Azeliragon, a small-molecule RAGE inhibitor initially developed to treat Alzheimer's disease. Azeliragon did not prevent the aging-induced alterations in bone geometry or mechanics, likely due to its differential effects [direct vs. indirect] on bone cell viability/function. On the other hand, Azeliragon attenuated the aging-related body composition changes [fat and lean mass] and reversed the skeletal muscle alterations induced with aging. Interestingly, while Azeliragon induced similar metabolic changes in bone and skeletal muscle, aging differentially altered the expression of genes associated with glucose uptake/metabolism in these two tissues, highlighting a potential explanation for the differential effects of Azeliragon on bone and skeletal muscle in middle-aged mice. Overall, our findings suggest that while short-term pharmacologic RAGE inhibition did not protect against early aging-induced bone alterations, it prevented against the early effects of aging in skeletal muscle.
Collapse
Affiliation(s)
- Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Alyson L Essex
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Sinai Valdez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Padmini J Deosthale
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Mohammad W Aref
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Matthew R Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America.
| | - Andrea Bonetto
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America; Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America.
| |
Collapse
|
15
|
Pacheco-Costa R, Davis HM, Atkinson EG, Dilley JE, Byiringiro I, Aref MW, Allen MR, Bellido T, Plotkin LI. Reversal of loss of bone mass in old mice treated with mefloquine. Bone 2018; 114:22-31. [PMID: 29879544 PMCID: PMC6056320 DOI: 10.1016/j.bone.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
Aging is accompanied by imbalanced bone remodeling, elevated osteocyte apoptosis, and decreased bone mass and mechanical properties; and improved pharmacologic approaches to counteract bone deterioration with aging are needed. We examined herein the effect of mefloquine, a drug used to treat malaria and systemic lupus erythematosus and shown to ameliorate bone loss in glucocorticoid-treated patients, on bone mass and mechanical properties in young and old mice. Young 3.5-month-old and old 21-month-old female C57BL/6 mice received daily injections of 5 mg/kg/day mefloquine for 14 days. Aging resulted in the expected changes in bone volume and mechanical properties. In old mice mefloquine administration reversed the lower vertebral cancellous bone volume and bone formation; and had modest effects on cortical bone volume, thickness, and moment of inertia. Mefloquine administration did not change the levels of the circulating bone formation markers P1NP or alkaline phosphatase, whereas levels of the resorption marker CTX showed trends towards increase with mefloquine treatment. In addition, and as expected, aging bones exhibited an accumulation of active caspase3-expressing osteocytes and higher expression of apoptosis-related genes compared to young mice, which were not altered by mefloquine administration at either age. In young animals, mefloquine induced higher periosteal bone formation, but lower endocortical bone formation. Further, osteoclast numbers were higher on the endocortical bone surface and circulating CTX levels were increased, in mefloquine- compared to vehicle-treated young mice. Consistent with this, addition of mefloquine to bone marrow cells isolated from young mice led to increased osteoclastic gene expression and a tendency towards increased osteoclast numbers in vitro. Taken together our findings identify the age and bone-site specific skeletal effects of mefloquine. Further, our results highlight a beneficial effect of mefloquine administration on vertebral cancellous bone mass in old animals, raising the possibility of using this pharmacologic inhibitor to preserve skeletal health with aging.
Collapse
Affiliation(s)
- Rafael Pacheco-Costa
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Emily G Atkinson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Julian E Dilley
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Innocent Byiringiro
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mohammad W Aref
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Matthew R Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA; Division of Endocrinology, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
16
|
|
17
|
Gago-Fuentes R, Bechberger JF, Varela-Eirin M, Varela-Vazquez A, Acea B, Fonseca E, Naus CC, Mayan MD. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes. Oncotarget 2018; 7:73055-73067. [PMID: 27682878 PMCID: PMC5341963 DOI: 10.18632/oncotarget.12197] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022] Open
Abstract
Chondrocytes in cartilage and bone cells population express connexin43 (Cx43) and gap junction intercellular communication (GJIC) is essential to synchronize cells for coordinated electrical, mechanical, metabolic and chemical communication in both tissues. Reduced Cx43 connectivity decreases chondrocyte differentiation and defective Cx43 causes skeletal defects. The carboxy terminal domain (CTD) of Cx43 is located in the cytoplasmic side and is key for protein functions. Here we demonstrated that chondrocytes from the CTD-deficient mice, K258stop/Cx43KO and K258stop/K258stop, have reduced GJIC, increased rates of proliferation and reduced expression of collagen type II and proteoglycans. We observed that CTD-truncated mice were significantly smaller in size. Together these results demonstrated that the deletion of the CTD negatively impacts cartilage structure and normal chondrocyte phenotype. These findings suggest that the proteolytic cleavage of the CTD under pathological conditions, such as under the activation of metalloproteinases during tissue injury or inflammation, may account for the deleterious effects of Cx43 in cartilage and bone disorders such as osteoarthritis.
Collapse
Affiliation(s)
- Raquel Gago-Fuentes
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - John F Bechberger
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Marta Varela-Eirin
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Adrian Varela-Vazquez
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Benigno Acea
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Maria D Mayan
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| |
Collapse
|
18
|
Davis HM, Aref MW, Aguilar-Perez A, Pacheco-Costa R, Allen K, Valdez S, Herrera C, Atkinson EG, Mohammad A, Lopez D, Harris MA, Harris SE, Allen M, Bellido T, Plotkin LI. Cx43 overexpression in osteocytes prevents osteocyte apoptosis and preserves cortical bone quality in aging mice. JBMR Plus 2018; 2:206-216. [PMID: 29978155 DOI: 10.1002/jbm4.10035] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Young, skeletally mature mice lacking Cx43 in osteocytes exhibit increased osteocyte apoptosis and decreased bone strength, resembling the phenotype of old mice. Further, the expression of Cx43 in bone decreases with age, suggesting a contribution of reduced Cx43 levels to the age-related changes in the skeleton. We report herein that Cx43 overexpression in osteocytes achieved by using the DMP1-8kb promoter (Cx43OT mice) attenuates the skeletal cortical, but not trabecular bone phenotype of aged, 14-month-old mice. The percentage of Cx43-expressing osteocytes was higher in Cx43OT mice, whereas the percentage of Cx43 positive osteoblasts remained similar to wild type (WT) littermate control mice. The percentage of apoptotic osteocytes and osteoblasts was increased in aged WT mice compared to skeletally mature, 6-month-old WT mice, and the percentage of apoptotic osteocytes, but not osteoblasts, was decreased in age-matched Cx43OT mice. Aged WT mice exhibited decreased bone formation and increased bone resorption as quantified by histomorphometric analysis and circulating markers, compared to skeletally mature mice. Further, aged WT mice exhibited the expected decrease in bone biomechanical structural and material properties compared to young mice. Cx43 overexpression prevented the increase in osteoclasts and decrease in bone formation on the endocortical surfaces, and the changes in circulating markers in the aged mice. Moreover, the ability of bone to resist damage was preserved in aged Cx43OT mice both at the structural and material level. All together, these findings suggest that increased Cx43 expression in osteocytes ameliorates age-induced cortical bone changes by preserving osteocyte viability and maintaining bone formation, leading to improved bone strength.
Collapse
Affiliation(s)
- Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammad W Aref
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandra Aguilar-Perez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rafael Pacheco-Costa
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kimberly Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sinai Valdez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmen Herrera
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily G Atkinson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arwa Mohammad
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Lopez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marie A Harris
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stephen E Harris
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Division of Endocrinology, Dept. Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To discuss current knowledge on the role of connexins and pannexins in the musculoskeletal system. RECENT FINDINGS Connexins and pannexins are crucial for the development and maintenance of both bone and skeletal muscle. In bone, the presence of connexin and more recently of pannexin channels in osteoblasts, osteoclasts, and osteocytes has been described and shown to be essential for normal skeletal development and bone adaptation. In skeletal muscles, connexins and pannexins play important roles during development and regeneration through coordinated regulation of metabolic functions via cell-to-cell communication. Further, under pathological conditions, altered expression of these proteins can promote muscle atrophy and degeneration by stimulating inflammasome activity. In this review, we highlight the important roles of connexins and pannexins in the development, maintenance, and regeneration of musculoskeletal tissues, with emphasis on the mechanisms by which these molecules mediate chemical (e.g., ATP and prostaglandin E2) and physical (e.g., mechanical stimulation) stimuli that target the musculoskeletal system and their involvement in the pathophysiological changes in both genetic and acquired diseases.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA
| | - Bruno A Cisterna
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
20
|
Davis HM, Pacheco-Costa R, Atkinson EG, Brun LR, Gortazar AR, Harris J, Hiasa M, Bolarinwa SA, Yoneda T, Ivan M, Bruzzaniti A, Bellido T, Plotkin LI. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell 2017; 16:551-563. [PMID: 28317237 PMCID: PMC5418188 DOI: 10.1111/acel.12586] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/25/2022] Open
Abstract
Skeletal aging results in apoptosis of osteocytes, cells embedded in bone that control the generation/function of bone forming and resorbing cells. Aging also decreases connexin43 (Cx43) expression in bone; and osteocytic Cx43 deletion partially mimics the skeletal phenotype of old mice. Particularly, aging and Cx43 deletion increase osteocyte apoptosis, and osteoclast number and bone resorption on endocortical bone surfaces. We examined herein the molecular signaling events responsible for osteocyte apoptosis and osteoclast recruitment triggered by aging and Cx43 deficiency. Cx43‐silenced MLO‐Y4 osteocytic (Cx43def) cells undergo spontaneous cell death in culture through caspase‐3 activation and exhibit increased levels of apoptosis‐related genes, and only transfection of Cx43 constructs able to form gap junction channels reverses Cx43def cell death. Cx43def cells and bones from old mice exhibit reduced levels of the pro‐survival microRNA miR21 and, consistently, increased levels of the miR21 target phosphatase and tensin homolog (PTEN) and reduced phosphorylated Akt, whereas PTEN inhibition reduces Cx43def cell apoptosis. miR21 reduction is sufficient to induce apoptosis of Cx43‐expressing cells and miR21 deletion in miR21fl/fl bones increases apoptosis‐related gene expression, whereas a miR21 mimic prevents Cx43def cell apoptosis, demonstrating that miR21 lies downstream of Cx43. Cx43def cells release more osteoclastogenic cytokines [receptor activator of NFκB ligand (RANKL)/high‐mobility group box‐1 (HMGB1)], and caspase‐3 inhibition prevents RANKL/HMGB1 release and the increased osteoclastogenesis induced by conditioned media from Cx43def cells, which is blocked by antagonizing HMGB1‐RAGE interaction. These findings identify a novel Cx43/miR21/HMGB1/RANKL pathway involved in preventing osteocyte apoptosis that also controls osteoclast formation/recruitment and is impaired with aging.
Collapse
Affiliation(s)
- Hannah M. Davis
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Rafael Pacheco-Costa
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Emily G. Atkinson
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Lucas R. Brun
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Arancha R. Gortazar
- Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo-CEU; Madrid Spain
| | - Julia Harris
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Masahiro Hiasa
- Division of Hematology/Oncology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Surajudeen A. Bolarinwa
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Toshiyuki Yoneda
- Division of Hematology/Oncology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Mircea Ivan
- Division of Hematology/Oncology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Angela Bruzzaniti
- Department of Oral Biology; Indiana University School of Dentistry; Indianapolis IN USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
- Division of Endocrinology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
- Roudebush Veterans Administration Medical Center; Indianapolis IN USA
| | - Lilian I. Plotkin
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
- Roudebush Veterans Administration Medical Center; Indianapolis IN USA
| |
Collapse
|
21
|
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:48-64. [PMID: 28526583 DOI: 10.1016/j.bbamem.2017.05.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, University of Oslo, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, France
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| |
Collapse
|
22
|
Maycas M, McAndrews KA, Sato AY, Pellegrini GG, Brown DM, Allen MR, Plotkin LI, Gortazar AR, Esbrit P, Bellido T. PTHrP-Derived Peptides Restore Bone Mass and Strength in Diabetic Mice: Additive Effect of Mechanical Loading. J Bone Miner Res 2017; 32:486-497. [PMID: 27683064 DOI: 10.1002/jbmr.3007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 01/17/2023]
Abstract
There is an unmet need to understand the mechanisms underlying skeletal deterioration in diabetes mellitus (DM) and to develop therapeutic approaches to treat bone fragility in diabetic patients. We demonstrate herein that mice with type 1 DM induced by streptozotocin exhibited low bone mass, inferior mechanical and material properties, increased bone resorption, decreased bone formation, increased apoptosis of osteocytes, and increased expression of the osteocyte-derived bone formation inhibitor Sost/sclerostin. Further, short treatment of diabetic mice with parathyroid hormone related protein (PTHrP)-derived peptides corrected these changes to levels undistinguishable from non-diabetic mice. In addition, diabetic mice exhibited reduced bone formation in response to mechanical stimulation, which was corrected by treatment with the PTHrP peptides, and higher prevalence of apoptotic osteocytes, which was reduced by loading or by the PTHrP peptides alone and reversed by a combination of loading and PTHrP peptide treatment. In vitro experiments demonstrated that the PTHrP peptides or mechanical stimulation by fluid flow activated the survival kinases ERKs and induced nuclear translocation of the canonical Wnt signaling mediator β-catenin, and prevented the increase in osteocytic cell apoptosis induced by high glucose. Thus, PTHrP-derived peptides cross-talk with mechanical signaling pathways to reverse skeletal deterioration induced by DM in mice. These findings suggest a crucial role of osteocytes in the harmful effects of diabetes on bone and raise the possibility of targeting these cells as a novel approach to treat skeletal deterioration in diabetes. Moreover, our study suggests the potential therapeutic efficacy of combined pharmacological and mechanical stimuli to promote bone accrual and maintenance in diabetic subjects. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marta Maycas
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Kevin A McAndrews
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Amy Y Sato
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gretel G Pellegrini
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Drew M Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Arancha R Gortazar
- Instituto de Medicina Molecular Aplicada-Universidad San Pablo CEU, Madrid, Spain
| | - Pedro Esbrit
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.,Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF THE REVIEW This review highlights recent developments into how intercellular communication through connexin43 facilitates bone modeling and remodeling. RECENT FINDINGS Connexin43 is required for both skeletal development and maintenance, particularly in cortical bone, where it carries out multiple functions, including preventing osteoclastogenesis, restraining osteoprogenitor proliferation, promoting osteoblast differentiation, coordinating organized collagen matrix deposition, and maintaining osteocyte survival. Emerging data shows that connexin43 regulates both the exchange of small molecules among osteoblast lineage cells and the docking of signaling proteins to the gap junction, affecting the efficiency of signal transduction. Understanding how and what connexin43 communicates to coordinate tissue remodeling has therapeutic implications in bone. Altering the information shared by intercellular communication and/or targeting the recruitment of signaling machinery to the gap junction could be used to impact the skeletal homeostatic set point, either driving osteogenesis or inhibiting resorption.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA.
| |
Collapse
|
24
|
Abstract
Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
25
|
Kaito T, Morimoto T, Kanayama S, Otsuru S, Kashii M, Makino T, Kitaguchi K, Furuya M, Chijimatsu R, Ebina K, Yoshikawa H. Modeling and remodeling effects of intermittent administration of teriparatide (parathyroid hormone 1-34) on bone morphogenetic protein-induced bone in a rat spinal fusion model. Bone Rep 2016; 5:173-180. [PMID: 28580385 PMCID: PMC5440964 DOI: 10.1016/j.bonr.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bone morphogenetic protein (BMP)-based tissue engineering has focused on inducing new bone efficiently. However, modeling and remodeling of BMP-induced bone have rarely been discussed. Teriparatide (parathyroid hormone [PTH] 1-34) administration initially increases markers of bone formation, followed by an increase in bone resorption markers. This unique activity would be expected to accelerate the modeling and remodeling of new BMP-induced bone. Methods Male Sprague-Dawley rats underwent posterolateral spinal fusion surgery and implantation of collagen sponge containing either 50 μg recombinant human (rh)BMP-2 or saline. PTH 1-34 (60 μg/kg, 3 times/week) or saline injections were continued from preoperative week 2 week to postoperative week 12. The volume and quality of newly formed bone were monitored by in vivo micro-computed tomography and analyses of bone histomorphometry and serum bone metabolism markers were conducted at postoperative week 12. Results Microstructural indices of the newly formed bone were significantly improved by PTH 1-34 administration, which significantly decreased the tissue volumes of the fusion mass at postoperative week 12 compared to that at postoperative week 2. Bone histomorphometry and serum analyses showed that PTH administration significantly increased both bone formation and resorption markers. Analysis of the histomorphometry of cortical bone identified predominant periosteal bone resorption and endosteal bone formation. Conclusions Long-term intermittent administration of PTH 1-34 significantly accelerated the modeling and remodeling of new BMP-induced bone. Clinical relevance Our results suggest that the combined administration of rhBMP-2 and PTH 1-34 facilitates qualitative and quantitative improvements in bone regeneration, by accelerating bone modeling and remodeling. The present study found that intermittent administration of PTH 1-34 significantly decreased the TV of new rhBMP-2-induced bone, following the initial formation of a fusion mass equivalent to that of the control group. Bone histomorphometry demonstrated predominant bone resorption at the periosteum and bone formation at the endosteum in rats receiving PTH 1-34. These results indicated that PTH 1-34 supported modeling of rhBMP-2-induced bone in addition to the remodeling effect which confirmed by bone histomorphometry and serum markers.
Collapse
Affiliation(s)
- Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tokimitsu Morimoto
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sadaaki Kanayama
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoru Otsuru
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, 700 Chidlren's Drive, Columbus, OH 43205, USA
| | - Masafumi Kashii
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Makino
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuma Kitaguchi
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayuki Furuya
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryota Chijimatsu
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Shen C, Kim MR, Noh JM, Kim SJ, Ka SO, Kim JH, Park BH, Park JH. Glucocorticoid Suppresses Connexin 43 Expression by Inhibiting the Akt/mTOR Signaling Pathway in Osteoblasts. Calcif Tissue Int 2016; 99:88-97. [PMID: 26914606 DOI: 10.1007/s00223-016-0121-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/15/2016] [Indexed: 11/25/2022]
Abstract
The inhibition of proliferation or functional alteration of osteoblasts by glucocorticoids (GCs) has been recognized as an important etiology of GC-induced osteoporosis (GIO). Connexin 43 (Cx43) is the most abundant connexin isoform in bone cells and plays important roles in bone remodeling. Despite the important role of Cx43 in bone homeostasis and the prevalence of GIO, the direct action of GCs on Cx43 expression in osteoblasts has been poorly described. The aim of the present study was to evaluate how GCs affect Cx43 expression in osteoblasts. Dexamethasone (Dex) treatment decreased expression of Cx43 RNA and protein in MC3T3-E1 mouse osteoblastic cells. Reduction of Cx43 expression by Dex was dependent on the glucocorticoid receptor (GR), as it was abolished by pretreatment with a GR blocker. Treatment with PTH (1-34), a medication used for GIO management, counteracted the suppression of Cx43 by Dex. Akt or mTOR signaling modulators revealed the involvement of the Akt/mTOR signaling pathway in Dex-induced reduction of Cx43 expression. Moreover, overexpression of Cx43 significantly attenuated Dex-inhibited cell viability and proliferation, as evidenced by MTT and bromodeoxyuridine (BrdU) incorporation assay of MC3T3-E1 cells. To account for possible species or cell type differences, human primary osteoblasts were treated with Dex and similar downregulation of Cx43 by Dex was observed. In addition, immunofluorescent staining for Cx43 further demonstrated an apparent decrease in Dex-treated human osteoblasts, while analysis of lucifer yellow propagation revealed reduced gap junction intercellular communication by Dex. Collectively, these findings indicate that GCs suppress Cx43 expression in osteoblasts via GR and the Akt/mTOR signaling pathway and overexpression of Cx43 may, at least in part, rescue osteoblasts from GC-induced reductions in proliferation.
Collapse
Affiliation(s)
- Chen Shen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Geonji-Ro 20, Deokjin-Gu, Jeonju, 561-712, Republic of Korea
| | - Mi Ran Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Geonji-Ro 20, Deokjin-Gu, Jeonju, 561-712, Republic of Korea
| | - Jeong Mi Noh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Geonji-Ro 20, Deokjin-Gu, Jeonju, 561-712, Republic of Korea
| | - Su Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Geonji-Ro 20, Deokjin-Gu, Jeonju, 561-712, Republic of Korea
| | - Sun-O Ka
- Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Ji Hye Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Ji Hyun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Geonji-Ro 20, Deokjin-Gu, Jeonju, 561-712, Republic of Korea.
| |
Collapse
|
27
|
Hammond MA, Berman AG, Pacheco-Costa R, Davis HM, Plotkin LI, Wallace JM. Removing or truncating connexin 43 in murine osteocytes alters cortical geometry, nanoscale morphology, and tissue mechanics in the tibia. Bone 2016; 88:85-91. [PMID: 27113527 PMCID: PMC4899203 DOI: 10.1016/j.bone.2016.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/19/2016] [Accepted: 04/22/2016] [Indexed: 12/18/2022]
Abstract
Gap junctions are formed from ubiquitously expressed proteins called connexins that allow the transfer of small signaling molecules between adjacent cells. Gap junctions are especially important for signaling between osteocytes and other bone cell types. The most abundant type of connexin in bone is connexin 43 (Cx43). The C-terminal domain of Cx43 is thought to be an important modulator of gap junction function but the role that this domain plays in regulating tissue-level mechanics is largely unknown. We hypothesized that the lack of the C-terminal domain of Cx43 would cause morphological and compositional changes as well as differences in how bone responds to reference point indentation (RPI) and fracture toughness testing. The effects of the C-terminal domain of Cx43 in osteocytes and other cell types were assessed in a murine model (C57BL/6 background). Mice with endogenous Cx43 in their osteocytes removed via a Cre-loxP system were crossed with knock-in mice which expressed Cx43 that lacked the C-terminal domain in all cell types due to the insertion of a truncated allele to produce the four groups used in the study. The main effect of removing the C-terminal domain from osteocytic Cx43 increased cortical mineral crystallinity (p=0.036) and decreased fracture toughness (p=0.017). The main effect of the presence of the C-terminal domain in other cell types increased trabecular thickness (p<0.001), cortical thickness (p=0.008), and average RPI unloading slope (p=0.004). Collagen morphology was altered when either osteocytes lacked Cx43 (p=0.008) or some truncated Cx43 was expressed in all cell types (p<0.001) compared to controls but not when only the truncated form of Cx43 was expressed in osteocytes (p=0.641). In conclusion, the presence of the C-terminal domain of Cx43 in osteocytes and other cell types is important to maintain normal structure and mechanical integrity of bone.
Collapse
Affiliation(s)
- Max A Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Alycia G Berman
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, United States
| | - Rafael Pacheco-Costa
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, United States
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, United States
| | - Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, United States; Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, United States.
| |
Collapse
|
28
|
Gupta A, Anderson H, Buo AM, Moorer MC, Ren M, Stains JP. Communication of cAMP by connexin43 gap junctions regulates osteoblast signaling and gene expression. Cell Signal 2016; 28:1048-57. [PMID: 27156839 DOI: 10.1016/j.cellsig.2016.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 11/30/2022]
Abstract
Connexin43 (Cx43) containing gap junctions play an important role in bone homeostasis, yet little is known about the second messengers communicated by Cx43 among bone cells. Here, we used MC3T3-E1 pre-osteoblasts and UMR106 rat osteosarcoma cells to test the hypothesis that cAMP is a second messenger communicated by bone cells through Cx43 containing gap junctions in a manner that is sufficient to impact osteoblast function. Overexpression of Cx43 markedly enhanced the activity of a cAMP-response element driven transcriptional luciferase reporter (CRE-luc) and increased phospho-CREB and phospho-ERK1/2 levels following expression of a constitutively active Gsα or by treatment with prostaglandin E2 (PGE2), 3-Isobutyl-1-methyl xanthine (IBMX) or forskolin. The Cx43-dependent potentiation of signaling in PGE2 treated cells was not accompanied by a further increase in cAMP levels, suggesting that the cAMP was shared between cells rather than Cx43 enhancing cAMP production. To support this, we developed a novel assay in which one set of cells expressing constitutively active Gsα (donor cells) were co-cultured with a second set of cells expressing a CRE-luc reporter (acceptor cells). Using this assay, activation of a CRE-luc reporter in the acceptor cells was both Cx43- and cell contact-dependent, indicating communication of cAMP among cells. Finally, we showed that Cx43 increased the cAMP-dependent mRNA expression of receptor activator of nuclear factor kappa B ligand (RANKL) and enhanced the repression of the sclerostin mRNA, implying a potential mechanism for the modulation of tissue remodeling. In total, these data demonstrate that Cx43 can communicate cAMP between cells and, more importantly, that the communicated cAMP is sufficient to impact signal transduction cascades and the expression of key bone effector molecules between interconnected cells.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hidayah Anderson
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Margaret Ren
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Pacheco-Costa R, Davis H, Atkinson E, Katchburian E, Plotkin L, Reginato R. Osteocytic connexin 43 is not required for the increase in bone mass induced by intermittent PTH administration in male mice. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2016; 16:45-57. [PMID: 26944823 PMCID: PMC5089455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate whether osteocytic connexin 43 (Cx43) is required for the bone response to intermittent PTH administration, and whether the connexin is involved in maintaining the bone matrix. METHODS Human PTH(1-34) was injected to adult male mice expressing (Cx43(fl/fl)) or not osteocytic Cx43 (Cx43(fl/fl);DMP1-8kb-Cre) daily (100 µg/kg/d) for 14 days. RESULTS Cx43(fl/fl);DMP1-8kb-Cre mice have no difference in body weight and BMD from 1 to 4 months of age. Intermittent PTH administration increased BMD and BV/TV and induced a similar increase in type I collagen, alkaline phosphatase, runx2, osteocalcin, and bone sialoprotein expression in mice from both genotypes. On the other hand, osteocytic deletion of Cx43 did not alter mRNA levels of glycosaminoglycans, proteoglycans, collagens and osteoblast-related genes. In addition, expression of collagens assessed by immunohistochemistry was not affected by deleting osteocytic Cx43. However, PTH administration increased type II collagen only in Cx43(fl/fl) control mice, whereas hormone increased type I collagen expression only in Cx43(fl/fl);DMP1-8kb-Cre mice. Furthermore, PTH increased maturity of collagen fibers in control, but not in Cx43-deficient mice. CONCLUSION Expression of Cx43 in osteocytes is dispensable for bone anabolism induced by intermittent PTH administration; but it can modulate, at least in part, the effect of PTH on the bone matrix environment.
Collapse
Affiliation(s)
- R. Pacheco-Costa
- Department of Morphology & Genetics, Federal University of São Paulo School of Medicine, São Paulo, SP 04023-900, Brazil,Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - H.M. Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - E.G. Atkinson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - E. Katchburian
- Department of Morphology & Genetics, Federal University of São Paulo School of Medicine, São Paulo, SP 04023-900, Brazil
| | - L.I. Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - R.D. Reginato
- Department of Morphology & Genetics, Federal University of São Paulo School of Medicine, São Paulo, SP 04023-900, Brazil,Corresponding author: Rejane D. Reginato, Ph.D., Mineralized Tissue and Histology Research Laboratory, Department of Morphology and Genetics, Federal Universiy of São Paulo School of Medicine, Rua Botucatu, 740. Ed. Lemos Torres, São Paulo, SP 04023-900, Brazil E-mail:
| |
Collapse
|
30
|
Abstract
Shaping of the skeleton (modeling) and its maintenance throughout life (remodeling) require coordinated activity among bone forming (osteoblasts) and resorbing cells (osteoclasts) and osteocytes (bone embedded cells). The gap junction protein connexin43 (Cx43) has emerged as a key modulator of skeletal growth and homeostasis. The skeletal developmental abnormalities present in oculodentodigital and craniometaphyseal dysplasias, both linked to Cx43 gene (GJA1) mutations, demonstrate that the skeleton is a major site of Cx43 action. Via direct action on osteolineage cells, including altering production of pro-osteoclastogenic factors, Cx43 contributes to peak bone mass acquisition, cortical modeling of long bones, and maintenance of bone quality. Cx43 also contributes in diverse ways to bone responsiveness to hormonal and mechanical signals. Skeletal biology research has revealed the complexity of Cx43 function; in addition to forming gap junctions and "hemichannels", Cx43 provides a scaffold for signaling molecules. Hence, Cx43 actively participates in generation and modulation of cellular signals driving skeletal development and homeostasis. Pharmacological interference with Cx43 may in the future help remedy deterioration of bone quality occurring with aging, disuse and hormonal imbalances.
Collapse
Affiliation(s)
- Joseph P Stains
- Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University in St. Louis, Campus Box 8301, 425 South Euclid, St. Louis, MO 63110, United States.
| |
Collapse
|